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Strain Gradient Modulated Exciton 
Evolution and Emission in ZnO 
Fibers
Bin Wei1,2, Yuan Ji1, Raynald Gauvin2, Ze Zhang3, Jin Zou4 & Xiaodong Han1

One-dimensional semiconductor can undergo large deformation including stretching and bending. 
This homogeneous strain and strain gradient are an easy and effective way to tune the light emission 
properties and the performance of piezo-phototronic devices. Here, we report that with large strain 
gradients from 2.1–3.5% μm−1, free-exciton emission was intensified, and the free-exciton interaction 
(FXI) emission became a prominent FXI-band at the tensile side of the ZnO fiber. These led to an 
asymmetric variation in energy and intensity along the cross-section as well as a redshift of the total 
near-band-edge (NBE) emission. This evolution of the exciton emission was directly demonstrated 
using spatially resolved CL spectrometry combined with an in situ tensile-bending approach at liquid 
nitrogen temperature for individual fibers and nanowires. A distinctive mechanism of the evolution of 
exciton emission is proposed: the enhancement of the free-exciton-related emission is attributed to the 
aggregated free excitons and their interaction in the narrow bandgap in the presence of high bandgap 
gradients and a transverse piezoelectric field. These results might facilitate new approaches for energy 
conversion and sensing applications via strained nanowires and fibers.

Semiconductor nanostructures have been widely utilized in electronic, optoelectronic, photonic and piezotronic 
devices, such as light-emitting diodes, lasers, photodetectors, flexible displays and sensors1–3. Notable advantages 
are that these nanomaterials can withstand ultra-large elastic strain and exhibit high strength4–7. Thus, strain 
engineering can be a feasible approach to discover new physical and chemical properties of nanomaterials and 
to explore new fabrication methods and functions of these nanodevices8–12. For instance, a tensile strain could 
be applied to modify the energy band structure and enhance the radiative recombination to improve light emis-
sion13. The piezo-phototronic effect has been applied in LEDs through a compressed ZnO wire array14–16. The 
inhomogeneous strain of atomic monolayers and nanowires can effectively concentrate the excitons and charged 
carriers17–20.

Wurtzite ZnO is a direct, wide-bandgap semiconductor with a large exciton binding energy (60 meV). 
Stimulated excitonic emission in ZnO nanowires and microwires can be observed even at room temperature21. 
Because elastic strain can tune the lattice spacing and thus the electronic structures, large strain gradients have 
significant effects on the optical properties of ZnO wires22–25. Luminescence properties of ZnO wires under axial 
tensile and bending strains have been reported by several groups26–28. The initial study of the redshift and broad-
ening of near-band-edge (NBE) emission of bent ZnO nanowires was reported by Han et al. in 200922. Yan et al. 
reported that the intensity variation of the phonon replica could attributed to the phonon-exciton interaction by 
bending effects24. Subsequently, several studies reported the effects of different deformation potentials on the NBE 
band shift of ZnO nanowires and microwires29–33. Recently, it was found that the neutral-donor-bound excitons of 
bent ZnO microwires drifted towards and emitted photons at the tensile side through a hopping process at liquid 
helium temperature34–36. In addition, it was reported that a transverse piezoelectric field could produce separated 
electrons and holes that drifted to the tensile and compressive sides, respectively, which led to a net redshift of 
free-exciton PL emission in the bent ZnO nanowire37. Strain and strain gradients can significantly tune the exci-
ton emission in ZnO nanowires and fibers.
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In this work, we developed an in situ deformation-cathodoluminescence (CL) measurement approach. The 
strong enhancement of free-exciton related emission was revealed, in particular, a free-exciton interaction that 
induced a prominent emission (FXI band) under large strain gradients was uncovered. This resulted in a redshift 
of the whole NBE emission. We proposed the underlying mechanisms of the evolution of excitonic emission 
based on a large bandgap gradient and a transverse piezoelectric field in the bent ZnO fibers.

Results and Discussion
Temperature dependent exciton emission of strain-free ZnO Fiber.  A series of CL spectra of a 
strain-free ZnO fiber at different temperatures between 85 and 293 K for comparison with those of fibers under 
tensile and bending strains (Fig. 1) were measured. At liquid nitrogen (LN) temperature, five visible peaks were 
acquired, including the free-exciton peak (FXA), the neutral-donor-bound exciton peak (D0X), and the first-, 
second-, and third-order longitudinal optical phonon replicas of the free-exciton peak (FXA-1LO, FXA-2LO, and 
FXA-3LO). However, only one widened band was acquired above 273 K, which overlapped the FXA and FXA-nLO 
peaks.

Note that the FXA peak was weak as a shoulder of the D0X peak at 85 K. The FXA-1LO peak first increased with 
rising temperature; then, it merged into a widely dominating band owing to the increased interaction between 
phonons25. The D0X peak was a dominating emission at 85 K, then it weakened and finally faded with the tem-
perature increasing to ∼​180 K owing to thermal ionization38,39. The results indicated that the bound excitons 
were easily dissociated by thermal ionization because the bound-exciton (BX) dissociation energy (EBX), which 
was localized at the neutral donor positions, was below the free-exciton (FX) dissociation energy (EFX)40,41. 
Furthermore, the energy space Δ​ (roughly 72 meV) indexed an evenly spaced energy among the FXA, FXA-1LO, 
FXA-2LO, and FXA-3LO peaks21. This facilitated the recognition of peak positions in the strained cases.

Evolution of exciton emission of total cross-section in tensile-bending processes.  We adopted 
an in situ deformation-CL measurement system to collect CL spectra from the total cross-section of a ZnO fiber. 
A high energy of 15∼​30 keV was used to obtain a strong spectral intensity. Figure 2 shows the CL spectra of a 
high-quality ZnO fiber with a diameter of 1.6 μ​m under tensile and bending strains at 85 K. Figure 2a and c show 
the secondary electron (SE) images of the ZnO fiber in the axial tensile and bending states, respectively. Figure 2b 
and d show the corresponding CL spectra of the tensile strain (εcT) and bending strain (εcB) conditions, respec-
tively. Figure 2d shows the spectra collected from the same site on the bent fiber with different curvatures (labeled 
C, C2 and C3), and the spectra collected from different sites of the bent fiber (labeled A-E). The strain measure-
ments and calculations, including the axial tensile stress and strain (σcT and εcT) as well as the bending strain and 
strain gradient (εcB and g) are explained in the Supplementary Information, Figure S3.

With increasing tensile strain (εcT =​ 0∼​1.48%), the D0X, FXA and FXA-1LO peaks linearly redshifted due to 
the homogeneously decreased bandgap (Fig. 2b). With increasing strain gradient to g =​ 0∼​2.8% μ​m−1, the total 
NBE band nonlinearly redshifted (Fig. 2d,e). Under the higher strain gradients from g =​ 1.6 to 2.8% μ​m−1, the 
D0X and FXA-1LO peaks broadened, overlapped and merged into a wide band, while the FXA and its phonon 
replicas (LO) became difficult to resolve in the spectra. These observations agree with the previous reports24,32,37.

Evolution of cross-sectionally resolved exciton emission in tensile-bending processes.  To fur-
ther clarify the evolution of the excitonic emission in the bending strain process, especially under the high strain 
gradients, we acquired cross-sectionally resolved CL spectra from the tensile edge to the compressive edge of the 
ZnO fiber through a point-by-point linescan across the radial direction of the fiber. A beam energy of 5∼​10 keV 

Figure 1.  CL spectra of a strain-free ZnO fiber changed with temperature. (a) A series of CL spectra with 
temperatures between 85 and 273 K. (b) An enlarged CL spectrum at 85 K. The vertical scale is logarithmic, and 
the energy space Δ​ is 72 meV.
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was used to obtain a high spectral resolution. More than 20 spectra along a whole cross-section of a 1.6-μ​m ZnO 
fiber were obtained (Figure S3).

Figure 3 shows the cross-sectional energy-intensity distribution maps (top) and the corresponding CL spec-
tra (bottom) in the strain-free (Fig. 3a), tensile (Fig. 3b) and bending (Fig. 3c–h) strain conditions. Compared 
with the spectra obtained from the tensile and low bending strain conditions, some unusual phenomena were 
observed in the spectra obtained from the high bending strain condition.

In the tensile process with increased strain up to εcT =​ 1.12%, the D0X, FXA-1LO and FXA-2LO peaks exhibited 
a linear redshift across the total cross-section of the fiber (Fig. 3b). It indicates that homogeneous strain uniformly 
changes the bandgap, which symmetrically alter the shift of exciton emissions along the cross section42.

For the bending process of ZnO fiber under low strain gradient (g =​ 0.75% μ​m−1), the D0X, FXA-1LO and 
FXA-2LO peaks exhibited a symmetric variation in energy and intensity along the cross-section (Fig. 3c). Figure 4 
shows a comparison of energetic variations of the photonic emission and the strains in the axial tensile and low 
bending strain conditions. A linear shift of the D0X, FXA-1LO and FXA-2LO peaks can be observed under both ten-
sile (εcT =​ 1.48%, black line) and low bending (εcB =​ ±​0.6%, g =​ 0.75 μ​m−1, red line) strains42. This means that the 
energy variations under the low strain gradient could be mainly attributed to the deformation potential (∂​E/∂​εc),  
i.e., the response of the energy bandgap to the strain43,44. However, the absolute values of the ∂​E/∂​εc under the 
low bending strain (∂​EDX/∂​εcB =​ ±​21 meV/% for εcB =​ ±​0.6%) were smaller than those under the tensile strain 
(∂​EDX/∂​εcT =​ −​38 meV/% for εcT =​ 0.6%).

Under high strain gradient (g ≥​ 2.1% μ​m−1), the total NBE band exhibited an asymmetric energy-intensity 
variation along the radial direction of the fiber relative to the cross-sectional center as a reference plane 
(Fig. 3f–h). Furthermore, the D0X peak was suppressed and faded, while the FXA peak was obviously increased at 
the tensile side. In particular, a new emission emerged at the tensile side, which became a dominating emission 
in the spectra.

The evolution of the total NBE band.  The total NBE band, roughly including the FXA, D0X and FXA-
1LO peaks in the ZnO fiber under large strain gradient, significantly broadened and exhibited an asymmetric 
energy-intensity distribution along the radial direction (Fig. 3f–h). At the tensile side (εcB >​ 0), the energy distri-
bution of the band ranged from 61 to 72 meV, while, at the compressive side (εcB <​ 0), the energy distribution of 
the band ranged from 65 to 105 meV, as shown in Fig. 3e and h.

The evolution of the free-exciton (FX) emission and FX phonon replicas.  Under the large strain 
gradients of g =​ 2.4∼​2.6% μ​m−1 (Fig. 3f–h), the redshifted FXA peak is obviously observed along the cross section 
and FXA peak stays at a constant energy. This suggested that free excitons aggregated and recombined to emit 
photons at narrow bandgap of the tensile edge under the bandgap gradient34,45. Furthermore, the redshift of the 
FXA and FXA-nLO peaks could be confirmed by the equal energy space (Δ​) between the FXA and LO phonon 

Figure 2.  A series of CL spectra of a 1.6-μm ZnO fiber in a tensile-bending process at 85 K. (a) A SE image 
of the fiber under tensile strain. The white square is the position of the bending loading after the fiber had 
broken. (b) CL spectra of the fiber under tensile strains of εcT =​ 0∼​1.48%. (c) Three SE images of the bent fiber 
with different curvatures. The white circles are the collection sites of the CL spectra. (d) CL spectra of the same 
sites on the bent fiber under strain gradients of g =​ 2.8, 2.1, and 1.25% μ​m−1 (matched to the sites of C, C2, C3 
in a,b), and CL spectra of different sites on the bent fiber under different strain gradients of g =​ 0.6∼​2.8% μ​m−1 
(matched to the sites of A-E in b).
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Figure 3.  A series of energy-intensity distribution maps (top) and cross-sectional CL spectra (bottom) of 
the 1.6-μm ZnO fiber under different strain conditions. (a) CL map of the strain-free condition. (b) CL map 
of the tensile condition εcT =​ 1.12%. (c,d) CL map and a series of spectra of the bent ZnO wire under strain 
gradients of 0.75 and 1.25% μ​m−1; the phonon replicas display a symmetric energy shift across the section. 
(e–h) The maps and matched CL spectra of the bending condition with increased strain gradients of g =​ 1.75, 
2.1, 2.4, and 2.6% μ​m−1. The NBE band shows an asymmetric shift along the cross-section. (The right y-axis is 
the distance of the cross-section between the compressive and tensile edges vertical to the c-axis of the fiber. The 
vertical dashed lines in the spectra are a guide for the eye).
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peaks, as the Δ​ (71–73 meV) corresponds to the distances between the FXA and FXA-1LO peaks in both the 
strain-free and bending strain conditions (black and red lines in Fig. 5). In the large bending strain case, the FXA 
peak became visible, the FXA-1LO and FXA-2LO peaks were easy to recognize. As shown in Fig. 3e–h, FXA-2LO 
peak became two lines, and the energy range between the two lines gradually increases with increasing strain 
gradient.

In addition, a new emission emerged and became a prominent emission band at both tensile and compressive 
sides when the strain gradient g ≥​ 2.1% μ​m−1 (Figs 3f–h and 5). We named it the FXI band because it was induced 
by an exciton-exciton interaction process among aggregated free excitons in the narrow bandgap. In principle, the 
inelastic interaction between two free excitons in their ground state leads to the scattering of one free exciton into 
a photon-like state, and the emission of photons, while the other free exciton is scattered into an excited state46–48. 
Figure 5 shows that the FXI band was roughly located between 3.286 and 3.302 eV. The obviously enhanced FXA 
peak and prominent FXI band with constant energy along the cross section revealed that the migrated free exci-
tons recombine at narrow bandgap.

The FXI band contributed an intensified intensity of the photon emission and prompted the total NBE band 
redshift under the large strain gradients. Figure 6 shows the energy-intensity distribution of the cross-sectional 
NBE emission, which was related to the strain levels of the ZnO fiber. Under the small strain gradient of g =​ 0.75% 
μ​m−1 for the 1.6-μ​m fiber (Fig. 6a), the intensity of the total NBE band exhibited a normal distribution along the 
cross-section due to the gradually reduced interaction volume and excitation intensity from the center to both 
sides under e-beam irradiation. It indicates that there is no diffusion of excitons at this strain gradient. Under the 
increased strain gradient of g =​ 2.6% μ​m−1 (D =​ 1.6 μ​m), the generated free excitons at the incident e-beam posi-
tion can move towards the tensile edge within their lifetime and emit photons at this narrow bandgap, only a por-
tion of excitons recombine at the e-beam position. When the excitation position of e-beam locates at the tensile 
edge, all of the excited excitons stay at the narrow bandgap and emit photons. Therefore, the intensity distribution 

Figure 4.  The strains versus the photon energy of the D0X, FXA-1LO, and FXA-2LO of the ZnO fiber 
(D = 1.6 μm). The tensile strain ranged from εcT =​ 0∼​1.48% (black), and the low bending strain ranged from 
εcB =​ −​0.6∼​+​0.6% (red).

Figure 5.  The logarithmic spectra of a ZnO fiber (D = 1.6 μm) in the strain-free (black) condition and at 
the tensile edge in the bending strain condition (g = 2.6% μm−1). The energy space was Δ​ =​ 72 meV for the 
strain-free and the bending strain conditions.
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decreased from tensile edge to compressive edge. The intensity of the NBE band at the tensile edge increased by 
2-fold compared with that at the compressive edge (Fig. 6b). Under the increased strain gradient of g =​ 3.5% μ​m−1  
(D =​ 1.2 μ​m), the intensity at the tensile edge increased by 12-fold (Fig. 6c and Figure S4). Furthermore, the 
cross-sectional NBE band of the bent fiber exhibited a larger redshift of approximately 50 meV when g =​ 3.1% μ​m−1.  
The obviously enhanced FXA peak and FXI band along the cross section support the capability of the drifts of free 
excitons in the presence of a large bandgap gradient. The drift, aggregation, and emission of the free excitons at 
the tensile side result in the asymmetric energy-intensity distribution along the cross-section.

The evolution of the bound-exciton emission.  The D0X peak was visible along the cross section under 
the low strain gradient of g =​ 0.75% μ​m−1, which suggested that most bound excitons were not ionized and emit-
ted at the e-beam excited sites. The D0X peak showed a linear shift at the compressive side, while it showed a 
nonlinear shift at the tensile side when g =​ 1.25% μ​m−1 (Figure S5). With increasing strain gradient, the D0X 
peak was gradually suppressed and finally faded from the compressive edge to the tensile edge with increasing 
strain gradient (Fig. 3e–h). Under the higher strain gradients, g ≥​ 2.6% μ​m−1, the D0X peak disappeared at the 
tensile side. This indicated that the bound excitons were gradually impact ionized with the aid of piezoelectric 
field. According to the bending strain-piezoelectric field relationship and experimental reports49, when the strain 
gradients is larger than 2% μ​m−1, the transverse built-in electric field (EP) is still less than the electric field of 
5 ×​ 104 V cm−1 for direct field ionization of bound exciton50,51. Although electric field can’t reach the threshold 
for field ionization, the impact ionization would occur among excited bound excitons and aggregated electrons.

To further understand the evolution of free-exciton and bound-exciton emission under the high bending 
strains, we proposed a combination mechanism based on the effects of a gradient bandgap structure and a trans-
verse, built-in piezoelectric field, as illustrated in Figs 7 and 8.

Strain gradient results in a continuous bandgap variation, this energy gradient is the driving force for exciton 
migration. Under small strain gradients, g <​ 1.25% μ​m−1 (Figs 3c,d and 7b), the bandgap gradient is less than 
26 meV/μ​m, which is not sufficient high to drive the exciton. The free excitons (FX) and bound excitons (DX) 
in uniformly varied bandgap emit photons at the e-beam irradiated sites (Fig. 7b). The major contribution to 
the shifts of excitonic emission comes from the bandgap deformation potential, which is similar to that in the 
axial tensile strain (Fig. 4). However, under high strain gradients (g >​ 2.1% μ​m−1, Figs 3f–h and 7c), the bandgap 
gradient became larger than 44 meV/μ​m, the movement of excitons became possible. The evolution of the free 
excitons and bound excitons are quite different. First, the free excitons excited by the incident e-beam drifted 
towards and concentrated at the narrow bandgap within their lifetime in the presence of a large bandgap gra-
dient34,52. As a result, the recombination of drifted free excitons and free exciton interaction emission formed 
an asymmetric energy-intensity distribution along the cross-section and a nonlinear redshift of the total NBE 
band of the ZnO fiber. Second, the bound excitons (DX), which were bound in the donor defect sites, would 
rather dissociate under the piezoelectric field than move by hopping process from one donor to another under 
the bandgap gradient. They were converted into free excitons (FX) and neutral-donor-like defect-pair complexes 
(D) i.e., DX →​ FX +​ D50,51. Moreover, the movement of excitons became possible even at LN temperature. The 
exciton mobility would decrease due to the larger phonon and defect scattering rates, the thermally activated 
non-radiative recombination could shorten the drift length of excitons due to the shorter exciton lifetime35. 
Therefore, we may only observe the drift of free exciton through brownian motion in ZnO fiber with high strain 
gradient. The hopping motion of bound excitons could be ignored at LN temperature because the bound excitons 
can only hop to move at low temperatures below 25 K, and the hopping speed dramatically decreases with tem-
perature increases due to thermally activated backward motion of the excitons53.

Furthermore, the effect of the transverse, built-in piezoelectric field on the bandgap variation could be esti-
mated by a bending strain-piezoelectric field relationship49,54,55. For instance, a piezoelectric field larger than 
104 V cm−1 (εcB >​ 1.0%) in the ZnO wire could result in a bandgap shift of ∼​10−1 meV56. This means that the 
effect of the piezoelectric field on the variation of bandgap could be ignored. Based on our observations, the 
bound excitons were predominantly dissociated with the aid of piezoelectric field and then increased the con-
centration of free excitons. Therefore, a high-density exciton region formed at the tensile edge. The interaction 

Figure 6.  The energy-intensity distributions of the cross-sectional NBE emission of the bent ZnO fiber.  
(a) D =​ 1.6 μ​m, g =​ 0.75% μ​m−1, (b) D =​ 1.6 μ​m, g =​ 2.6% μ​m−1, and (c) D =​ 1.2 μ​m, g =​ 3.5% μ​m−1.
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and recombination of these free excitons resulted in a prominent FXI emission through an inelastic scattering 
process in the narrow bandgap. In this sense, the piezoelectric field could be a contributor to the shift of the total 
NBE band as well.

In summary, we investigated the evolution of the excitonic emission of individual ZnO fibers in 
tensile-bending strain processes using spatially resolved CL spectrometry combined with an in situ deformation 
approach at LN temperature. Under low bending strains, the FXA, FXA-nLO and D0X peaks exhibited a linear 
redshift, similar to that observed under tensile strain, which was mainly attributed to the bandgap deformation 

Figure 7.  A schematic of a gradient bandgap structure of a ZnO fiber. The strain gradient creates a 
continuously varying bandgap and a transverse piezoelectric field. (a) Under a large bandgap gradient, free 
excitons (FX) drift towards the tensile side and emit photons via a radiative recombination in the narrow 
bandgap, while bound excitons (BX) are ionized at irradiation sites of the e-beam by the piezoelectric field.  
(b) Low bending strain induces a small bandgap gradient and a low piezoelectric field. The FX and BX 
recombine at the excited site. (c) High bending strain induces a large bandgap gradient and a high piezoelectric 
field, in which more free excitons aggregate and recombine in the narrow bandgap, and BX convert into FX.

Figure 8.  The evolution of FX, D0X and FXI at the tensile edge of the 1.6-μm ZnO fiber under different 
strain gradients (g = 0∼2.8% μm−1). 
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potential. Under high bending strains (g >​ 2.1% μ​m−1), the free excitons drifted towards and aggregated at the 
tensile side. This resulted in an enhanced free-exciton emission in the narrow bandgap, and in particular, an 
emergence of a prominent emission in the narrow bandgap, which was generated from a strong free-exciton 
interaction (FXI). Meanwhile, the bound excitons were dissociated into free excitons and neutral donors under 
the transverse piezoelectric field, which also contributed to the enhancement of the free-exciton-related emission. 
Consequently, the exciton emission showed an asymmetric energy-intensity distribution along the cross-section 
of the fiber, and the total NBE band showed a nonlinear redshift. The inhomogeneous strain-modulated drift, 
aggregation, and dissociation of the excitons in the polar ZnO could be used for designing and improving 
piezo-phototronic and optical detection devices.

Experimental Section
Synthesis of the ZnO fibers.  The ZnO fibers were fabricated on a Si substrate by the thermal evaporation 
with a high crystalline quality (Supplementary Information, Figure S1)57.

Strain measurements of the ZnO fibers.  During the axial tensile-bending process, a piezo-manipulator 
(KleindienkTM) was used to perform elongating and bending measurements (Figure S2). The ZnO fiber was first 
elongated until broken, and then was bended in-situ. For accurately loading on the ZnO fiber, two ends of a fiber 
were fixed by the epoxy glue on two silicon cantilevers. The measurements and calculations for the tensile stress 
(σcT) and strain (εcT)42, as well as for the bending strain (εcB) and strain gradient (g) of the individual ZnO fibers 
are explained in Supplementary Information (Equation S1–S4, and Figure S3).

CL measurements of the ZnO fibers.  An in situ deformation-cathodoluminescence (CL) measurement 
system is built in a field-emission environmental scanning electron microscope (ESEM), combined a home-made 
tensile-bending setup and a spatially-resolved CL spectroscope with a liquid nitrogen cooling stage (Figure S2). 
The ESEM (FEI Quanta 600 F) has a resolution of 1.2 nm, and the CL spectroscope (GATANMONO3PLUS) has a 
precision of ~0.66 nm. The measurement conditions include: an accelerating voltage of 5~30 kV, a beam current of 
10−8~10−10 A, a working distance of ~12.6 mm, and a PMT detector with a grating of 1200 l/mm for collecting CL 
spectra with a high precision. For collecting the whole cross-sectionally spectra, the beam energy of 15∼​30 keV 
was used to obtain a strongly spectral intensity. For collecting the cross-section resolved spectra across the radial 
direction from the outer tensile edge to the inner bending edge of the fiber, the beam energy of 5∼​10 keV was 
used to obtain a highly spectral resolution via a point-by-point linescan irradiation of the e-beam. The scan step 
was less than ∼​50 nm for the ZnO.
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