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Abstract

Background: Next-generation sequencing (NGS) is rapidly becoming common practice in clinical diagnostics and
cancer research. In addition to the detection of single nucleotide variants (SNVs), information on copy number
variants (CNVs) is of great interest. Several algorithms exist to detect CNVs by analyzing whole genome sequencing
data or data from samples enriched by hybridization-capture. PCR-enriched amplicon-sequencing data have special
characteristics that have been taken into account by only one publicly available algorithm so far.

Results: We describe a new algorithm named quandico to detect copy number differences based on NGS data
generated following PCR-enrichment. A weighted t-test statistic was applied to calculate probabilities (p-values) of
copy number changes. We assessed the performance of the method using sequencing reads generated from
reference DNA with known CNVs, and we were able to detect these variants with 98.6% sensitivity and 98.5%
specificity which is significantly better than another recently described method for amplicon sequencing. The source
code (R-package) of quandico is licensed under the GPLv3 and it is available at https://github.com/reineckef/quandico.

Conclusion: We demonstrated that our new algorithm is suitable to call copy number changes using data from
PCR-enriched samples with high sensitivity and specificity even for single copy differences.

Keywords: Copy number variation, Amplicon sequencing, PCR enrichment, Next-generation-sequencing

Background

Cancer arises as a result of changes that have occurred
in the genomes of cells. These somatic mutations may
encompass several distinct classes of DNA sequence
changes including substitutions of one base by another,
insertions or deletions of small or large segments of DNA,
rearrangements, and changes from normal copy number
[1]. Copy number variations have been found to play an
important role in cancer development [2] and are there-
fore of special interest to researchers in this field.

Various experimental methods can be used to detect
CNV. Array comparative genomic hybridization (aCGH),
is among the most commonly applied procedures [3,4].
Other array-based systems — although originally designed
to genotype single nucleotide polymorphisms (SNP) — can
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also be used to provide information about potential copy
number differences in addition to the genotypes [5].

Sequencing-based copy number analysis initially
focused on paired-end-mapping [6,7]. These methods
have been later refined to map actual breakpoints [8]
and to use split-reads that span or cross breakpoints [9].
Frequencies obtained for the minor or b-allele may pro-
vide supporting evidence, and more complex methods
integrate all available types of data [10,11].

Coverage or read depth has been used to detect CNVs
in genome-scale datasets [12,13]. A few algorithms accept
sequencing data generated following enrichment based
on hybridization-capture [14,15]. Several review articles
provide comprehensive lists and comparisons of available
methods [16-18].

Multiplex PCR-based enrichment (MPE) focuses
sequencing efforts on specific genes of interest or other
regions, enabling deep sequencing and the identifica-
tion of low allelic-fraction variants. However, the data

© 2015 Reinecke et al,; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication

waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise

stated.


https://github.com/reineckef/quandico
mailto:frank.reinecke@qiagen.com
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Reinecke et al. BMC Bioinformatics (2015) 16:17

obtained from this technology has special characteristics.
Only a very small fraction of the genome is sequenced
and these regions — typically exons of a limited number
of genes — can be scattered all over the genome or focus
on just a few loci. Each of these regions is addressed by a
varying number of PCR amplicons that contribute to the
total read depth.

A number of factors influence the observed read depth,
including sequence variations which can lead to differing
PCR enrichment efficiencies. Sequence reads that contain
variants — especially insertions or deletions — may not
map correctly to the reference genome and consequently
lead to reduced observed read depth.

We have developed quandico to enable robust detection
of CNVs by taking the special characteristics of MPE-
derived data into account. Very recently, one approach
named ONCOCNYV has been published that is also tai-
lored for PCR-based target-enrichment [19], and we have
compared its performance with quandico using the same
MPE-derived data in this paper.

Methods

Sequencing

To generate data from samples containing validated
copy number variations across various regions of the
genome, reference samples from the CN'V Reference Panel
CNVPANELO1 from the Coriell Institute for Medical
Research (Camden, NJ, USA) were used. The cell line
DNAs contained in this panel have been characterized
as part of the Genetic Testing Reference Materials Coor-
dination Program, using several commercial chromoso-
mal microarray platforms and by several Cytogenetics
experts from various institutes, and are recommended to
be applied for developing and validating copy number
assays [20].

A custom-made gene panel (CNA902Y) covering 35
genes in 40 clusters with 1783 individual amplicons (3566
primers) was designed to address the known variations
in the reference material. The length of all amplicons
was between 120 and 180 base pairs. Samples used with
this panel were NA01201, NA01416, NA05067, NA09888,
NA11672, NA12606, NA12878, NA13019, NA13783 and
NA14164 together with two controls NA12878 and
NA19219 for sequencing runs M62 and M63. Data from
these samples are hereafter referred to as the training
datasets.

A second custom panel (NGHS-991Y) was gener-
ated to validate the final algorithm developed using the
CNA902Y results. This second validation panel contained
5512 primers targeting 56 genes in 60 clusters. Sam-
ples enriched using this panel were NA06226, NA09216,
NA09367, NA10925, NA10985, NA11213, NA14485 and
NA16595 together with NA12878 and NA19240 serv-
ing as controls for sequencing run M117. Please see
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Additional file 1 for sample details. We hereafter call data
from run M117 the validation dataset.

Target enrichment was done as follows. 40 ng genomic
DNA from each sample and control were amplified by
PCR, purified and used for constructing barcoded Illu-
mina DNA libraries following the QIAGEN GeneRead
DNAseq Gene Panel Handbook. Libraries were quanti-
fied using QIAGEN’s GeneRead DNAseq Library Quant
System. Illumina 150 x 2 paired-end sequencing was per-
formed on a MiSeq instrument following manufacturer’s
user manual ([llumina) to generate FASTQ files.

Algorithm description

The CNV calling algorithm quandico was implemented
as an R-package. However, the complete data processing
pipeline, which extracts the raw counts from the reads
and formats the output, was equally important. We used
standard tools (if possible) and scripts written in Perl or
Python for custom analyses and automation.

Sequence data processing

The sequence reads were aligned to the reference genome
using BWA-MEM [21] and were then preprocessed
according to the Broad best practice guidance except for
duplicate removal (insertion/deletion realignment, base
quality score recalibration, and base alignment quality
scoring). Finally, the primer sequences were clipped away
from the preprocessed reads by scanning the alignment
around the original primer sites. On-target reads that con-
tained the primer region in the alignment were trimmed
and the event was counted. The resulting counts C for
every primer i were written to a text file for processing
with the quandico algorithm (see Additional file 2).

Normalization

The ratio of counts obtained for primer i between sample
and the control was defined as ; = log2(Cs;/Cc;). Each
ratio was normalized using the global median log,-ratio 7
to generate the normalized log, ratio x; (equation 1). This
method assumes that the median value is a robust esti-
mate for an unchanged locus, which is true if less than half
of all loci (primers) are affected by either gain or loss.

x; = log, =y (1)

Clustering

Algorithms that perform copy number estimation on
genome-scale data usually include a final segmentation
step that identifies regions of equal copy number. This
approach is not feasible using MPE-data, which are very
dense in targeted regions but have large gaps in between.
Therefore, we assume that each of the relatively small tar-
geted regions is of homogeneous copy number and that
the CNV-causing events mainly occur in the remaining



Reinecke et al. BMC Bioinformatics (2015) 16:17

much larger fraction of the genome. We cluster read count
data by position and do not provide any segmentation
analysis of data assigned to the same cluster.

The normalized log,-ratios (x;) were grouped into clus-
ters (X) based on their coordinates using a custom Perl
script. This clustering ensures a balance between granu-
larity and predictive power, so that larger genes with many
amplicons in distant exons were split into more than one
cluster and other smaller but neighboring or overlapping
genes formed a single cluster.

First, we assigned all amplicons from the same chromo-
some to one cluster. Subsequently, the largest gap between
any two amplicons in the same cluster was taken to split
that region into two clusters if both newly formed clusters
contained at least ten amplicons or the gap was larger than
250 kbp. Clusters with less than 100 amplicons were only
separated at large gaps of at least 100 kbp.

Outlier removal

Variance can be caused not only by statistical scatter and
experimental measurement variation, but also by factors
that create true outliers. The real sampling process that we
rely on here is the elongation of a specific oligonucleotide
hybridized to the target DNA during PCR enrichment.
Biochemically, this process can be impaired by mutations
of the primer binding site. Furthermore, it is known that
PCR efficiencies are highly variable among PCR reactions,
and that the main factor which defines the efficiency of a
reaction is the amplicon sequence [22]. Natural variations,
expected mainly for non-matched controls, or somatic
mutations if matched controls are used, can account
for amplicon variability. Larger deletions or insertions of
regions could cause additional problems in mapping the
sequence reads correctly.

To reduce noises originating from these true outliers,
a Shapiro and Wilk’s W test for normality [23] was per-
formed using the log, ratios of each cluster separately. If
this test rejected normal distribution (p-value < 0.05),
the element with the largest difference from the weighted
mean u* (equation 2) was removed, and the test was
repeated until all remaining measurements were normally
distributed. At most one third of data points was removed
this way, resulting in the subset X’ out of X. The numbers
of total primers per cluster (n = |X|) and the effective
subset used (' = |X’|) were reported.

Weighted mean and variance

The resulting set of values for every cluster X’ followed
a distribution around u with a standard deviation o. To
account for higher predictive power of ratios derived from
higher original read counts, every value was weighted. To
calculate the weighted mean p* (equation 2), the sum of
original read counts for every comparison was used as the
weight (w; = Cs; + Ccj, and W = ),y w;). Because the
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individual counts of Cs; and Cc¢; can be regarded as repet-
itive sampling from the same distribution (the extension
event at primer i), the unbiased weighted variance (oruz,)
is given by equation 3. The effective sampling size (1*) is
influenced by these weights and is defined by equation 4,
and the standard error (SE) is given by equation 5, where
z is the quantile function of the ¢ distribution and «

corresponds to the significance level (0.05 was used here).
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The weighted mean u* was subsequently used to calcu-
late the copy number of the sample (Ng) which requires
knowledge of the copy number of the control (N¢) in the
same region (which is usually 2 for diploid genomes, but
different for chromosomes X and Y depending on gen-
der). The standard error SE was used to calculate the lower
and upper bounds of the confidence interval (Nsmin,max))
using equation 6.

Ns = N¢ x 2%
NS(min) = N¢ X 2(M*7SE“*) (6)
NS(max) = N¢ x 2(#*+SEM*)

Hypothesis testing

If there is no difference in copy number between sample
and control, the hypothesis to test against is u* = po, and
the expected logy value for unchanged loci (where Cs =
Cc) is no = logy(Cs/Cc) = log,(1) = 0. The t-test was
performed and the corresponding p-value was obtained
via the t-distribution function Pr (equation 7).

o S o
Ow (7)

p =2 x Pr(—|t], n*)

Normal distribution of data is a prerequisite for apply-
ing a t-test. A reviewer pointed out that, in the presence
of two or more subclones, if we assume their logy ratios
are approximately normal, the derived logy-ratios from
this clonal composition would follow a mixture of two
Gaussian distributions, which is not the same as a normal
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distribution. This is correct for methods that are able
to measure individual cells independently, but would not
apply if the DNA of a sample that is used as template to
perform the PCR enrichment in our experiment is isolated
from many cells at once, and these cells could poten-
tially be populations of subclones. Details are provided in
Additional file 3.

Dispersion correction

The factor ¢ = /oy, x (1 4 |u*]) in equation 8 was
introduced to correct false classifications. Without cor-
rection, clusters with expected negative result and with
low dispersion showed over-estimated p-values (Figure 1,
top row: x colored in red, false positives). On the other
hand, p-values for clusters with known CNVs were under-
estimated if the dispersion was high (e, also red, false
negatives). The p-values alone did not allow optimal dis-
crimination. After correction with the factor ¢, the lin-
ear discrimination yielded both fewer false positives and
fewer false negatives (bottom row in Figure 1).
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The magnitude of the observed difference |*| is incor-
porated into factor ¢ (hence the final score Q) so that no
additional threshold for the log, scaled values needs to be
applied. The data in Figure 1 is shown in groups of runs
and controls (columns) to demonstrate the general truth
of this finding.

Q = —10 x logy(p) x ¢ (8)
P = —10 x In(SE+) 9)

The copy number for every cluster of the sample was
estimated to be Ns. The score Q was used to set a thresh-
old (Q > 50) to identify clusters with significant copy
number changes and values P correlated with the preci-
sion of the copy number estimate (equation 9).

Q was used to populate the filter-column of the variant
call format (VCF) output file, because it is the discrimi-
nating score that indicated copy number changes. Addi-
tionally calculated copy number values Ns (confidence

M62 M62 M63 V63
NA12878 NA19129 NA12878 NA19129
10.0 p 5
&
[ ) . A gﬂ-
5.0 “ . . &
. A ‘ L 3
3
©
2
0 1.0 b
8 024
w
©
(0]
N
T
£
2 o
10.0 - . 8
:
Q
P '] 8_
5.0 p . g
=~
R
N
. (2]
x X X X x® g
1.0 1 z
02

L I L L L L I L L L
0102030405 0102030405 0102030405

Standard deviation

L L L L
0.1 02 030405

Classification: = false ® /true CNV: X negative | ® | positive

Figure 1 Dispersion correction. lllustration of the dispersion correction effect by ¢. First row: before correction, second row: after correction. Calls
for the sequencing data sets (M62 and M63) and both control samples (NA12898, NA19129) are plotted separately (in columns). A CNV is called if
the determined Q score is higher than the threshold (normalized to 1 in this diagram). False classifications (FN: false negative, FP: false positive) are

shown in red. Loci with known CNVs in the sample are shown as dots and loci with normal copy number are plotted as crosses.
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range Nsmin) — Nsmax)) and the call precision score P
were added to the optional annotation tags for every
entry.

Algorithm comparison

We used sequencing data from runs M62 and M63 to
compare the performances of quandico and ONCOCNY,
because each run contains two control samples (NA12878
and NA19129) and ONCOCNYV requires a set of at least
four control samples to generate a baseline, and the inde-
pendent validation dataset only contains two controls. All
test samples have been enriched with the panel CNA902Y,
but we excluded regions on chromosome X from the anal-
ysis, because it was not possible to specify gender per
sample in ONCOCNYV. In addition, we excluded sample
NA09888 from run M63 because ONCOCNYV reported
gains for most regions except for the region 8q23.1q24.12,
which is in fact a true deletion (see Additional file 4). We
named this subset of the training dataset the comparison
dataset.

ONCOCNV

We downloaded version 5.5 of the package from
https://oncocnv.curie.fr/. FASTQ files were processed as
described above, and the BAM files after primer trim-
ming were used as input for ONCOCNYV together with a
file containing amplicon coordinates of panel CNA902Y.
The segmentation step was set to use the cghseg
method, because it mainly generated one cluster per gene.
For reported breakpoints, every segment was counted
separately.

Quandico

To create the same number of target regions, quandico
was run with the ‘-no-cluster‘option, which uses gene
annotation for cluster generation. Instead of using a single
control for every comparison, we have combined all read
counts obtained from the four controls into one synthetic
control, by averaging the primer-trimming-counts of the
same four control BAM files used to generate the baseline
for ONCOCNV.

Assessment

The output files of both packages are provided in
Additional file 4. For ONCOCNYV, we used the sum-
mary output files. Every reported copy number of 2 was
regarded as negative and all different from 2 were called
positive. Events were counted as true positive if the esti-
mated copy number gain, copy number loss or no change
agrees with the annotation provided by the Coriell Insti-
tute (but not requiring an exact match of copy numbers).
Otherwise, events were counted as false positive. In other
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words, if the reported copy number was 3.5, but the sam-
ple actually had three copies of the region in question, the
event was still counted as frue positive.

Results obtained by quandico were classified using the
assigned score Q (from the VCF) directly. Every clus-
ter that exceeded the default score-threshold (50) was
counted as positive (negative otherwise), regardless of the
reported copy number. Comparing to the annotation pro-
vided by the Coriell Institute, the event was counted
as true positive or false positive as described above for
ONCOCNW.

Ethical approval

The condition for use of NIGMS Repository Samples are
governed by the Coriell Institutional Review Board (IRB)
in accordance with the U.S. Department of Health and
Human Services (DHHS) regulations (45 CFR Part 46).
The Research Intent was approved by Coriell IRB before
we received the samples. This study was conducted in
compliance with the regulations for the protection of
human subjects issued by the Office for Human Research
Protections (Washington, DC) of DHHS.

Results and discussion

We assessed the performance of quandico using sequenc-
ing reads generated from previously characterized
samples, and we investigated the influence of different
algorithm refinements.

Ten samples and two controls were used to generate the
training datasets, which consist of two sets of FASTQ files
with different amounts of total sequence data. The first set
had a median read depth of 1500—-2000x (high coverage,
M62) and the second set had a median read depth of 500—
1000x (medium coverage, M63).

All 1600 individual copy number calls (40 clusters,
10 samples, two different controls and two indepen-
dent sequencing runs) were routinely investigated during
refinement of the algorithm. The count data are included
in Additional file 2.

Algorithm refinement

Initially, a z-test statistic using logy ratios of all primer
sites in a certain cluster was used, but classification per-
formance based on the obtained p-values alone was not
satisfactory (Figure 2, naive). Removal of outliers had a
significant effect, mainly on the false negative rate. A
similar effect can be seen by calculating weighted means
instead of simple averages per cluster (Figure 3, outliers
and weighted).

Investigation of the score distribution and analysis of
the remaining false classifications led to an additional step
that we call dispersion correction. Clusters with appar-
ently very low dispersion were prone to be assigned with
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significant p-values leading to false positive calls. On the
other hand, clusters with a true copy number change but
high dispersion rarely reached the significance threshold.
In other words, correct classification was shown to be
dependent on both the p-value and the standard error. To
correct for this effect, the Phred-scaled p-value was multi-
plied by the square root of the standard error (equation 8)
which further reduced both false positives (associated
with low dispersion) and false negatives (associated with
high dispersion, Figure 1).

Finally, a cutoff threshold for Q (equation 8) of 50 pro-
vided the best balance of sensitivity (98.0%) and specificity
(98.2%, Table 1).

The score P (equation 9) was a useful indicator for the
precision of the assigned copy number (see Additional
file 5). Assigned copy numbers with P above 20 generally
differ by less than 20 percent from the real copy number.
Assigned copy numbers with P greater than 30 roughly
show a maximal difference of 10 percent from the true
copy number.

Validation experiment

To validate the final algorithm, eight different sam-
ples from the CNVPANELO1 were selected for sequenc-
ing with the independent panel NGHS-991Y together
with two control samples to a median coverage of
820. This validation set (new samples, different pri-
mer pool) was created after all algorithmic steps and
parameters for quandico had been fixed. Detailed infor-
mation on the reference samples and their validated
CNV regions can be found in Additional file 1. The
performance of the copy number assignments from
the training and the validation datasets are summa-
rized in Table 1. See Additional file 6 for a graphi-
cal representation. Applying methods and thresholds
developed on the training dataset resulted in 72 true
positives, 10 false positives, 878 true negatives and
no false negatives from the validation dataset. These
results corresponded to a sensitivity of 100%, a specificity
of 98.9%, and a false-positive rate of 1.8% (Table 1). The
performance on the validation set is even better than on



Reinecke et al. BMC Bioinformatics (2015) 16:17

Page 7 of 9

FPR

FNR

FPR+FNR

75+

50

25 3

Rate [%]

04 g q

Algorithm

T T T
Ya Y 1 2 4 Ya Y
Normalized cutoff

ONCOCNYV =n= naive

Figure 3 False positive/negative rates. False positive rate (FPR) and false negative rates (FNR) observed on the comparison dataset. The optimal
threshold for every algorithm was determined by selecting the value that generated the minimal sum of FPR and FNR. The scores for every individual
algorithm (x-axis) were then divided by the identified threshold (normalized to 1) for comparison. For algorithm details, see legend of Figure 2.

T T
1 2 4 Ya Ve 1 2 4

weights ~+ outliers =9~ quandico

the training set, so that over-fitting to a certain dataset can
be rejected.

Comparison

A summary of results comparing quandico and
ONCOCNYV is given in Table 2. quandico matched
ONCOCNYV regarding specificity and clearly outper-
formed it in terms of sensitivity, where ONCOCNYV failed
to detect 20 percent of all CNVs — even after removal
of one sample (NA09888) that ONCOCNYV obviously
struggled with. The overall higher number of results for
ONCOCNYV is due to breakpoints which ONCOCNV

Table 1 Performance metrics

Dataset TP TN FP FN TPR TNR
Training 145 1426 26 3 0.980 0.982
Validation 72 878 10 0 1.000 0.989
Combined 217 2304 36 3 0.986 0.985

Summary of calls made using the training and validation datasets.

reported inside the genes sequenced. No target region was
actually spanning a breakpoint, meaning that all reported
breakpoints are false positive, and were automatically
counted as such.

The fact that the comparison with ONCOCNYV is done
on the same data that has been used to develop quandico,
is not ideal because algorithmic parameters — especially
the cutoff threshold — have been adjusted to achieve
maximal performance. To overcome this problem, we
assess the discriminative power of the generated scores
Q (quandico) or p-values (ONCOCNYV) with variable
threshold settings and calculate the respective receiver

Table 2 Algorithm comparison using a subset of samples
with four controls

Algorithm TP TN FP FN Total TPR TNR
quandico 41 491 18 1 551 0.976 0.965
ONCOCNV 35 503 10 9 557 0.795 0.981
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operating characteristic (ROC) curves using the pROC
package [24]. The fraction of true positives versus the
fraction of false positives at various threshold settings is
shown (Figure 2). To compare algorithms, we have nor-
malized the thresholds resulting in the best performance
of each algorithm (smallest sum of false positive rate and
false negative rate) to 1 in Figure 3. The plots show that
ONCOCNV’s sensitivity is always lower than quandico’s
at the same level of specificity.

Our interpretation of the observed performance dif-
ference is that the more general approach implemented
by quandico is more effective in selecting representa-
tive data for each target region. Outliers and/or very
low read depth can be caused by a multitude of rea-
sons. ONCOCNYV aims to detect and correct for spe-
cific causes of bias, namely GC-content, amplicon length
and library size. Instead, quandico removes outliers and
weighs amplicons without knowing the reason leading to
low read depth or outliers. The benefit of the correction
steps implemented in ONCOCNYV is obvious compared
to the naive approach that does not include any corrective
methods (Figures 2 and 3). On the other hand, the gen-
eral reduction to reliable data and the weighting by total
read depth as implemented in quandico is more robust
and effective than correcting for some selective causes
of bias.

Conclusions
With quandico, we designed a new algorithm based on
standard statistical methods, that is able to reliably detect
copy number variations in sequencing data generated fol-
lowing PCR-enrichment of target regions with sensitivity
and specificity of more than 98% (Table 1). Although
the algorithm was originally designed to use data from
matched samples and controls, where both DNAs are pre-
pared from the same individual (e.g. tumor and a normal
tissue), the performance achieved with non-matched con-
trols is still very good when compared to other published
methods using NGS read count data (see Table three in
[18]), including the recently published ONCOCNV.
However, there are some limitations. First, the pre-
sented approach does not include any sample-purity esti-
mation or breakpoint detection (segmentation) step. If a
CNV-generating event occurred inside a cluster, the result
will be inaccurate. Secondly, clusters must have at least
ten normally distributed primer counts to qualify for copy
number calling. Thirdly, the use of identical PCR primer
pools (panels) to enrich regions from sample and control
is mandatory. We processed samples and controls in par-
allel to minimize handling bias and also recommend this
practice to achieve the best results. Lastly, using sample
and control DNA of similar quality and quantity in PCR
enrichment is also considered as important to achieve a
good result.
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Additional files

Additional file 1: Sample, panel and sequencing details. This
spreadsheet (xIsx) contains details on the samples selected for sequencing,
panel details such as cluster coordinates and primers per individual cluster,
as well as sequence read counts obtained for the three sequencing runs.

Additional file 2: Primer read depth raw data. This archive (zip)
contains one tab-separated text file (tsv) per sequencing run and sample.
Each file name is composed of the run id and sample name. The column
definitions are: chromosome, position, direction, reference base, cluster
name, depth and original gene name.

Additional file 3: Normal distribution of mixed subclones. This
document (pdf) contains a brief explanation why log; ratios follow normal
distribution even if the sample consists of subclones with differing copy
number.

Additional file 4: Comparison with ONCOCNV. This archive (zip)
contains all output-files generated for the comparison of quandico and
ONCOCNV.

Additional file 5: Correlation of expected and estimated copy
number. Graph (pdf) of the score P (derived from the observed standard
error, see equation 9) plotted against the actual precision of the copy
number assignment. Deviation is calculated as (Ncalled — Nexpected)/Ncalled-
The dashed lines correspond to a linear increase of precision (1 percentage
point per increase in score). Different expected copy numbers are shown in
three rows (top: < 2, center: = 2, bottom > 2).

Additional file 6: Summary of all calls. Graphical representation (pdf) of
all copy number calls done with the final algorithm. Page 1: CNA902Y with
1600 calls (40 clusters, ten samples, two controls, two runs). Each analysis is
based on a comparison of a samples (column) with a control (row) of a
certain sequencing run (row). Page 2: Set NGHS-991Y with 960 calls (60
clusters, eight samples, two controls). Regions with no expected CNV are
shown as crosses (x) while expected differences are shown as circles (e).
The expected copy numbers are depicted by different colors.
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