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Domain wall of a ferromagnet on 
a three-dimensional topological 
insulator
Ryohei Wakatsuki1, Motohiko Ezawa1 & Naoto Nagaosa1,2

Topological insulators (TIs) show rich phenomena and functions which can never be realized in 
ordinary insulators. Most of them come from the peculiar surface or edge states. Especially, the 
quantized anomalous Hall effect (QAHE) without an external magnetic field is realized in the two-
dimensional ferromagnet on a three-dimensional TI which supports the dissipationless edge current. 
Here we demonstrate theoretically that the domain wall of this ferromagnet, which carries edge 
current, is charged and can be controlled by the external electric field. The chirality and relative 
stability of the Neel wall and Bloch wall depend on the position of the Fermi energy as well as the 
form of the coupling between the magnetic moments and orbital of the host TI. These findings will 
pave a path to utilize the magnets on TI for the spintronics applications.

The dissipationless topological currents (TIs) are the issue of current great interests. TIs and supercon-
ductors are the two representative materials which support the dissipationless currents on their surface1,2. 
These materials are characterized by the gapped bulk states and gapless surface or edge states due to 
bulk—edge or bulk—surface correspondence. The surface Weyl states of a three-dimensional (3D) TI 
offer an arena for various novel physical properties due to its momentum—spin locking, as described by 
the two-dimensional (2D) Hamiltonian,

σ= ± ( × ) ⋅ , ( )e pH v 1zF

where ez is the normal unit vector to the surface, σ =  (σx, σy, σz) are the Pauli matrices, and p is the 2D 
momentum. The sign ±  differs for the top and bottom surfaces.

This surface state shows various unique properties when magnetic moments are coupled to it. For 
example, the effect of the doped magnetic moments on the transport properties has been studied theoret-
ically3. Another remarkable phenomena is the quantized anomalous Hall effect (QAHE), where the Hall 
conductance σxy is quantized with the vanishing longitudinal conductance without the external magnetic 
field4–8. When the exchange coupling to the magnetization is introduced, the Hamiltonian reads

σ σ= ± ( × ) ⋅ + ⋅ , ( )e p nH v J 2zF

where J is the exchange energy, and n is the direction of the magnetization. When the magnetization is 
normal to the surface, i.e., n e z, the the mass gap opens in the surface state and half-quantized Hall 
conductance σ = ±xy

e
h2

2
, i.e., the quantized anomalous Hall effect (QAHE) is realized, when the Fermi 

energy is tuned within in this mass gap. Note that the observed Hall conductance is the sum of the upper 
and bottom surfaces and hence ± e

h

2
.

The dynamics of the magnetization on 3D TI has been also studied theoretically based on the 2D 
Weyl Hamiltonian9–16. Experimentally, the gap opening in the surface states of a 3D TI Bi2Se3 due to the 
doping of magnetic ions has been observed by angle-resolved photoemission spectroscopy (ARPES)17. 

1Department of Applied Physics, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. 2RIKEN 
Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan. Correspondence and requests for 
materials should be addressed to R.W. (email: wakatsuki@appi.t.u-tokyo.ac.jp)

received: 18 May 2015

accepted: 03 August 2015

Published: 01 September 2015

OPEN

mailto:wakatsuki@appi.t.u-tokyo.ac.jp


www.nature.com/scientificreports/

2Scientific Reports | 5:13638 | DOI: 10.1038/srep13638

Also the QAHE has been recently observed in Bi2Te3 with Cr doping18–25. When the magnetization is 
along the z direction both for the top and bottom surfaces, the edge channel goes along the side surface. 
The edge channel appears also along the domain wall which separates the two domains of σ =xy

e
h2

2
 and 

σ = −xy
e
h2

2
.

In the field of spintronics, the magnetic domain walls play important roles as the information car-
riers and their manipulation is a keen issue. Especially, the racetrack memory using the current-driven 
motion of the domain wall is proposed26. Recently, the vital role of the spin—orbit interaction (SOI) 
in the domain wall motion has been revealed27. The spin-to-charge conversion by the SOI is also a hot 
topic in spintronics28. Therefore, it is an important issue to examine theoretically the domain walls in the 
ferromagnet on a TI from the viewpoint of the spintronics, since the momentum—spin locking at the 
surface state of the TI corresponds to the strong-coupling limit of the SOI.

There are some subtle issues in the Hamiltonian Eq. (2): (i) One needs to introduce the energy cut 
off to avoid the ultra-violet divergence, which is naturally given by the band gap of the 3D bulk states; 
namely, the surface states merge into the bulk conduction and valence bands. However, when the in-plane 
components of the magnetization nx, ny are finite, the 2D momentum p shifts, and the surface states near 
the merging points are changed, which contribute to the energy but can not be properly described by Eq. 
(2). (ii) The exchange coupling to the magnetization in Eq. (2) needs to be re-examined. The Cr atoms 
replaces Bi atoms, and can have the exchange coupling to the p-orbitals of both Bi and Te, but with dif-
ferent weight. This changes the effective Hamiltonian for the surface state. (iii) The dependence on the 
depth of the magnetic layer, and the relation between the top and bottom surfaces are of interest as well, 
which is accessed only by the 3D model with finite thickness.

In this paper, we investigate the stability and charging effects of a domain wall on the surface of the 3D 
TI based on the 3D tight-binding model. We carry out a numerical study based on the 3D tight-binding 
model29–31. We also perform an analytical study based on the effective 2D surface Hamiltonian which we 
derive from the 3D model. The exchange coupling is found to be anisotropic due to the orbital depend-
ence, as we have mentioned. Figure  1 shows the schematic structure of the domain wall on a TI. The 
angle φ determines the structure of the domain wall, i.e., Neel or Bloch wall and its chirality. It is found 
that the most stable domain wall structure depends on the position of the Fermi energy, i.e., one can 
control the domain structure by gating. Another important result is that the domain wall is charged due 
to the two effects: One originates in the zero-energy edge state along the domain wall and the other in the 
charging effect of the magnetic texture. It will offer a way to manipulate the domain wall by electric field.

Results
Model Hamiltonian.  We start with the following minimum model for 3D TIs29,30,

σ στ τ τ= ⋅ + ( + ) + ( + ) ⋅ , ( )ћ k nH v m m k J J 3x z z3D F 0 2
2

0 3

where vF is the Fermi velocity, m0 and m2 are the mass parameters. For the numerical calculation, we use 
the corresponding lattice model29–31,
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Figure 1.  (a) Illustration of the domain wall in the ferromagnet on a TI. Along the domain wall, the gapless 
chiral edge channel appears (white stripe region). The angle φ specifies the type of the domain wall, i.e., 
φ =  0, π corresponds to Neel wall while φ =  π/2, 3π/2 to Bloch wall. (b) The surface band structure with 
homogeneous ferromagnetic calculated from the 3D tight-binding model. The vertical axis is the energy in 
unit of t.
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∑ σσ τ τ τ= + ( ) + ( + ) ⋅ ,
( )α

α α
= , ,

nH t k m k J Jsin
4x y z

x z z3D 0 3

where t is the transfer integral, σ =  (σx, σy, σz), and τ =  (τx, τy, τz) are the Pauli matrices for the spin and 
pseudospin degrees of freedom, and

( )( ) ≡ + − − − . ( )m k m m k k k2 3 cos cos cos 5x y z0 2

The pseudospin represents the p-orbitals of the Bi and Te. We have introduced an orbital-dependent 
exchange interaction, i.e., the τz =  1 orbital is coupled with (J0 +  J3)n · σ, while the τz =  − 1 orbital with 
(J0 −  J3)n · σ. When J3 =  ± J0, the exchange interactions exist only at one orbital, while equally coupled 
when J3 =  0. In the case of Cr doped (Bi,Sb)2Te3, the magnetization is induced by the substitution of 
the (Bi,Sb) atoms by the Cr atoms, which is coupled mostly to the Te atoms. Hence it is expected that 
J3 ~ J0

32. Therefore, we consider the two limiting cases of J3 =  0 and J3 =  J0. The case J3 =  0 is useful since 
it provides us with a clear physical picture from the analytical point of view.

The system without the magnetism is known29–31 to be a strong TI for −12 <  m0/m2 <  − 8 and 
− 4 <  m0/m2 <  0, a weak TI for − 8 <  m0/m2 <  − 4, and the trivial insulator for m0/m2 <  − 12 and 
0 <  m0/m2. The strong TI phase is the most intriguing, and hence we choose m0 =  − 0.8, m2 =  0.4 and 
t =  1 for numerical calculations and for illustration throughout the paper. The bulk gap is given by 2m0. 
Note that even the 4 ×  4 tight-binding Hamiltonian Eq. (4) is an effective one around the top of the 
valence band and the bottom of the conduction band. In actual materials, there are many other bands 
which contribute to the higher energy and short wavelength physics. Therefore, we regard the “lattice 
constant” (which is put to be unity) as the coarse grained one.

We are interested in the low-energy physics on the surface of the above TI. We consider a slab geom-
etry with finite thickness along the z direction. Then, the 2D Weyl fermions appear both on the top and 
bottom surfaces. This can be seen from the 2D low-energy Hamiltonian by projecting the 3D continuum 
Hamiltonian (3) onto the space spanned by the surface states. The result is

σ σ σ σ= ± ( × ) ⋅ + ( + ) + , ( )⊥ћ e kH v J n n J n 6z x x y y z z2D F

with the parameters J  and ⊥J , which are related with J0 and J3 in Eq. (3) and (4). It can be derived as 
follows.

At the Γ  point, we obtain the surface states by solving the eigenequation (3) without the exchange 
terms by setting kx =  ky =  0 and → − ∂k iz z for the semi-infinite system. The top and bottom surface 
states are represented as

ψ φ σ τ= ( ) = ⊗ | = ± 〉, ( )z s s 7s z y

where ±  in the τ part corresponds to the top and bottom surface respectively, and s =  ± 1 represents the 
spin eigenvalue. Therefore, we find

ψ σ ψ ψ σ ψ ψ σ ψ σ
′
= ,

′
= ,

′
= ( ) . ( ), ′

0 0 8s x s s y s s z s z s s

It follows that =⊥J J0, namely the exchange term in the 3D bulk Hamiltonian is projected into the 
Ising interaction in the 2D surface Hamiltonian. For the orbital-dependent exchange term, the compo-
nents are

ψ σ τ ψ σ ψ σ τ ψ σ ψ σ τ ψ
′
= ( ) ,

′
= ( ) ,

′
= . ( ), ′ , ′

0 9s x z s x s s s y z s y s s s z z s

It follows that =J J 3, namely the orbital-dependent exchange term in the 3D bulk Hamiltonian is 
projected into the in-plane exchange term in the 2D surface Hamiltonian.

Our important observation is that the exchange interaction on the 2D surface is anisotropic even if 
that in the 3D bulk is isotropic. The perpendicular exchange interaction is induced by the J0-term while 
the in-plane exchange interaction is induced by the J3-term.

In what follows we carry out an analysis of the surface states of the TI numerically based on the 3D 
Hamiltonian Eq. (4) and analytically based on the 2D Hamiltonian Eq. (6). The momentum ky is a good 
quantum number since the surface are assumed to be uniform in the y direction. We numerically diag-
onalize the system with 128 sites along the x direction and 8 sites along the z direction for each ky. We 
take 200 points for ky. We set two domain walls to apply the periodic boundary condition for x direction, 
and we illustrate figures for one of the domain walls throughout the paper.

Magnetic domain wall.  We consider a magnetic domain wall between the two degenerate ground 
states, n =  ± (0, 0, 1) lying along the y axis on the surface of the TI,
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θ φ θ φ θ( ) = ( ( ) , ( ) , ( )). ( )n x x x xsin cos sin sin cos 10

with θ ( ) =
ξ

xcos tanh x . The angle φ represents the type of magnetic domain wall. Especially, φ =  0, π 
represent the Neel walls, while φ =  π/2, 3π/2 the Bloch walls,

ξ ξ ξ ξ
=




± , ,





, =





, ± ,





.

( )
n nh x h x x xsec 0 tan 0 sech tanh

11N B

We call φ =  0 (φ =  π) as Neel 1 (Neel 2), and φ =  π/2, 3π/2 as Bloch. These two types of Bloch walls 
are related by the mirror symmetry operation with respect to the zx plane.

The domain wall width ξ should be optimized as a variational parameter in Eq. (10). It is found that 
the energy is decreased as ξ is decreased down to ξ =  2.0. See Supplementary Information S1. Therefore, 
the width of the domain wall is typically the lattice constant in this model. The reason is basically that 
the kinetic energy in the 2D effective Hamiltonian is solely given by the SOI and hence there is no length 
scale due to the SOI other than the lattice constant. The detailed discussion is given in Supplementary 
Information S2. However, as mentioned above, the lattice constant of the present tight-binding 
Hamiltonian is that of the coarse grained model, and hence the distinction between Neel and Bloch walls 
still makes sense. Also the width depends on the additional single-ion magnetic anisotropy term Knz

2 
which exists in the real material but not included in the present model. We have numerically confirmed 
that the qualitative features of the results do not depend on ξ, and hence we have shown the results for 
ξ =  4.0 for illustrative purpose in order to clearly show the difference between the Neel and Bloch walls. 
See S1 in Supplementary Information.

Edge modes.  A magnetic domain wall separates the two domains with up and down spins, i.e., the 
regions of σ = ±xy

e
h2

2
. Therefore, the difference of σxy is e

h

2
 and hence one chiral edge channel is expected 

to appear along the domain wall. We show the energy dispersion and the probability distribution of the 
edge channel wave function along the x direction obtained numerically for J3 =  0 in Fig.  2(a,a’), and 
J3 =  J0 in Fig. 2(b,b’), respectively.

There are three energy scales in the band structure as shown in Fig. 2(a,b). One is the 3D bulk band 
structure which exists for ε > m0 . The second is the 2D surface band structure which exists for 

ε< <⊥J m0 . The last is the 1D edge states along the domain wall which exists for ε < ⊥J .
When J3 =  0, the dispersion and wave function of the edge modes are almost independent of φ as 

shown in Fig.  2(a,a’). This is consistent with Eq. (6) with ∝ =J J 03 . Since the coupling is Ising-like, 
there is no φ dependence for the surface states. We have determined numerically the probability distri-
bution of the wave function at ky =  0, which we show in Fig. 2(c,d).

We present a clear physical picture for the zero-energy edge mode for = =J J 03 . The wave function 
is analytically given by the Jackiw—Rebbi solution33,

ψ ψ
ξ

( ) = ( ) =










,
( )

ξ

↑ ↓
− ⊥ ћ

x x C h xcos
12

J
v

JR JR
F

with a normalization constant C. It can be obtained by solving the differential equation given from  
Eq. (6)

σ σ ψ
− ∂ + ( )  ( ) = . ( )⊥ћi v J n x x 0 13y x z zF

Indeed, it well explains the numerical data in Fig.  2(c). The half width of the wave function is the 
same order of the domain wall width ξ.

On the other hand, the edge modes depend on φ when J3 =  J0 as shown in Fig. 2(b,b’). This is again 
consistent with Eq. (6) with = ⊥J J . The energy dispersion of the edge mode is well described by

( )
( )

( )
ξ

φ= ± −
Γ +

Γ
,

( )

ξ

ξ
⊥

⊥

⊥

ћ
ћ ћ

ћ

E k v k
J v

J
cos

14
y y

J
v

J
v

F

F
1
2

2

2
F

F

as we derive by the first-order perturbation in Supplementary Information S3. Note that the spatial extent 
of the wave function is affected by the energy separation between the in-gap state and the edge of the 
bulk density states, and hence depends on φ in this case.

Domain wall energy.  We show in Fig. 3 the φ-dependence of the domain wall energy EDW measured 
from the value at φ =  π/2 (Bloch wall) for several values of the chemical potential μ when the magnetic 
layer is at the top surface. (The absolute value of the domain wall energy compared with the uniform 
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magnetization is a more subtle quantity, which depends also on the magnetic anisotropy term Knz
2, and 

therefore we do not address it in this paper.) The domain wall energy is the same for φ and 2π −  φ due 
to the mirror symmetry with respect to zx plane as σ σ−y y, −n ny y. Therefore, it is enough to 
show the results for 0 ≤  φ ≤  π. EDW(φ) behaves quite differently between the cases of J3 =  0 and J3 =  J0. 
(In Supplementary Information S4, Fig. S4 illustrates EDW for various values of J3.) When J3 =  0, the Neel 
wall with φ =  0 is the most stable for the chemical potential μ in the 2D valence/conduction bands or 
inside the gap. When μ is in the 3D bands, the Neel wall with φ =  π becomes the most stable. In this 
case, the system possesses the particle—hole symmetry as shown in Supplementary Information S5. As 
a result, the energy is symmetric between μ μ↔ − , which is also verified by our numerical 
calculations.

On the other hand, when J3 ≠ 0, the particle—hole symmetry is lost. For J3 =  J0 in Fig. 3(b), the min-
imum energy configuration changes from φ =  π (Neel 2) for large positive μ >  0 (in the 3D conduction 
band), turns to φ =  0 (Neel1) for μ in the 2D conduction band, approaches to φ =  π/2 (Bloch) for μ 
within the gap, and eventually to φ =  π (Neel 2) for μ <  0. This means that one can control the angle φ 
of the domain wall by the gate voltage, which changes the chemical potential. This is one of our main 

Neel1
Bloch
Neel2

 0

Neel1
Bloch
Neel2

analytic

Neel1
Bloch
Neel2

Neel1
Bloch
Neel2

J3=0

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

E
ne

rg
y 
ε

E
ne

rg
y 
ε

-0.4

-0.2

 0

 0.2

 0.4

-0.2

 0.05

 0.1

A
m

pl
itu

de

(a)

(a’  ) (b’  )

(c)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1

-0.4

-0.2

 0

 0.2

 0.4

-0.2

 0

 0.05

 0.1

(b)

(d)

3D

3D

2D

2D

1D

3D

3D

2D

2D

1D

-1 -0.5  0  0.5  1ky /π ky /π

ky /π ky /π

-0.5  0  0.5  1

-0.1  0  0.1  0.2 -0.1  0  0.1  0.2

-20 0 20 x

Neel1
Bloch
Neel2

Neel1
Bloch
Neel2

J3=J0

-20 0 20 x

Figure 2.  The energy dispersions of the bulk states and edge modes for (a), (a’) J3 = 0 and (b), (b’) J3 = J0. 
The edge mode appears inside the bulk band gap. The dispersion is almost independent of φ, i.e., the type of 
domain wall, for J3 =  0 (a), (a’), while it is sensitive when J3 =  J0 (b), (b’). Probability distribution of the zero-
energy wave function for ky =  0 for (c) J3 =  0, (d) J3 =  J0. The dotted curve in (c) is given by Jackiw—Rebbi 
solution Eq. (12) in the text.
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results in the present paper. This change of the stable magnetic structure is understood analytically in 
terms of the effective Dzyaloshinskii—Moriya (DM) interaction induced from the TI surface state as 
discussed below.

When the chemical potential is in the 2D surface band μ< <⊥J m0 , the stability of a magnetic 
domain wall can be understood in terms of the effective surface DM interaction due to the Weyl surface 
states. In order to derive the effective Hamiltonian for the magnets, we integrate out the fermion degrees 
of freedom, namely, calculate the following effective action

∑ ∑ χ= ( ) ( , ) (− ),
( )α β

α β
α αβ β

, = , ,

q q qS J J n n1
2

0
15qx y z

eff

where =,J Jx y , = ⊥J Jz , and χ is the spin susceptibility,

∑∑χ ω
β

ω σ ω ω σ( , ) = ( , ) ( + , + ) ,
( )

αβ

ω

α βk k qi
V

G i G i iq 1 tr[ ]
16

l
i

n n l
k

0 0
n

and G0 is the Green’s function for the Weyl Hamiltonian (6) without the exchange terms. We obtain

∫= ( ) − ( ⋅ ∇) , ( )n nH d xD n n[ div ] 17z zDM
2

with

π
θ μ θ μ= ( + ) − ( − ) .

( )
⊥

⊥ ⊥D
J J

v
J J

8
[ ]

18F

The detailed derivation is shown in Supplementary Information S2. It is zero within the band gap of 
the 2D surface state. The sign of the DM interaction is positive for μ > ⊥J  and negative for μ < − ⊥J . 
Namely, we can control the sign of the DM interaction by changing the chemical potential by the gate 
voltage. It is noted that the sign change of the DM interaction stems from the helicity difference of the 
momentum—spin locking on the conduction and valence bands. We evaluate the domain wall energy 
change due to the DM interaction. Substituting the domain wall texture (10) into Eq. (17), we obtain

π φ= − , ( )E LD cos 19DM

with the length of the domain wall L. It takes the minimum energy for the Neel domain wall with φ =  0 
(π) for >D 0 ( < )D 0 .

Finally, we briefly note the general case 0 <  J3 <  J0. When J3/J0 increases from zero, the exchange inter-
action on the surface changes from the Ising-like anisotropic form to the Heisenberg-like isotropic form. 
Therefore, the energy difference among the various domain walls continuously increases. The numerical 
results are shown in Supplementary Information S4.
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Figure 3.  The energy of the domain wall EDW as a function of φ for (a) J3 = 0, (b) J3 = J0. When J3 =  0, the 
lowest energy domain wall structure is at φ =  0 for μ in the 2D valence/conduction bands or inside the gap. 
It turns into φ =  π when μ is in the 3D valence/conduction bands. When J3 =  J0, on the other hand, φ =  0 is 
most stable when μ is in the 2D conduction band, and nearly Bloch wall φ ≅ 0 is stable for μ inside the gap. 
φ =  π is the most stable for other cases. This behavior can be understood by considering the DM derived 
from the 2D surface states.
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Electron density distribution.  We demonstrate in Fig.  4 the electron density distribution of the 
upper half layers for the minimum-energy domain wall configuration numerically calculated via the 
expression

∑ρ ψ( ) = ( ) ,
( )∈

x x
20n

n
occupied

2

where {ψn} are the eigenfunctions of the 3D Hamiltonian with the band index n. (For the electron density 
distributions corresponding to general domain wall configurations, see Supplementary Information S6) 
When J3 =  0 (Fig. 4(a), the density distribution is uniform for μ =  0, while it is localized at the domain 
wall for μ ≠ 0 inside the bulk band gap. The density distribution is inverted between μ μ↔ − .

We may explain the electron accumulation analytically as follows. For J3 =  0 the edge state is well 
described by the Jackiw—Rebbi mode Eq. (12). It gives the edge channel wave function at zero energy 
for electrons or holes. When the chemical potential μ is shifted, the electrons or holes accumulate into 
the edge states for μ within the 2D surface band gap. Hence, by considering the density of states for the 
edge channel, the electron density is given by

ρ
μ
π

ψ
μ
π ξ

( ) = ± ( ) = ±










.
( )

ξ
− ⊥

ћ ћ

ћ
x

v
x C

v
h x

2 2
cos

21

v
J

JR JR
2

2
F

On the other hand, when J3 =  J0, there are two peaks in the density distribution of the Neel domain 
wall as found in Fig. 4(b). To understand this behavior, we recall that the electron accumulation due to 
the spin texture has previously been shown to be34

ρ ( ) = ( ) ( )
( )

nx
J

hv
n x

2
sgn div[ ] 22z0

F

for a smooth magnetic texture nz(≠0) which remains almost constant for all over the sample. Following 
Ref. 26, this relation can be derived by considering the Chern—Simons action

∫σ ε= ∂ , ( )
αβγ

α β γS d x A A1
2 23xy

3

and the gauge field is

= , = − , = .
( )⊥ћ ћ

A
J

e v
n A

J

e v
n m J n

24x y y x z
F F

By using the relation ρ ( ) = δ
δ− ( )

x S
e A x0 0

, Eq. (22) is be obtained.
The total accumulation must consist of the zero-energy edge contribution ρJR(x) and the background 

contribution ρ0(x), ρ(x) =  ρJR(x) +  ρ0(x). The Neel-type magnetic configurations contributes to the 
electron accumulation ρ0(x), but that there is no such an accumulation in the Bloch-type magnetic 
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Figure 4.  Electron density distribution of the optimized domain wall structure for various chemical 
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magnetic domain wall for μ >  0 (μ <  0). The numbers ± 1, ± 3 indicate the electron number measured from 
the half-filling. The horizontal axis is the x coordinate.
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configurations because nx =  0. Thus, ρ0(x) may be the difference of the electron accumulation between 
the Neel and Bloch domain walls. In our case, ρ0 for the Neel wall is

ρ
ξ ξ ξ

( ) =
( )

( )
x

J

hv
x

h x h x
2

sgn
sec tan

250
F

with the use of ξ ξ= ( / ), = ( / )n h x n xsec tanhx z  in Eq. (22) for a Neel domain wall.
To confirm this scenario, we plot the difference in the charge density Δ ρ(x) between the Neel and 

Bloch walls with the equal chemical potential in Fig. 5. The formula Eq. (25) captures the key structure 
of the numerical data as in Fig. 5. Therefore, the peculiar double peak structure in Fig. 4(b) stems from 
the combination of the chiral edge channel and the spatial variation of the spin texture. The amplitude 
can be enhanced or reduced, depending on the domain wall type and the filling of the edge channel.

Finally, we note that we can estimate the charging energy with the obtained electron distributions, and 
conclude that the charging energy is negligible compared with the band energy. The detailed discussion 
is shown in Supplementary Information S7.

Discussions
The origin of the ferromagnetism in doped TI is an important issue. A first-principles calculation on 
Mn-doped Bi2Te3

30 indicates that the Hamiltonian Eq. (2) is a good effective model for the surface states. 
The gap depends strongly on the direction of the magnetization M; it is ~16 meV when M is perpendic-
ular to the surface, while the shift in the in-plane momentum k  occurs when M is parallel to the surface. 
From the comparison between the gap in the former case and the energy shift at =k 0 in the latter case, 
it is concluded that ≅ ⊥J J  in Eq. (2), i.e., ≅J J3 0. Physically, the Cr and Mn atoms are replacing Bi, and 
probably the coupling to the neighboring Te p-orbitals are stronger than to those of Bi atoms, which 
results in this orbital dependent exchange interaction. Experimentally, the gating can tune the chemical 
potential μ and it has been argued from the dependence of ferromagnetic Tc on μ that the coupling to 
the surface Weyl fermions is the origin of the ferromagnetism35. Therefore, the model Eq. (2) is appro-
priate also from this viewpoint.

However, in real materials, the magnetic ions are not selectively doped on the surface but are dis-
tributed in the whole sample. Therefore, it is expected that the magnetization behaves uniformly along 
the z direction (perpendicular to the surface) for the thin film samples with the thickness of the order 
of 8 nm20. The bulk mechanism of ferromagnetism in doped TI is studied theoretically also6,36. In 
Supplementary Information S8, we study the dependence on the depth of the magnetic layer. When the 
magnetization on the top and bottom surfaces are the same, the energies of φ =  0 domain wall (Neel 1) 
and φ =  π domain wall (Neel 2) are degenerate because of the mirror symmetry with respect to the plane 
separating the upper and lower halves of the film. This argument, however, assumes the equivalence 
between the top and bottom surfaces, which is not satisfied in general experimental setups. Actually, it 
is observed that the Weyl points on top and bottom surfaces are different in energy typically of the order 
of 50 meV37, and this symmetry is broken. Therefore, we expect that the type of the domain wall can be 
manipulated by gating.

As for the existence of the domain walls, they are naturally introduced in the hysteresis loop in the 
magnetic field - magnetization curves. Actually the longitudinal resistance Rxx is found to have the peak 
~2 h

e2  at the ends of the hysteresis loop, which is likely due to the chiral edge channel associated with the 
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Figure 5.  Difference of the electron density distribution Δρ(x) (red curve) between the Neel and the 
Bloch domain wall with equal chemical potential μ. The horizontal axis is the x coordinate. It is well 
explained by the formula Eq. (25) semi-quantitatively as shown by a black dotted curve. Especially, the 
dotted curve fits perfectly at tails, where the formula Eq. (25) is expected to be accurate.
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domain wall20. An interesting possibility is the formation of skyrmions, which corresponds to the circular 
closed loop of a domain wall. It is well known the charge doping into v =  1 quantum Hall ferromagnet 
results in the formation of skyrmions38. It remains an open issue if the skyrmions can appear in the 
quantized anomalous Hall system on 3D TI.

Methods
We have used the 3D Hamiltonian Eq. (4) for the numerical calculations. We assume the periodic bound-
ary condition for the x and y directions, and the open boundary condition for the z direction. We put 
non-uniform magnetic moments for the x direction. Therefore, ky is a good quantum number. By sum-
ming up eigenenergies and amplitudes of eigenfunctions below a certain particle number, we obtain the 
total energy and the electron density distribution. We set the zero of the energy for that of the Bloch 
wall, and the zero of the density for that of the half-filling case. In Fig. 5(c), we compared the density of 
a Neel wall and a Bloch wall with the same chemical potential. We set t =  1, m0 =  − 0.8, m2 =  0.4, J =  0.2, 
ξ =  4 for the main text.
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