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Abstract

Background: Discriminating driver mutations from the ones that play no role in cancer is a severe bottleneck in
elucidating molecular mechanisms underlying cancer development. Since protein domains are representatives of
functional regions within proteins, mutations on them may disturb the protein functionality. Therefore, studying
mutations at domain level may point researchers to more accurate assessment of the functional impact of the
mutations.

Results: This article presents a comprehensive study to map mutations from 29 cancer types to both sequence-
and structure-based domains. Statistical analysis was performed to identify candidate domains in which mutations
occur with high statistical significance. For each cancer type, the corresponding type-specific domains were distinguished
among all candidate domains. Subsequently, cancer type-specific domains facilitated the identification of specific proteins
for each cancer type. Besides, performing interactome analysis on specific proteins of each cancer type showed high
levels of interconnectivity among them, which implies their functional relationship. To evaluate the role of mitochondrial
genes, stem cell-specific genes and DNA repair genes in cancer development, their mutation frequency was determined
via further analysis.

Conclusions: This study has provided researchers with a publicly available data repository for studying both CATH and
Pfam domain regions on protein-coding genes. Moreover, the associations between different groups of genes/domains
and various cancer types have been clarified. The work is available at http://www.cancerouspdomains.ir.
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Background
Cancer refers to a group of diseases characterized by un-
controlled growth and division of cells in the body, and
is caused by environmental as well as genetic factors.
Genetic factors include, but are not limited to inherited
germline mutations, changing DNA methylation rate
and microRNA modifications. Cancer is a leading cause
of death in most countries. The number of new cases of
cancer is 454.8 per 100,000 incidents per year and the
number of cancer deaths is 171.2 per 100,000 incidents
per year [1–4]. Accordingly, developing methods for

detection and treatment of cancer is a main area of
interest as well as a challenge.
Several studies have been conducted to find genes

that are involved in cancer development [5–8]. Even
though there has been some degree of success in
identifying genes that are strongly associated with
cancer, much is yet to be done for discovering causal
genes and variants. In addition, most of those studies
disregard the position of those mutations, whereas
mutations at different positions of a certain gene may
lead to various levels of damage [9, 10].
Proteins are responsible for most cellular functions

and their malfunction may undermine cellular perform-
ance [11]. Only some of the mutations in coding regions,
and not all of them lead to cancer. Therefore,
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distinguishing mutations with drastic impacts on protein
functionality may help discriminate driver mutations from
less significant ones. To this end, some researches have fo-
cused on mapping genomic positions to protein sequences
and tried to distinguish mutations that affect the function-
ality of proteins [10, 12]. Protein domains are conserved
regions of proteins that can fold and act independently
[13]. Therefore, it is plausible that mutations within these
regions may cause more damage compared to other muta-
tions [13]. To this aim, some efforts have been made to
study cancer mutations at the protein domain level. Nehrt
et al. [12] mapped non-synonymous somatic mutations of
Breast Invasive Carcinoma and Colon Adenocarcinoma
Tumor samples to their corresponding protein domains,
in order to extract domains with significant mutation fre-
quency. In another study by Yang et al. [10], mutational
protein domain hotspots for 21 different cancer types
were determined by mapping somatic mutations to pro-
tein domains. Regions with high numbers of mutation for
each cancer type were called hotspot.
This study represents a method to explore protein do-

mains with significant mutation frequencies, using whole
exome sequencing data. Beside analyzing Pfam protein
domains as sequence-based domains, CATH protein do-
mains have also been studied as structure-based do-
mains, which were not included in relevant studies to
this date. Moreover, in order to more specifically pin-
point the domains of each cancer type, 29 different can-
cer types as well as pan-cancer were investigated in this
study. In addition, the frequency of mutations in mito-
chondrial genes, stem cell-specific genes and DNA re-
pair genes were examined. These sets of genes are likely
to have important roles in cancer development and pro-
gression. Furthermore, the interconnectivity of proteins
with mutation on causal domains was investigated.

Methods
Data extraction
Whole-exome sequencing data of 7685 cancer patients
from 29 different cancer types containing 2,057,977
somatic mutations are downloaded from the TCGA
(The Cancer Genome Atlas) data portal [14]. The de-
tailed list of cancer types as well as the number of pa-
tients for each type is shown in Table 1. The names of
downloaded files (in July 2015) for each cancer type is
shown in Additional file 1: Table A1. The data are ex-
tracted from non-metastatic patients before giving radio-
therapy or chemotherapy and are mapped to the human
genome references of the GRCh37 [15].
Since we are interested in discovering the role of pro-

tein domains in cancer, only protein-coding genes were
selected among genes reported in TCGA data. Among
2,057,977 somatic mutations reported in this database,
1,896,875 of them occurred in protein-coding regions.

Given that synonymous mutations have no effect on
protein sequence and no demonstrable impact on
phenotype [16, 17], in this study, only non-synonymous
mutations within protein coding regions are considered.
Protein domains can be defined in two different ways,

either by their sequences or by their structural characteris-
tics. Both these definitions are considered in this study in
order to better understand the role of domains in cancer.
Pfam [18, 19] and CATH [20, 21] databases are used to
extract sequence-based and structure-based domains, re-
spectively, and the UCSC (University of California Santa
Cruz) [22] tables and PDB [23] database are exploited to
extract the start and end positions of coding regions,
exons, and more specifically, domains in genome.
HUGO (HUman Genome Organization) [24] standard

gene nomenclature is employed to identify protein-coding
genes. The number of protein-coding genes in HUGO is
19,011, all except for 22 of which are linked to PDB and
Pfam entries, and 10,913 of them have Pfam domains. All
predicted Pfam domains, without any constraints on E-
value and bit-rate, were extracted in this study. A CATH
domains was selected if it is represented by the same exact
sequence in a UniProt record. To map CATH domains
position form PDB residue to UniProt sequence, we used
SIFTS [25], which is a manually curated database to match
the positions of PDB entries to UniProt sequences.

Identification of candidate domains and genes
Once data have been acquired and evaluated, the next step
was to extract candidate regions by use of statistical ana-
lysis. Candidate regions (domains or genes) are regions in
which mutations occur more frequently than expected. If
mutations are mutually independent and uniformly dis-
tributed over the combined sequences of coding regions
within human genome, then for each mutation, the prob-
ability of occurring on the ith coding region is pi, which is
equal to the length of ith coding region, li, divided by total
length of coding regions, L, in the whole genome, that is,

pi ¼ li
L . To extract candidate regions at domain level, li

and L are respectively set to be the length of ith domain
and the total length of domains in the whole proteome.
Suppose that n is the number of mutations occurred in

all protein-coding regions and ki is the number of muta-
tions happened in the ith coding region, then the probabil-
ity of having ki mutations on the ith coding region can be
modeled by the binomial distribution, as follows [26].

Pr X ¼ kið Þ ¼ n
ki

� �
pkii 1−pið Þ n−kið Þ

¼ n
ki

� �
li
L

� �ki

1−
li
L

� � n−kið Þ
ð1Þ

To determine whether a protein-coding region is a poten-
tial candidate for a specific cancer, the number of observed
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mutations on that region is compared with what would
be expected by the binomial distribution model, and
a p-value threshold of 0.05 is adopted to test the null
hypothesis [27]. To this aim, for k observed
mutations on each region, the hypothesis is rejected if
p(X < k) > 0.95, where

P X < kð Þ ¼
Xk−1
j¼0

Pr X ¼ jð Þ ¼
Xk−1
j¼0

n
j

� �
pj 1−pð Þn−j ð2Þ

Since multiple independent hypothesis tests are
conducted in all cases, to maintain the family-wise
error rate (FWER) [27], a post hoc Bonferroni [28]
test is applied. Accordingly, when m independent
hypothesis tests are performed, the criterion for

rejecting the null hypothesis is divided by m. In other
words, when the significance level for the whole
family of tests is set to be 0.05, then with Bonferroni
correction each individual hypothesis is evaluated at a
significance level of 0:05

m .
To eliminate the possibility of overflow or underflow

in computing values such as n
k

� �
, l

L

� �k
and 1− l

L

� � n−kð Þ
, log

Pr (X = k) is calculated instead of Pr(X = k). Accordingly,
computations are performed using eq. 3 instead of eq. 1:

log Pr X ¼ kð Þ ¼ log
n
k

� �
þ k log pþ n−kð Þ log 1−pð Þ ð3Þ

In addition, to avoid numerical problems in computing
n
k

� �
in eq. 3, Stirling’s approximation [29] is applied.

Table 1 Prevalence of patients, mutations and domain-specific mutations in different cancer types

Cancer type Abbrevation patients Somatic
Mutations

Mutations on Protein
Coding Regions

Mutations on Pfam
Domains

Mutations on CATH
Domains

Adrenocortical carcinoma ACC 451 22,679 21,355 8335 1090

Bladder Urothelial Carcinoma BLCA 169 169,165 154,893 69,727 11,081

Breast invasive carcinoma BRCA 983 98,882 93,405 40,390 6512

Cholangiocarcinoma CHOL 460 8593 7030 3025 484

Colon adenocarcinoma COAD 412 125,386 123,917 55,913 8055

Esophageal carcinoma ESCA 202 79,536 67,566 29,249 4340

Glioblastoma multiforme GBM 92 20,932 20,225 9905 1692

Head and Neck squamous cell carcinoma HNSC 545 151,456 131,314 59,768 9301

Kidney Chromophobe KICH 178 8739 8023 3425 489

Kidney renal clear cell carcinoma KIRC 36 51,235 47,964 21,059 3404

Kidney renal papillary cell carcinoma KIRP 269 33,247 31,433 13,530 2074

Brain Lower Grade Glioma LGG 182 47,286 42,890 19,750 3489

Liver hepatocellular carcinoma LIHC 230 89,042 82,443 36,749 5470

Lung adenocarcinoma LUAD 275 242,542 216,730 101,616 13,522

Lung squamous cell carcinoma LUSC 171 65,306 63,981 30,542 4206

Ovarian serous cystadenocarcinoma OV 524 12,751 12,214 5824 998

Pancreatic adenocarcinoma PAAD 175 82,871 72,462 29,279 4223

Pheochromocytoma and Paraganglioma PCPG 425 8706 7629 3115 472

Prostate adenocarcinoma PRAD 116 26,862 24,094 10,954 1657

Rectum adenocarcinoma READ 254 34,260 33,885 15,774 2313

Sarcoma SARC 75 83,019 71,650 30,021 4526

Skin Cutaneous Melanoma SKCM 387 53,086 49,645 23,347 2993

Stomach adenocarcinoma STAD 144 223,884 213,642 96,340 14,143

Testicular Germ Cell Tumors TGCT 356 30,293 26,170 10,902 1518

Thyroid carcinoma THCA 123 16,807 15,383 7245 1243

Thymoma THYM 248 39,467 35,892 15,655 2379

Uterine Corpus Endometrial Carcinoma UCEC 66 212,745 204,826 93,937 13,959

Uterine Carcinosarcoma UCS 57 14,212 11,803 5266 876

Uveal Melanoma UVM 80 4988 4411 2087 313

pan-cancer 7685 2,057,977 2E + 06 852,729 126,822
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Aims and objectives of the study
There are more than 100 types of cancer [30] and des-
pite their differences, they present underlying biological
(genetic) similarities. Pan-cancer study aims to uncover
similarities and differences between various cancer types
[31]. With this background, all the data downloaded
from different cancer types are assembled together in
this study to form a pan-cancer dataset for further
investigations.
The main focus of this study is to assess the frequency

of mutations on domain regions. However, we are also
interested in evaluating the frequency of mutations in
protein coding regions of three particular sets of genes:
mitochondrial genes, stem cell-specific genes and DNA
repair genes. Mitochondria are responsible for producing
energy in almost all cell types and have their own DNA.
Since mitochondrial DNA mutations are known to be
highly associated with human cancer [32], mutations
within the mitochondrial genome are investigated in this
study. Most of cancerous cells possess the classical char-
acteristics of normal stem cells, including extensive cap-
acity of self-renewal and acquired resistance to apoptosis
[33, 34]. Therefore, genes responsible for the mainten-
ance of stem cells are appropriate candidates for our
goal. Mutation in genes that are associated with DNA
repair function in a cell may induce partial loss of gene
functionality [35, 36]. In this light, studying the presence
of mutations in these genes may also be informative for
cancer research.

Results and discussion
This study covers four areas of assessment, namely, muta-
tions in protein coding regions of mitochondrial, stem
cell-specific and DNA repair genes, and mutations in pro-
tein domain regions. The results of each assessment are
described in the following subsections.

Mitochondrial genes
Several studies have reported the presence of somatic
mitochondrial mutations in cancer cells. Even though
many of these studies have demonstrated the role of mito-
chondrial mutations in human cancers such as Kidney
Renal Cell Carcinoma [37], Breast Invasive Carcinoma
[38], Gastric Carcinoma [39], Prostate Adenocarcinoma
[40], Ovarian Carcinoma [41] and Thyroid Carcinoma
[42], such an association was not identified in all relevant
studies. For instance, studies on Glioblastoma Multiforme
[43] and Liver Hepatocellular Carcinoma [44] have not
been able to pinpoint the role of mitochondrial mutations
in cancer. In this light, it is worthwhile to further investi-
gate the role of mitochondria in cancer development.
To examine the role of mitochondria in cancer develop-

ment, the observed somatic mutations in all mitochondrial
genes are studied. There are 37 different genes in

mitochondrial DNA, which are assigned to six groups of
complexes, based on their roles (shown in Additional file 1:
Table A2). For instance, the genes MT-RNR1 and MT-
RNR2, which are responsible for making rRNAs, are
assigned to rRNA complex [45]. Mutations within each
group are identified to better understand its role in develop-
ing cancer.
To identify mitochondrial candidate genes associated

with each of the 29 cancer types as well as pan-cancer
(30 cancer types in total), the statistical analysis is per-
formed on two levels. In the first level of analysis, each
mitochondrial gene is considered individually, while in
the second level, genes are analyzed in their group (com-
plex) context. Accordingly, in the Bonferroni correction,
the parameter m is set to 37 × 30 and 6 × 30 for the first
and second level, respectively. With a corrected p-value
threshold of 0:05

m , there are 13 cancer types and pan-
cancer (shown in Table 2) for which at least one mito-
chondrial candidate gene or complex is identified. In
Table 2, the number in parentheses next to each gene
shows the percentage of patients for which this gene is
mutated. All in all, nine mitochondrial genes have been
identified as candidate ones: MT-CO2, MT-CYB, MT-
ND1, MT-ND5, MT-RNR1, MT-RNR2, MT-TL1, MT-
TT and MT-TV. Additional file 1: Table A3 shows the
number of patients with mitochondrial mutations and
the number of mutations for each.
Among six mitochondrial groups of complexes, ATP

synthesis and tRNA complexes have not been chosen as
candidate for any cancer type. In particular, no

Table 2 Candidate mitochondrial genes and complexes for
each cancer type

Cancer Type Genes (Percentage) Complexes (Percentage)

ACC MT-TL1 (32.6) -

BRCA MT-RNR1 (3.6), MT-RNR2 (5.6),
MT-TT (0.8)

rRNA (8.4)

CHOL MT-RNR2 (33.3) rRNA (33.3)

ESCA MT-CYB (13.7) COMPLEX III (13.7)

HNSC MT-ND5 (1) -

KICH MT-ND1 (13.6) -

LIHC MT-ND5 (12.9) COMPLEX I (18.3)

LUAD - COMPLEX III (1.1)

PRAD MT-RNR2 (1.9) -

SARC MT-RNR2 (12.6), MT-CO2 (7.1) rRNA (14.2), COMPLEX
IV (15.7)

TGCT - COMPLEX III (6.3)

THYM MT-RNR2 (27.6) rRNA (27.6)

UCEC MT-RNR1 (11.7), MT-RNR2 (11.7),
MT-TV (12)

rRNA (0.41.7)

Pan Cancer MT-RNR2, MT-CYB rRNA, COMPLEX III
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significant mutation was observed in genes MT-ATP6
and MT-ATP8 in any of the cancer types. This result is
consistent with the assumption that more energy is re-
quired for rapid reproduction in cancerous cells. The re-
sults also show that two mitochondrial genes, namely
MT-RNR2 and MT-CYB are significantly mutated in
pan-cancer.

Stem cell-specific genes
Researches have pointed out a number of similarities
between stem cells and cancer cells, including their self-
renewal potential and their ability to migrate to other re-
gions of the body [46–48]. Moreover, the ability of stem
cells to differentiate into various types of cells increases
the risk of malignant transformations. Accordingly, stem
cell-specific gene analysis is expected to provide a foun-
dation for better understanding of their role in cancer.
The stem cell-specific gene set studied in this research

(shown in Additional file 1: Table A4), which is first
identified by Palmer et al. [49], contains 182 protein-
coding genes. To extract candidate stem cell-specific
genes associated with each of the 29 cancer types as well
as with pan-cancer, statistical analysis was performed
and subsequently, in the Bonferroni correction, the par-
ameter m was set to 182 × 30. With a corrected p-value
threshold of 0:05

182�30, 57 stem cell-specific genes were se-
lected as candidates for at least one cancer type. The
most significant genes among them are CHEK2 and
KMT2C, which are associated with 20 and 18 different
cancer types respectively. The other genes are related to
at most seven types. Given that some researches have
already demonstrated the role of CHEK2 [50, 51] and
KMT2C [52] in different cancer types, their identified
association with a large number of cancer types is not
surprising. Rectum Adenocarcinoma and Lung Squamous
Cell Carcinoma cancers are the only cancer types for
which no candidate stem cell-specific gene has been
identified. In Table 3, the list of candidate stem cell-
specific genes for each cancer type is shown. Similar to
Table 2, the numbers in this table also show the percent-
age of patients in which the genes are mutated.

DNA repair genes
DNA repair genes are responsible for recognizing
and correcting damages in the replication of DNA.
Hence, mutations in DNA repair genes can be ex-
pected to alter the efficiency of repairing mechanism,
which in turn can be associated with severe health
issues such as cancer. Moreover, it has been reported
that DNA repair genes are frequently mutated in
cancer [53]. Accordingly, studying mutations within
DNA repair genes may be helpful for revealing their
role in cancer.

To identify DNA repair genes which are associated
with a certain type of cancer, a statistical analysis similar
to that performed in previous subsections was applied.
174 known DNA repair genes, reported in [54–56], are
shown in Additional file 1: Table A5. By setting the

Table 3 Candidate stem cell-specific genes for each cancer
type

Cancer
Type(Percentage)

Genes(Percentage)

ACC (56.5) HDAC2 (5.4), ERCC2 (20.7), GARS (38.0), PRR34 (8.7)

BLCA (30.3) CHEK2 (6.1), ERCC2 (9.7),KMT2C (20.9)

BRCA (8.2) KMT2C (6.9), PILRB (0.8), HLA_DRB5 (0.7)

CHOL (33.3) CHEK2 (8.3),KMT2C (25),GIMAP8 (2.8)

COAD (1.5) HLA_DPA1 (1.5),

ESCA (9.3) NREP (2.2),BRINP1 (7.7)

GBM (4.4) CHEK2 (1.8),TSHZ2 (2.5)

HNSC (20.4) CHEK2 (3.8), LIN28B (1.5), BRINP1 (3.1), KMT2C (12.0),
NPR3 (2.7)

KICH.21.2) DIMT1 (1.5),KMT2C (13.6),HLA_DRB5 (7.6), HLA_DQA1
(3)

LIHC (5) HTR7 (5)

KIRC (11.1) DNMT3B (3.1), CHEK2 (2.2), RRAS2 (1.8), NREP (0.7),
TNFSF10 (1.3), FYB (2.9),
SMARCC2 (3.1), RCSD1 (2), HLA_DRB5 (1.8)

KIRP (7.1) CHEK2 (5.9), DPH3(1.2)

LGG (9.3) CHEK2(3.9),HDAC2(1.7),ZBTB20(4.6)

LUAD (42.0) SPDL1 (1.8), CHEK2 (7.2), TRPC4 (7.2), CDH6 (7.2),
GIMAP1 (2.2), KMT2C (17.8), PILRB (2.2), TSHZ2 (6.8),
NPR3 (4.6), FYB (5.5)

OV (2.6) BOD1 (0.9), HAS2 (1.7)

PAAD (57.3) CHEK2 (17.0), BBS9 (9.4), GARS (5.8), SLC24A1 (9.4),
KMT2C (17), SMARCC2 (13.5), NPR3 (8.8), AFTPH (13.5)

PCPG (14.3) CHEK2 (5.1), NUSAP1 (4.0), KMT2C (5.1),
HLA_DRB5(1.1)

PRAD (8.9) CHEK2(3.5),KMT2C(5.4)

SARC (4.3) ZNF788 (2.8), BRINP1 (2.0)

SKCM (37.3) GDF3 (8.0), CCDC90B (4.0), CDH6 (10.7), KMT2C (16.0),
GIMAP5 (6.7) ,GIMAP7 (6.7),GIMAP1 (6.7),GIMAP8 (12)

STAD (32.3) CHEK2 (5.4), SOHLH2 (4.4), BRINP1 (5.9), KMT2C (16.5),
TSHZ2(7.2),ZBTB20(9)

TGCT (2.8) C10orf128 (2.1), HLA_DRB5 (2.1), HLA_DQA1 (1.4)

THCA (4.8) CHEK2 (1.4), GDF3 (0.8), RIOK2 (0.8), HLA_DRB5 (1.7)

THYM (5.7) CHEK2 (5.7)

UCEC (9.7) ATP11C (9.7)

UCS(15.8) CHEK2(7),KMT2C(10.)

UVM(13.8) CHEK2(7.5),NUSAP1(5),HLA_DRB5(5)

Pan Cancer(24.3) CHEK2 (4.1), SOHLH2 (1), BRINP1 (2.2), TRPC4 (2.4),
CDH6 (2.1), KMT2C (10.6), PILRB (0.8)
,HLA_DRB5 (1.1), TSHZ2 (2.6), NPR3 (1.7),GIMAP1 (0.9),
GIMAP8(1.7),ZBTB20(2.1)
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parameter m to 174 × 30 in the Bonferroni correction,
27 DNA repair genes were identified as candidate for at
least one cancer type. The results show that the most
significant DNA repair gene is TP53, which was identi-
fied as candidate for 25 cancer types as well as for pan-
cancer. This conforms with the previous findings about
the crucial role of TP53 mutations in cancer develop-
ment [57, 58]. This further endorses the reliability of the
other results in this study. For each cancer type other
than Testicular Germ Cell Tumors, at least one candi-
date DNA repair gene was identified. In particular, Pan-
creatic Adenocarcinoma has eight candidate DNA repair
genes, and ATM, TCG, TP53 and CHEK2 are the candi-
date DNA repair genes for pan-cancer. Table 4 shows
the candidate DNA repair genes for each cancer type
and the number next to each gene shows the percentage
of patients in which this gene is mutated.
To identify cancer-associated genes within mitochon-

drial, stem cell-specific and DNA repair genes, not only
the mutations on domain regions but all those on full
protein coding regions are included in the assessment.
To be more confident in extracting cancer-associated
genes within each biological process, its related candi-
date genes were restricted to those which also contain at
least one candidate domain. Upon studying the mito-
chondrial genes, we found no candidate domains (de-
fined in the following sections) associated with those
genes. Among candidate stem cell-specific genes, 51%
and 46% of them contain at least one Pfam and one
CATH candidate domain, respectively, as shown in
Fig. 1a and b. For each cancer type, the entire list of
stem cell-specific genes with Pfam and CATH candidate
domains are presented in Additional file 1: Tables A6 and
A7. Similarly, 25% and 26% of candidate repair genes con-
sist of at least one Pfam and one CATH candidate do-
main, respectively, as shown in Fig. 1c and d. More details
on repair genes with Pfam and CATH domains are given
in Additional file 1: Tables A8 and A9.

CATH candidate domains
A key objective of this study is to identify CATH candi-
date domains, which have gone unnoticed in the previ-
ous researches conducted in this field. There are 759
CATH-reported domains which are located in 2993
human proteins. Detailed information for each CATH-
reported domain can be found in Additional file 1:
Table A10. In addition, the position of each CATH
domain on each protein-coding gene is available in
Additional file 2: Table B1.
To assess CATH domains, the significance level of
0:05

30�759 was used. The results indicate that each cancer
type has a number of associated CATH candidate do-
mains ranging from 1 to 19, while pan-cancer analysis

reveals 93 related CATH candidate domains. Some do-
mains seemed to not be associated with any individual
cancer type, yet they were identified as significant candi-
dates in the pan-cancer study. We say a candidate do-
main “covers” a particular patient, if the patient has at
least one mutation in that specific candidate domain.
Surveying the results, we realize that each CATH candi-
date domain of each cancer type covers various percent-
ages of patients in that cancer type, ranging from 0.02%
to 95%. Moreover, all CATH candidate domains of each
cancer type cover 28% to 98% of patients of that cancer
type. The CATH candidate domains identified for Breast

Table 4 Candidate DNA repair genes for each cancer type

Cancer
Type(Percentage)

Genes(Percentage)

ACC (37) MSH3(6.5),TP53(19.6),ERCC2(20.7)

BLCA (63.6) ATM (13.6), TP53 (49.8) ,ERCC2 (9.7), CHEK2 (6.1)

BRCA (33.4) TP53 (33.4)

CHOL (22.2) TP53 (13.9), CHEK2 (8.3)

COAD (52) TP53 (52.0)

ESCA (87.9) TP53 (87.9)

GBM (28.7) TP53 (28.7)

HNSC (71.6) TP53 (71.2), CHEK2 (3.8)

KICH (33.3) TP53 (33.3)

KIRC(10.9) FANCE (4.4), DDB1 (4.9), RPA1 (2.2), TP53 (4.2),
CHEK2 (2.2)

KIRP (17.2) OGG1 (2.4), MSH3 (4.1), TDG (3.6), TP53 (4.1),
CHEK2 (5.9)

LGG (50.4) TP53 (48), CHEK2 (3.9)

LIHC (32.2) TP53(32.2)

LUAD (57.8) ERCC5 (3.3), TP53 (54.7), CHEK2 (7.2)

LUSC (79.2) TP53 (79.2)

OV (84.8) TP53 (84.8)

UCEC (34.7) MSH4 (7.3), TP53 (29)

PAAD (84.2) ERCC3 (8.8), XPC (9.9), WRN (14.6), TDG (9.9), FAN1
(9.9), EME2(11.1),
TP53 (67.3), CHEK2 (17)

PCPG (17.7) FANCD2 (5.1), ERCC8 (1.1), TDG (7.4), CHEK2 (5.1)

PRAD (19.3) ATM (4.5), TP53 (10.8), POLI (1.4), CHEK2 (3.5)

READ (67.2) TP53 (67.2)

SARC(37.0) TP53 (37)

SKCM(22.7) BLM (6.7), MPG (4.0), TP53 (10.7), CHEK2 (09.3)

STAD (57.9) UVSSA (4.4), SLX4 (6.7), TP53 (49.9), CHEK2 (5.4)

THCA (4.5) SMUG1 (0.8), TDG (2.2), TP53 (0.8), CHEK2 (1.4)

THYM (5.7) CHEK2 (5.7)

UCS (91.2) TP53 (91.2)

UVM(20) FANCD2 (6.3), CCNH (2.5), TDG (3.7), CHEK2(7.5)

Pan Cancer(45.2) ATM(5.5),TDG(1.7),TP53 (39.1),CHEK2 (4.0)
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Invasive Carcinoma, Ovarian Serous Cyst Adenocarcin-
oma and pan-cancer are presented in Table 5. The

number next to each domain shows the percentage of
patients which are covered by this domain. Additional
file 1: Table A11 shows CATH candidate domains in
each cancer type. To assess the statistical significance of
an identified candidate domain, the percentage of

patients covered by that domain can theoretically be
used as a selection attribute.

Pfam candidate domains
There are 6009 predicted Pfam domains located in
17,722 human proteins. Detailed information for Pfam
domains can be found in Additional file 1: Table A12. In

Fig. 1 Comparison of candidate genes and genes with candidate domains. (a) Comparison of stem cell genes and genes with Pfam candidate
domains. (b) Comparison of stem cell genes and genes with CATH candidate domains. (c) Comparison of DNA repair genes and genes with Pfam
candidate domains. (d) Comparison of DNA repair genes and genes with CATH candidate domains

Table 5 Candidate domains for Breast Invasive Carcinoma and Ovarian Serous Cystadenocarcinoma

Cancer Type (Percentage) CATH Domains (Percentage)

BRCA (77.3) 1.10.1070.11 (33.88), 1.10.220.60 (0.31), 1.10.437.10 (1.73), 1.10.510.10 (25.84), 2.170.260.10 (0.71), 2.40.250.10 (2.03),
2.60.200.10 (1.83), 2.60.40.10 (20.24), 2.60.40.1110 (4.27), 2.60.40.60 (4.48), 2.60.40.720 (33.27)4.10.365.10 (0.71)

OV (80) 1.10.287.650 (0.87), 2.60.40.720 (80.00), 3.30.450.40 (0.87)

Pan Cancer (91.5) 1.10.10.10 (7.90), 1.10.10.440 (0.92), 1.10.10.60 (4.23), 1.10.101.10 (1.59), 1.10.1070.11 (15.52), 1.10.1300.10 (5.87), 1.10.1380.10
(2.34), 1.10.150.210 (0.78), 1.10.150.50 (3.03), 1.10.150.60 (1.30), 1.10.1520.10 (0.55), 1.10.1540.10 (1.47), 1.10.167.10 (3.70),
1.10.246.10 (2.17), 1.10.287.450 (0.94), 1.10.437.10 (2.25), 1.10.472.10 (4.68), 1.10.490.10 (2.46), 1.10.506.10 (0.78), 1.10.510.10
(44.89), 1.10.555.10 (3.85), 1.10.565.10 (10.70), 1.10.630.10 (10.98), 1.10.640.10 (0.98), 1.10.720.50 (0.64), 1.10.750.10 (3.32),
1.10.800.10 (1.60), 1.20.1050.10 (4.98), 1.20.1250.10 (5.37), 1.20.1260.10 (1.29), 1.20.1280.50 (1.17), 1.20.1340.10 (1.61),
1.20.245.10 (0.95), 1.20.5.100 (1.17), 1.20.5.110 (0.48), 1.20.5.50 (1.86), 1.20.58.60 (2.32), 1.20.82.10 (1.01), 1.20.920.10 (6.57),
1.20.930.40 (4.19), 1.25.10.10 (8.64), 1.25.40.20 (8.26), 2.10.220.10 (7.52), 2.10.25.10 (6.69), 2.10.310.10 (0.46), 2.10.60.10 (1.76),
2.10.70.10 (6.31), 2.130.10.10 (7.43), 2.120.10.80 (1.91), 2.140.10.30 (3.99), 2.130.10.130 (3.15), 2.170.270.10 (4.18), 2.170.8.10
(1.20), 2.30.30.190 (1.21), 2.30.39.10 (8.76), 2.30.42.10 (8.87), 2.40.128.20 (4.23), 2.40.20.10 (1.94), 2.40.250.10 (0.38), 2.40.50.40
(4.42), 2.60.120.200 (4.42), 2.60.120.260 (4.65), 2.60.20.10 (2.49), 2.60.200.10 (3.99), 2.60.210.10 (2.78), 2.60.40.10 (33.88),
2.60.40.1110 (6.69), 2.60.40.1120 (1.57), 2.60.40.60 (2.32), 2.60.40.720 (36.55), 2.60.60.20 (1.59), 2.70.98.20 (2.38), 2.80.10.50
(5.22), 3.10.100.10 (5.87), 3.10.20.230 (0.94), 3.10.200.10 (3.60), 3.10.50.10 (2.64), 3.10.620.10 (0.44), 3.20.20.100 (4.55),
3.20.20.140 (4.49), 3.30.1370.10 (2.34), 3.30.1490.20 (2.13), 3.30.300.30 (1.70), 3.30.450.40 (0.48), 3.30.450.50 (0.87), 3.30.70.1230
(0.88), 3.30.70.1470 (0.91), 3.30.70.330 (12.00), 3.30.800.10 (1.98), 3.30.9.10 (0.77), 3.40.190.10 (3.68), 3.40.50.10140 (1.54),
3.40.470.10 (1.13), 3.40.50.10190 (4.22), 3.40.50.1370 (0.75), 3.40.50.2300 (1.51), 3.40.50.300 (25.67), 3.40.718.10 (5.78),
3.90.1170.10 (0.43), 3.90.1230.10 (1.63), 3.90.190.10 (13.32), 4.10.280.10 (1.08), 4.10.365.10 (0.34), 4.10.75.10 (0.72)
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addition, the position of each Pfam domain on each
protein-coding gene is available in Additional file 2:
Table B2. The significance level of 0:05

30�6009 was used to per-
form statistical assessment, the results of which show that
each cancer type has a different number of Pfam candidate
domains, ranging from 3 to 93. For pan-cancer, the num-
ber of identified Pfam candidate domains is 202, which in-
dicates a large number of domains are significant to pan-
cancer but not to individual cancer types. The results are
consistent with those of CATH domains.
Each Pfam Candidate domain of each cancer type

covers different percentages of patients with a mini-
mum of 0.2% and a maximum of 98%. Overall, all Pfam
candidate domains of each cancer type cover 74% to
100% of patients of that cancer type. Table 6 shows
Pfam candidate domains of Breast Invasive Carcinoma
and Ovarian Serous Cyst Adenocarcinoma and the
number next to each domain shows the percentage of pa-
tients, which are covered by this domain. Additional file 1:
Table A13 shows Pfam candidate domains in each cancer
type. Similar to CATH candidate domains, the percentage
of patients covered by a candidate domain can be used as
a proper measure. For instance, P53 and tm_4 cover the
first and the second highest percentages (42% and 28%) of
Breast invasive carcinoma patients, respectively, which
shows their significant role in this particular cancer.
The statistical analysis conducted in this study is dif-

ferent to that used by Nehrt et al. [12]. Moreover, differ-
ent data sources were exploited in these two studies.
Therefore, it is no surprise that the results of the two
studies are dissimilar. To further emphasize the differ-
ence between these approaches, we remark that the
number of Pfam domains examined in our study is
much larger than that of Nehrt et al. [12] due to the cut-

off used in that study for minimum protein or domain
length (150 amino acids) and due to Pfam E-value
threshold used for inclusion (0.001). The comprehensive
comparison performed over Pfam and CATH regions
(discussed in the next section) clearly indicates the high
reliability of Pfam-reported domains, regardless of their
associated E-values. Furthermore, 5918 out of 6009 in-
vestigated Pfam domains have E-value less than thresh-
old of 0.001. Also, among 769 identified Pfam candidate
domains, 754 (98%) satisfy the threshold condition. Ac-
cordingly, we decided not to exclude any Pfam-reported
domain. In addition, the statistical method used by
Nehrt et al. [12], is extremely sensitive to the number of
patients having mutations within the domain region of
each protein. This is due to the fact that the number of
mutations in each domain is normalized by the cumula-
tive length of all its associated proteins, wherein at least
one patient had mutation. Hence, if a new patient with a
mutation on an associated protein is added, for which
no previous mutation is reported, this would signifi-
cantly impact the normalizing factor, and subsequently,
the statistic used. Moreover, the threshold level of 0.1 is
applied in Nehrt et al. [12] for determining significantly
mutated domains, by using local false discovery rate
(LFDR). As shown in Fig. 2, Nehrt et al. [12] reported 41
and 45 Pfam domains as significantly mutated in Breast
Invasive Carcinoma and Colon Adenocarcinoma Tumor,
respectively, while our results identified 31 Pfam candi-
date domains for Breast Invasive Carcinoma and 35
ones for Colon Adenocarcinoma Tumor. Comparing the
results of the two studies shows that they share nine do-
mains for Breast Invasive Carcinoma including CBF_beta,
FRG1, GATA, P53, PI3K_p85B, PI3Ka, PTEN_C2, T-box
and Tis11B_N. Moreover, the four domains of APC_crr,
MH2, P53 and PI3K_p85B are reported by both studies
for Colon Adenocarcinoma Tumor.
In another study by Yang et al. [10] mutations were

obtained from COSMIC database [59] and the analysis
was restricted to potentially damaging missense muta-
tions, predicted by IntOGen-mutation platform. To de-
termine significantly mutated domains in a given cancer
type, Fisher’s exact test was exploited in that study. Ac-
cordingly, the results obtained by Yang et al. [10] are dif-
ferent from those of this study, as expected. The list of
cancer types investigated in Yang et al. [11] and those
considered in this study share 13 in common. For each
of these 13 cancer types, significantly mutated domains
obtained by both studies are shown in Table 7. Based on
these two studies, seven cancer types share P53 as one
of their significant domains.

CATH vs. Pfam protein domains
There is a gap between the number of sequenced pro-
teins and that of proteins with known structure, which

Table 6 Pfam candidate domains for Breast Invasive Carcinoma
and Ovarian Serous Cystadenocarcinoma

Cancer Type (Percentage) Pfam Domains (Percentage)

BRCA (78.5) 7tm_4 (41.51), ATP-synt_A (0.81), Atrophin-1
(2.85), CBF_beta (2.24), COX1 (2.03), COX3
(1.12), Cadherin (23.91), Cytochrom_B_N_2
(1.12), DUF4647 (1.32), FAM219A (0.51), FRG1
(1.32), GATA (3.97), G_path_suppress (1.12),
H-K_ATPase_N (0.31), Histone (7.32),
NADH5_C (0.92), NADHdh (1.63), Oxidored_
q4 (0.71), Oxidored_q5_N (0.81), P53 (28.48),
P53_tetramer (2.03), PI3K_C2 (2.54), PI3K_
P85_iSH2 (2.34), PI3K_p85B (1.02), PI3Ka
(13.22), PTEN_C2 (2.03), Proton_antipo_M
(3.56), Runt (2.44), T-box (4.17), TMEM247
(1.12), Tis11B_N (1.02)

OV (88.3) 7tm_4 (49.57), DUF2462 (0.43), DUF4552
(1.30), MRP-S32 (0.87), NtCtMGAM_N
(2.17), ODAM (1.30), P53 (72.61), P53_tetramer
(4.78), PTCRA (0.87), Sam68-YY (1.30), UPF0054
(0.87)

Hashemi et al. BMC Bioinformatics  (2017) 18:370 Page 8 of 18



can also be observed at the level of protein domains. On
the other hand, structure-based protein domains are bio-
logically more informative and reliable. Therefore, to
benefit from the high number of sequence-based protein
domains as well as from the accuracy of structure-based
protein domains, both sequence-based and structure-
based domains are studied in this research. CATH and
Pfam databases are used to extract structure-based and
sequence-based domains, respectively.
Through further investigation, for each protein which

has both Pfam and CATH annotations (2974 proteins),
the overlap between its Pfam domain region and CATH
domain region is computed. For instance, as it is shown
in Fig. 3a, for gene VPS25 which contains two homolo-
gous domain superfamilies with CATH IDs 1.10.10.10

(amino acids 102–176) and 1.10.10.570 (amino acids 1–
176) as well as one Pfam domain of ESCRT-II (amino
acids 10–145), the computed overlap is from amino acid
10 to 145. This overlap covers 77% of CATH domain re-
gion and 100% of Pfam domain region. Overall, for all
2974 proteins with both Pfam and CATH annotations,
computed overlaps cover 79% of CATH domain regions
and 75% of Pfam domain regions, on average, as shown in
Fig. 3b. This suggests that for a protein with no annotation
in CATH database, it is reasonable to study its Pfam do-
main region as a representative of its functional unit.
In addition, the percentage of patients in each cancer

type, which are covered by Pfam candidate domains are
compared with the ones covered by CATH candidate do-
mains (shown in Fig. 4). As it is shown in Fig. 4, for several
cancer types including Bladder Urothelial Carcinoma,
Breast Invasive Carcinoma, Uterine Corpus Endometrial
Carcinoma and Uterine Carcinosarcoma, Pfam and
CATH candidate domains cover the same percentage of
patients, while in some other types such as Adrenocortical
Carcinoma, there is a huge gap between the two. The con-
siderably high level of overlap between Pfam and CATH
domain regions suggest that wherever CATH candidate
domains are incapable of covering patients, Pfam candi-
date domains are suitable substitutions.
Among 6009 investigated Pfam domains, 769 are iden-

tified as candidate domains in at least one cancer type.
Candidate domains are observed to be significantly mu-
tated in varying numbers of cancer types (more details
are given in Additional file 1: Table A14). To assess the
contribution of each candidate domain in different types
of cancer, the list of 769 candidate domains were sorted
in decreasing order based on the number of associated
cancer types. The 17 top-listed domains, presented in

Fig. 2 The comparison between our study and Nehrt et al. [13]

Table 7 Shared significant domains in our study and Yang et al. [11]

Cancer type Shared domains

BRCA Cytochrom_B_C P53

COAD MH2

ESCA P53

HNSC P53

KIRC Bromodomain Oxidored_q3 VHL

LIHC P53

LUAD P53 Pkinase_Tyr Ras Sushi

LUSC P53 Sushi

OV P53

PAAD Ras

PRAD MATH

SKCM Pkinase_Tyr

UCEC DSPc NADHdh PI3K_p85B PI3Ka
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Additional file 1: Table A15, are found to be the least
number of candidates that each studied cancer type is
associated with at least three candidate domains within
them. Given that P53 is one of the most commonly mu-
tated domains in all cancers, it is no surprise that it is
placed at the top of the list, above other domains. The
second domain in the sorted list, tm_4, is identified as a
candidate domain for 22 cancer types and for pan-
cancer. The tm_4 domain, which is present in a large
number of proteins (376), has not previously been impli-
cated in cancer susceptibility, hence can be seen as a
newly found candidate.
Proteins of keratin family contain six domains, all ex-

cept Keratin_assoc are found to be candidate in different
numbers of cancer types, ranging from 6 to 17. Interest-
ingly, three of keratin-related domains (Keratin_B2,
Keratin_B2_2 and Keratin_2_tail) are placed in our list
of top 17 domains. The great contribution of keratin-
related domains to cancer may be due to their role in
protecting epithelial cells from damage or stress [60].
Similar investigations performed on CATH domains

show that among 759 CATH domains, 181 are identified as

candidate ones. Detailed information on their associated
cancer types are given in Additional file 1: Table A16. Go-
ing through the sorted list of CATH candidate domains
shows that the 15 top-listed domains, presented in
Additional file 1: Table A17, are found to be the least num-
ber of candidates that each studied cancer type is associated
with at least one candidate domain within them.
Besides, this study sheds some light on the role of

domains in cancer. For instance, there are in total 181
CATH and 769 Pfam candidate domains associated to at
least one cancer type or to pan-cancer. 94% of Pfam
domains and 95% of CATH domains have mutations in
more than 95% of their corresponding proteins. How-
ever, a high percentage of proteins with mutations on a
particular domain does not necessarily imply that do-
main as a significant candidate. As an example, Pkinase
is a domain involved in 348 proteins, for which the
number of occurrences on those proteins is 369. Based
on the data available, the total number of mutations on
this domain in different cancer types is 346, yet it is not
identified as a candidate domain for any cancer type. In
contrast to Pkinase, Phostensin_N is a domain which is

Fig. 3 The overlap between Pfam domain region and CATH domain region. (a) The overlap between Pfam domain region and CATH domain
region for gene VPS25. (b) The average overlap between Pfam domain regions and CATH domain regions

Fig. 4 CATH vs. Pfam candidate domain coverage for patients
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located on two different proteins with mutations on only
one of them, yet it is identified as a candidate domain
for Pancreatic Adenocarcinoma.
Further investigation was performed to determine spe-

cific domains of each cancer type. As an example, there
are 30 Pfam candidate domains for Breast Invasive Car-
cinoma among which four are only specific to this can-
cer type, including Atrophin-1, CBF_beta, GATA and
Runt. The entire list of specific domains for all cancer
types is available in Additional file 1: Table A18. Subse-
quently, a protein is termed “Pfam specific protein” to a
cancer type, if it contains only those Pfam candidate
domains which are specific to the cancer of interest.

Additional file 1: Table A19 shows all proteins with
mutations on Pfam candidate domains and Additional
file 1: Table A20 presents Pfam specific proteins of all
cancer types. Similar tables (Additional file 1: Tables A21,
A22 and A23) are provided for CATH candidate domains.
For each cancer type, the number of Pfam candidate do-
mains, proteins with mutations on Pfam candidate do-
main, Pfam specific domains and specific proteins
are summarized in Table 8. Table 9 shows similar re-
sults for CATH candidate domains. On average, the
number of CATH specific domains for a cancer type

Table 8 Number of Pfam Candidate domains, proteins with
candidate domains and specific domains and proteins for each
cancer type

Cancer type Number of
Pfam candidate
domains

Number of
Proteins with
Pfam candidate
domains

Number of
Pfam specific
candidate
domains

Number of
Pfam specific
proteins

ACC 57 323 23 47

BLCA 51 1076 15 64

BRCA 31 495 4 11

CHOL 39 45 19 21

COAD 35 955 6 7

ESCA 25 355 4 5

GBM 24 474 6 8

HNSC 42 743 5 42

KICH 55 200 21 23

KIRC 90 494 54 157

KIRP 36 84 22 44

LGG 25 366 3 15

LIHC 25 432 5 9

LUAD 115 2328 27 248

LUSC 31 1128 5 8

OV 11 188 6 6

PAAD 143 793 70 151

PCPG 70 151 20 44

PRAD 34 353 13 20

READ 29 266 10 17

SARC 25 383 7 11

SKCM 40 1116 11 25

STAD 52 1476 10 35

TGCT 66 366 29 43

THCA 38 304 15 19

THYM 18 41 5 5

UCEC 23 1094 3 16

UCS 44 57 19 27

UVM 63 99 22 34

Pan-cancer 222 3685 27 315

Table 9 Number of CATH Candidate domains, proteins with
candidate domains and specific domains and proteins for each
cancer type

Cancer type Number of
CATH
candidate
domains

Number of
proteins with
CATH candidate
domains

Number of
CATH specific
candidate
domains

Number of
CATH
specific
proteins

ACC 7 15 4 5

BLCA 22 649 1 1

BRCA 12 315 1 2

CHOL 9 39 2 4

COAD 16 377 0 0

ESCA 13 191 2 2

GBM 9 28 0 0

HNSC 14 372 0 0

KICH 10 18 6 7

KIRC 19 49 3 3

KIRP 11 110 8 10

LGG 7 21 1 2

LIHC 14 307 2 4

LUAD 32 590 3 24

LUSC 11 154 0 0

OV 3 6 1 2

PAAD 20 249 6 27

PCPG 9 56 3 3

PRAD 13 113 4 5

READ 7 116 0 0

SARC 8 285 1 2

SKCM 17 281 5 16

STAD 26 575 2 6

TGCT 9 78 3 5

THCA 5 91 1 3

THYM 5 146 2 11

UCEC 26 449 4 5

UCS 11 22 3 4

UVM 6 13 2 2

Pan-cancer 104 456 18 48
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is 2.4, whereas this number is 15.8 for Pfam specific
domains.
To evaluate the reliability of the proposed method-

ology, the following process was performed. For each
cancer type, the genes that contain identified candidate
domains and have mutations in that cancer were com-
pared with experimentally verified cancer genes from
COSMIC [59]. A list of 616 unique genes for which mu-
tations have been causally implicated in cancer, were
downloaded from COSMIC database (in May 2017).
Since some of the cancer causal genes are associated to
more than one cancer type, the cumulative number
(counting with repetition) of genes, for all 29 cancer
types investigated in this study tallied 967. Considering
all 29 cancer types (shown in Fig. 5), 814 COSMIC genes
have mutations on Pfam domains, out of which, 413
genes contain at least one Pfam candidate domain.
Therefore, among COSMIC genes with at least one
Pfam domain, 51% have Pfam candidate domains. For
each cancer type, the list of its specific COSMIC
genes which also have Pfam candidate domain is
given in Additional file 1: Table A24.
Similar analysis for CATH domains indicates that

among 967 cancer causal genes, there are 446 genes with
mutations on their CATH domains, out of which, 289
genes have mutations on CATH candidate domains. De-
tailed information for each cancer type is presented in
Additional file 1: Table A25. Even though 52% of the
cancer causal genes reported by COSMIC have no
CATH domains, among those with at least one CATH
domain, 65% have the candidate ones. This suggests that
CATH domains are superior indicators compared to
Pfam domains, in identification of cancer causal genes.
Curiously, studying mutations at domain level provides

an interesting insight into the role of gene families in

cancer development. For instance, in Uterine Corpus
Endometrial Carcinoma, eight out of nine genes in
TCEAL gene family have mutations on identified Pfam
candidate domains. Members of this family had already
been identified as nuclear phosphoproteins that modu-
late transcription in a promoter context-dependent man-
ner [61]. Besides, for 19 out of 22 genes of FGF gene
family, mutations occur on Pfam candidate domains in
Stomach adenocarcinoma. FGF’s are known to play a key
role in the processes of proliferation and differentiation
of a wide variety of cells and tissues [62].
We also evaluated the impact of domain mutations in

cancer using SnpEff [63], which annotates the effects of
variants on genes and classifies them as low, moderate
and high impact. The results indicate that 13.4% of mu-
tations on Pfam and CATH domains are classified as
high impact mutations and the rest are reported as mod-
erate ones. Restricting the analysis to candidate domains
shows that 14.3% and 17.7% of mutations on Pfam and
CATH candidate domains are considered as high impact
ones, respectively. Moreover, we calculated the fre-
quency of different types of variants, including nucleo-
tide variants, insertions and deletions, on domain
regions. Our analysis reveals that all variants has similar
frequencies on domains and candidate domains.

Protein-protein interactions
Protein-Protein Interactions (PPIs) commonly refer to
physical contact between two or more proteins [64] and
offer a wealth of molecular information, which exists in
various molecular pathways. Besides, domains are usu-
ally responsible for mediating protein-protein interac-
tions [65]. Understanding specific interaction map of a
disease is becoming increasingly crucial in elucidating its
underlying molecular mechanisms. Therefore, it is

Fig. 5 Comparison of causal genes in COSMIC with genes having candidate domains. (a) Comparison of COSMIC genes with genes having Pfam
candidate domains. (b) Comparison of COSMIC genes with genes having CATH candidate domains
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reasonable to study PPI for proteins with candidate do-
mains. To this end, the specific proteins of each cancer
type are exploited to determine specific PPIs of that can-
cer type. The interactome database STRING [66] was
used to extract all interactions with the highest confi-
dence score (0.9 and above) among specific proteins of
each cancer type. The results show that in 20 out of 29
cancer types and also in pan-cancer, specific proteins are
significantly connected. The connectivity significance of
proteins was determined by the PPI enrichment p-value,
reported by STRING. This measure quantifies whether
the set of input proteins have more interactions among
themselves than a random set of proteins of similar size.

Subsequently, for each cancer type in which a signifi-
cant interaction network is not formed on its specific
proteins, the same analysis was performed on the entire
list of proteins with mutation on Pfam candidate do-
mains of that cancer type. The entire lists of proteins are
significantly interconnected for all cancer types other
than Ovarian serous cystadenocarcinoma. Table 10 gives
some information about the number of nodes and edges
in the interaction networks of each cancer type, as well
as their enrichment p-values. Furthermore, for each
cancer type the interactome analysis was performed
on the entire list of proteins with mutation on CATH
candidate domains of that cancer type. The results

Table 10 The result of interactome analysis for Pfam candidate domains in different cancer types

Cancer type Pfam specific proteins Proteins with Pfam candidate domain

#Nodes #Edges Expected number
of edges

PPI enrichment
p-value

Significant
or Not

#Nodes #Edges Expected number
of edges

PPI enrichment
p-value

Significant
or Not

BRCA 16 14 5 0.002 YES

COAD 7 1 0 0.04 YES

GBM 8 1 0 0.126 NO 471 2687 558 0 YES

KIRC 156 40 16 4E-07 YES

KIRP 43 30 3 0 YES

LGG 14 2 0 7E-04 YES

LUAD 247 282 9 0 YES

OV 6 0 0 1 NO 186 3 1 0.0738 NO

UCEC 16 1 0 7E-04 YES

ACC 46 3 1 0.069 NO 319 113 14 0 YES

BLCA 64 14 2 1E-07 YES

CHOL 21 4 0 2E-04 YES

ESCA 5 1 0 0.002 YES

HNSC 42 25 1 0 YES

KICH 23 1 2 0.79 NO 198 105 33 0 YES

LIHC 9 1 0 0.016 YES

LUSC 8 0 0 1 NO 1132 9242 2583 0 YES

PAAD 151 59 21 6E-12 YES

PCPG 43 5 1 0.01 YES

PRAD 20 7 1 2E-06 YES

READ 17 4 0 1E-04 YES

SARC 11 3 0 2E-05 YES

SKCM 25 22 4 7E-11 YES

STAD 35 69 1 0 YES

TGCT 42 8 1 3E-06 YES

THCA 19 1 0 0.149 NO 301 132 29 0 YES

THYM 5 0 0 1 NO 40 32 0 0 YES

UCS 26 1 1 0.462 NO 55 45 8 0 YES

UVM 34 3 3 0.609 NO 98 22 14 0.039 YES

Pan-cancer 312 231 34 0 YES

Hashemi et al. BMC Bioinformatics  (2017) 18:370 Page 13 of 18



show that in all cancer types except Uveal Melanoma,
proteins with mutations on CATH candidate domains
are significantly connected. Some information includ-
ing the number of nodes and edges in each inter-
action network, and its enrichment p-value is
presented in Table 11. Due to the small number of
proteins in the CATH specific lists, interactome ana-
lysis was not performed on them.
Overall, there are 4968 proteins with mutations on Pfam

candidate domains, each of which is associated with 4 can-
cer types on average. About 31% of them are specific to
only one cancer type and more than 7% of them (353 pro-
teins) are linked to at least half of cancer types. Given these
figures, one can expect the specific proteins to be not sig-
nificantly interconnected in some cancer types, even

though their entire list of proteins with mutations on candi-
date domains form highly connected networks. Additional
file 1: Table A26 presents the number of associated cancer
types for each protein. To have a more comprehensive pic-
ture of CATH candidate domains, similar results for 1379
proteins with mutations on CATH candidate domains are
given in Additional file 1: Table A27.

Website
As previously noted, data integration is an essential re-
quirement for this study and related fields of research.
Several data sources were used to incorporate different
types of information for human protein-coding genes,
including gene symbols and protein identifiers from
multiple resources, the start and end positions of each

Table 11 The result of interactome analysis for CATH candidate domains in different cancer types

Proteins with at least one CATH candidate domain

Cancer type #Nods #Edges Expected number of edges PPI enrichment p-value Significant or not

BRCA 315 1136 261 0 YES

COAD 377 1325 363 0 YES

GBM 28 61 9 0 YES

KIRC 49 37 13 1.62E-08 YES

KIRP 110 199 57 0 YES

LGG 21 26 4 2.55E-13 YES

LUAD 588 2173 652 0 YES

OV 6 3 0 0.000256 YES

UCEC 449 2159 671 0 YES

ACC 15 1 0 0.152 YES

BLCA 648 3067 1487 0 YES

CHOL 39 21 6 4.84E-06 YES

ESCA 191 703 180 0 YES

HNSC 370 1322 366 0 YES

KICH 18 15 2 7.81E-10 YES

LIHC 307 1065 292 0 YES

LUSC 154 177 40 0 YES

PAAD 249 610 231 0 YES

PCPG 56 35 10 5.99E-10 YES

PRAD 113 249 72 0 YES

READ 116 285 68 0 YES

SARC 285 902 223 0 YES

SKCM 281 498 145 0 YES

STAD 575 2181 762 0 YES

TGCT 78 91 9 0 YES

THCA 91 248 136 0 YES

THYM 146 411 83 0 YES

UCS 22 15 6 0.00156 YES

UVM 13 3 1 0.186 NO

Pan-cancer 457 1821 610 0 YES
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CATH and Pfam domain within a given protein, and the
positions of exons and introns in the human genome.
This comprehensive data integration provides re-
searchers with a unified data source, which can be
accessed via http://www.cancerouspdomains.ir, as well as
from Additional file 2: Table B3. All previously men-
tioned tables in Additional file 1 are also downloadable
from the website. An example of using the embedded
search engine to extract the integrated information for
gene TP53 is depicted in Fig. 6.
Some of the highly beneficial data provided on the

website are the five graph charts, which show the as-
sociations between different groups of genes or do-
mains to various cancer types. These graph charts are
represented by bipartite graphs in which one set of
nodes corresponds to the genes/domains and the
other set of nodes corresponds to cancer type. In
each bipartite graph, an edge connects a gene/domain
to a cancer type, if this gene/domain is identified as a
candidate in the cancer type. For instance, one set of

nodes represents Pfam candidate domains and the
other set represents different cancer types. An edge
connects two nodes in these sets, if the corresponding
domain is a candidate for the corresponding cancer
type. The graph chart of Pfam candidate domains is
illustrated in Fig. 7.
A help file is also provided for detailed description of

the information embedded in the website. Some tailored
interface options such as “moving”, “zoom in” and
“zoom out” are available to control the size of the dis-
play. These options are specifically helpful due to the
large number of CATH and Pfam candidate domains.
Furthermore, by clicking on each cancer type, all related
candidate domain or genes can be distinguished via a
change of edge colors. The same option is also provided
for each candidate domain or gene.

Conclusion
Distinguishing mutations on protein-coding regions
which impact the functionality of coded proteins, is one

Fig. 6 The result of searching TP53 in website

Fig. 7 The graph chart for Pfam candidate domains
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of the main obstacles in the study of cancer genomics.
The exome-wide study of somatic mutations for several
cancer types and the available structural information of
proteins provide invaluable resources for specifically
studying cancer genomics at functional level. Both
sequence-based and structure-based domains, which are
available in Pfam and CATH databases respectively, are
promising representatives of functional regions within
proteins. Accordingly, extracting domain regions which
are significantly mutated in a cancer type reveals critical
information required for validating the impact of
mutations.
In this paper, a comprehensive investigation is con-

ducted on all 29 TCGA cancer types and pan-cancer
to identify sequence-based and structure-based do-
mains in which mutations occur with high statistical
significance. The domains identified for each cancer
type offer an explanation for the functional impact of
mutations in that cancer type. It is shown that each
cancer type has its specific set of candidate domains,
which in turn suggests a specific set of proteins asso-
ciated to that cancer type. The interactome analysis
showed that the specific proteins of each cancer type
are significantly connected. This interconnectivity
supports the idea that leveraging domain regions can
improve accurate identification of functionally related
causal proteins. Through further investigation, the fre-
quency of mutations in mitochondrial genes, stem
cell-specific genes and DNA repair genes was deter-
mined to examine their role in cancer development
and progression.
Additionally, this study provides other researchers

with a comprehensive and unified data repository for
studying both CATH and Pfam domain regions on
protein-coding genes. Moreover, it has clarified the asso-
ciations between different groups of genes or domains
and various cancer types. All this information is access-
ible via our website.

Additional files

Additional file 1: It contains 27 supplementary tables, Table A1–27 with
the data described in the text. (XLSX 1032 kb)

Additional file 2: It contains three tables, Tables B1-B3 with the data
gathered from different datasets. All these data are used in study.
(XLSX 55782 kb)
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