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Large conductance, Ca2+-activated K+ (BK) channels represent an important pathway
for the outward flux of K+ ions from the intracellular compartment in response to
membrane depolarization, and/or an elevation in cytosolic free [Ca2+]. They are functionally
expressed in a range of mammalian tissues (e.g., nerve and smooth muscles), where
they can either enhance or dampen membrane excitability. The diversity of BK channel
activity results from the considerable alternative mRNA splicing and post-translational
modification (e.g., phosphorylation) of key domains within the pore-forming α subunit of
the channel complex. Most of these modifications are regulated by distinct upstream cell
signaling pathways that influence the structure and/or gating properties of the holo-channel
and ultimately, cellular function. The channel complex may also contain auxiliary subunits
that further affect channel gating and behavior, often in a tissue-specific manner. Recent
studies in human and animal models have provided strong evidence that abnormal BK
channel expression/function contributes to a range of pathologies in nerve and smooth
muscle. By targeting the upstream regulatory events modulating BK channel behavior, it
may be possible to therapeutically intervene and alter BK channel expression/function in a
beneficial manner.
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INTRODUCTION: BK CHANNEL DISTRIBUTION AND
ARCHITECTURE
BK channels, also called MaxiK/Slo1/KCa1.1 channels, are a
class of K+ ion channels that undergo extensive pre- and post-
translational modification. BK channel α subunits are encoded
by the KCNMA1 gene, also known as SLO, and are ubiquitously
expressed throughout mammalian tissues (e.g., neurons, smooth
and skeletal muscles, exocrine cells). BK channels are assembled
and strategically positioned on membrane surfaces, including
the plasma membrane (Latorre et al., 1989), mitochondria and
nucleus (Singh et al., 2012). Functional BK channels are multi-
meric structures composed of four similar pore-forming α sub-
units (Shen et al., 1994) and up to four regulatory β subunits can
co-assemble with the tetrameric α subunit complex. The syner-
gistic activation of BK channels by Ca2+ ions and depolarization
causes a substantial K+ current that exhibits a large or “big” sin-
gle channel conductance (i.e., up to 250 pS under symmetric K+
conditions). Activation of this formidable ionic current serves to
drive membrane potential in the negative direction.

The transmembrane portion of the BK channel α subunit
structure is thought to largely resemble that of voltage-gated
K+ (Kv) channel subunits in terms of voltage-sensing and pore-
forming domains. Notably, BKα subunits contain an additional
transmembrane segment, termed S0, resulting in an extracellu-
lar N-terminus. Specialized charged residues are present within
the transmembrane segments S2–S4 of the BKα subunit that
contribute to its voltage-sensing properties. While topologically
similar to their Kv channel counterparts, BK channels display

weaker or less sensitive voltage-dependent activation (i.e., the
ionic conductance-voltage relation is less steep), due to an altered
distribution of voltage-sensing residues within the S2–S4 seg-
ments (Ma et al., 2006). Mechanistically, membrane depolariza-
tion drives conformational re-arrangements in the voltage sensor
domains, resulting in an upward twisting of the S4 segment rel-
ative to the pore domain; these conformational movements are
reversed upon repolarization (Hoshi et al., 2013).

The C-terminal domain of the BKα subunit contains a con-
siderable range of specialized structures that regulate channel
function. These include several binding sites for divalent cations
(i.e., Ca2+ and Mg2+) and regions that undergo dynamic post-
translational modification such as phosphorylation. Each mam-
malian BKα subunit contains two “regulators of K+ conductance”
(RCK) domains, arranged in tandem along the C-terminus; in the
tetrameric channel complex, these RCK domains co-assemble to
form an octomeric gating ring structure in the cytosol (Yuan et al.,
2010). The RCK domains also have Ca2+-binding regions and are
crucial in conferring the channel’s Ca2+ ion sensing properties
(Cui et al., 2009). Ca2+ ions bind to these specialized regions
within the BKα C-terminus, leading to a structural expansion
of the intracellular region of the ion conduction pathway that
facilitates gating and K+ efflux (Yuan et al., 2012; Hoshi et al.,
2013).

GENETIC DIVERSITY AND SPLICE VARIANTS
Unlike the Kv channel superfamily, which uses different genes
to increase its genetic diversity, BK channels derive functional
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diversity through the alternative post-transcriptional splicing of
mRNA derived from the single KCNMA1 gene encoding the BKα

subunit (Shipston, 2001). Up to ten distinct splice sites have
been described in KCNMA1 (Poulsen et al., 2009), leading to the
generation of BKα subunits with different phenotypes and vari-
ous functional roles, including altered sensitivity to Ca2+ and/or
voltage (Shipston, 2001; Johnson et al., 2011), responses to phos-
phorylation (Tian et al., 2001), signaling cascades (Schubert and
Nelson, 2001; Tian et al., 2001, 2004), membrane expression reg-
ulation (Alioua et al., 2008; Ahrendt et al., 2014), trafficking and
lipidation (Toro et al., 2006; Zarei et al., 2007; Shipston, 2014).
The impressive range of phenotypic products that can result from
differential splicing of the KCNMA1 gene product contributes
to diversity of BK channel function between tissues, cells and
intracellular compartments.

BK CHANNEL AUXILIARY SUBUNITS
BK channels can co-assemble with modulatory auxiliary subunits
BKβ1-4 (Knaus et al., 1994a; Tanaka et al., 1997; Brenner et al.,
2000a; Uebele et al., 2000), as well as a newly defined family of
leucine-rich repeat containing subunits (LRRCs), referred to as
γ subunits (Yan and Aldrich, 2010, 2012). Both BKβ and γ sub-
units contain sizeable extracellular regions and it is thought that
these regions physically interact with the membrane-spanning
domains of the BKα subunit. In particular, BKβ subunits appear
to interact mainly with the N-terminal S0–S2 segments of the
pore-forming BKα subunit (Morrow et al., 2006; Liu et al.,
2008; Morera et al., 2012), thereby regulating channel open-
ing through allosteric effects on the intramolecular processes
underlying Ca2+ and/or voltage-dependent activation. As these
auxiliary subunits are expressed in a tissue-specific manner, they
confer distinct functional consequences by impacting BK chan-
nel kinetics and gating behavior. For instance, BKβ1 subunits

are typically expressed in smooth muscle, whereas BKβ4 are
expressed in neural tissue. BKβ subunits 1, 2 and 4 are reported
to stabilize the channel’s voltage sensor domains in the active
conformation (Contreras et al., 2012), thereby enhancing chan-
nel activity, In contrast, BKβ2 and β3 subunits confer BK channel
inactivation via an N-terminal “inactivation ball” (Wallner et al.,
1999; Brenner et al., 2000a; Uebele et al., 2000) (Figure 1), which
will limit K+ efflux and membrane hyperpolarization. To date,
two functionally-distinct BKβ2 splice variants (BKβ2a-b) have
been described in mammals, although BKβ2b does not appear to
inactivate the channel complex (Ohya et al., 2010). Similarly, four
functionally-distinct BKβ3 splice variants (BKβ3a-d) are known,
with splice variants A-C conferring partial inactivation of BK
channel current (Uebele et al., 2000). BKβ4 subunits are the most
distantly-related of the β subunits in terms of sequence similarity
and produce mixed effects on BK channel gating, depending on
the local Ca2+ concentration. At low Ca2+ concentrations, BKβ4
appears to decrease channel activation, but at high Ca2+ concen-
trations, activation is enhanced (Brenner et al., 2000a; Wang et al.,
2006).

The molecular mechanisms by which γ-subunits interact with
and influence BK channel gating and kinetics are currently
an area of active investigation. All four known LRRC proteins
(i.e., LRRC26, 38, 52, and 55) have been reported to enhance
voltage-dependent activation of BK channels (Yan and Aldrich,
2010, 2012), with LRRC26 producing an impressive shift of up
to −150 mV.

ROLE OF BK CHANNELS IN SMOOTH MUSCLE FUNCTION
AND DISEASE
Phasic smooth muscles, such as those lining the urinary blad-
der, urethra and ureters, undergo action potential (AP) events,
with rapid depolarization-repolarization fluctuations. APs cause

FIGURE 1 | A schematic illustration of BK channel α, β and γ subunit architecture with major structures defined. Abbreviations: N, amino-terminus; C,
carboxy-terminus; LRR, leucine-rich repeat; S, transmembrane segment; RCK, regulator of K+ conductance.
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a significant global increase in intracellular [Ca2+] and BK chan-
nels are largely responsible for the rapid down-stroke (repolar-
ization) phase (Burdyga and Wray, 2005; Thorneloe and Nelson,
2005; Kyle et al., 2013b). In contrast, tonic smooth muscles, such
as those found throughout vascular tissue and much of the gas-
trointestinal tract and airways, regulate lower magnitude changes
in membrane potential by principally responding to localized
elevations in intracellular [Ca2+] mediated by ryanodine recep-
tors (RyRs) (Figure 2). The dynamic post-translational “tuning”

FIGURE 2 | A summary of select physiological mechanisms leading to

BK channel activation and reversible phosphorylation-mediated

enhancement. (A) Ca2+–dependent activation of BK channels
hyperpolarizes the membrane potential. Depolarization of the membrane
potential activates voltage-dependent Ca2+ channels, leading to Ca2+ entry
and Ca2+-induced Ca2+ release from nearby ryanodine receptors. Released
Ca2+ promotes BK channel activation, which drives the membrane potential
in the negative (hyperpolarized) direction. Ca2+ influx via VDCCs may also
contribute directly to BK channel activation (dotted line) as a result of the
spatial proximity of these two channels within membrane
nano/micro-domains. (B) Mechanisms underlying the generation of nitric
oxide from an endothelial cell, with the NO/cGMP/PKG-mediated
phosphorylation of a BK channel illustrated in an adjacent vascular smooth
muscle cell. Nitric oxide release from endothelial cells binds to soluble
guanylyl cyclase in smooth muscle cells, resulting in elevated intracellular
cGMP concentrations. PKG is then activated and phosphorylates the BKα

subunit. Phosphodiesterase activity lowers intracellular cGMP and protein
phosphatase activity removes the regulatory phosphate from Ser/Thr
residues of the BK channel protein. Abbreviations: VDCC,
voltage-dependent Ca2+ channel; BK, BK channel; Em, membrane potential;
CICR, Ca2+-induced Ca2+ release; RyR, ryanodine receptor; GPCR,
GTP-binding protein-coupled receptor; eNOS, endothelial nitric oxide
synthase; NO, nitric oxide; EC, endothelial cell; sGC, soluble guanylyl
cyclase; PDE, phosphodiesterase; PO4, phosphate group; cGMP, cyclic
guanosine monophosphate; PKG, protein kinase G; PP, protein phosphatase;
VSMC, vascular smooth muscle cell.

of BK channels permits considerable diversity in the biophysical
properties of the current.

In common with many other tetrameric K+ channels in
smooth muscles, the amplitude of K+ current carried through
BK channels in smooth muscles can be dynamically regulated by
post-translational modifications to the channel complex, includ-
ing the reversible phosphorylation of the pore-forming BKα

subunit by a number of protein kinases, as described below.
Almost all phosphorylation sites are conserved in mammalian BK
channel splice variants.

Many tissues have distinct macromolecular signaling com-
plexes underlying the function of ion channels. Smooth muscles,
for instance, generally have closely-associated RyRs, which peri-
odically release Ca2+ and cause local elevations in [Ca2+]i (i.e.,
10–20 μM) (Pérez et al., 1999; ZhuGe et al., 2002) near BK chan-
nels positioned on the plasma membrane, which is sufficient to
significantly raise the Po and efflux K+ (Figure 2). The RyRs
themselves are often close to Ca2+ influx pathways, for instance
voltage-gated Ca2+ channels, or in proximity to IP3 receptors
(Ohi et al., 2001).

The primary role of BK channels in vascular smooth muscle
(VSM) is to repolarize/hyperpolarize the cell membrane poten-
tial in the face of chronic depolarizing stimuli, thereby reducing
contractile activity. It is now well-recognized that enhance-
ment of BK channel current in VSM via phosphorylation is
principally-regulated by nitric oxide (NO)/cGMP/PKG signaling
(Feil et al., 2003) (see Section BK Channel Modulation via Protein
Phosphorylation below). NO is a gaseous second messenger syn-
thesized mainly by the adjacent endothelial cell layer lining the
lumen of all blood vessels (Fleming and Busse, 2003). Therefore,
BK channel activity is considered to be closely linked with
endothelial cell activity. Therapeutically, NO and synthetic NO
donors are used to treat a range of vascular disorders, including
angina pectoris and hypertension (Wimalawansa, 2008).

In addition to the urinary tract and VSM, BK channels are also
important regulators in mediating the proper function of various
other smooth muscles, including those found in the gastroin-
testinal tract, airway, and uterus. Their function, however, varies
between cell types and layers, and generally is dependent on the
associated macromolecular signaling complex. In the colon, for
instance, BK channels contribute to setting the resting membrane
potential in longitudinal smooth muscle, whereas in the circular
layer, they limit excitatory responses (Sanders, 2008).

In VSM, a single amino acid polymorphism in the BKβ1 sub-
unit (i.e., E65K) is reported to have a gain-of-function effect on
BKs channel activation and has been associated with lower sys-
tolic and diastolic blood pressures and a decreased prevalence
of diabetic hypertension in humans (Fernández-Fernández et al.,
2004; Nielsen et al., 2008). In contrast, BKβ1 subunit expres-
sion is decreased in some forms of genetic hypertension (Amberg
and Santana, 2003). Moreover, a point mutation (R140W) in the
BKβ1 subunit that modestly impairs channel opening has been
linked with asthma severity in African-American males (Seibold
et al., 2008). Provocative data from Jaggar and colleagues fur-
ther suggest that the majority of BKβ1 subunits reside within
the cell interior and assemble with α subunits at the cell surface
in a dynamic fashion (Leo et al., 2014). NO signaling appears
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to promote the forward trafficking of internal BKβ1 subunits to
the cell membrane, where they co-associate with BKα subunits
to enhance channel activation. The authors suggest that auxiliary
BKβ1 subunits undergo selective endocytosis from the plasma
membrane, followed by re-insertion in response to a vasodilatory
stimulus, such as NO. These data imply that native BK channels
in VSM may not always contain a full complement of β1 subunits
(i.e., the ratio of β1 to α subunits in a single channel complex
is <1), as described in rat cremaster artery (Yang et al., 2009),
and that the subunit stoichiometry of these channels is not per-
manent. Dynamic regulation of BK channel subunit co-assembly
and interaction at the plasma membrane may thus represent a
novel paradigm for the modulation of ion channel activity.

Many research groups have reported that BK channel activ-
ity is upregulated during hypertension, and its contribution is
apparently enhanced compared to normotensive animals (for
review, see Joseph et al., 2013). It should be noted, however, that
downregulation of BK channel activity has also been reported
during hypertension (Amberg et al., 2003; Amberg and Santana,
2003; Nieves-Cintrón et al., 2007; Yang et al., 2013). Investigators
have speculated that this decrease may be due to reduced BKβ1
subunit expression/coupling, which would dampen the Ca2+
sensitivity of BK channel activation. Several research groups
have reported that BK current density is positively-correlated
to blood pressure in hypertensive animals (Rusch et al., 1992;
England et al., 1993; Rusch and Runnells, 1994; Liu et al., 1998).
Aortic smooth muscle isolated from rats with renal hyperten-
sion, spontaneously-hypertensive rats (SHR) and stroke-prone
SHR (Rusch et al., 1992; England et al., 1993; Liu et al., 1998)
exhibits significantly-upregulated BK channel activity, likely as a
compensatory response. Collectively, these studies indicate that
the expression and function of BK channels in the vasculature
involves complex expression and signaling pathways, and may
vary between cells, tissues, vascular beds and pathophysiological
profiles.

BK channels are densely-expressed in mammalian bladder tis-
sues (∼20 channels per square micrometer) (Ohi et al., 2001)
with BKβ1 auxiliary subunits. BKα subunit knockout mice have
demonstrated bladder dysfunction and exhibit a depolarized rest-
ing membrane potential in isolated bladder smooth muscle cells
and intact tissues, indicating a role for BK channels in setting
the membrane potential (Sprossmann et al., 2009). Inhibition of
BK channel current with iberiotoxin in the bladders of healthy
mice led to similar effects (Heppner et al., 1997; Hristov et al.,
2011). BKβ1-knockout mice similarly display overactive blad-
der symptoms, and a significant decrease in BK channel activity
(Petkov et al., 2001). Intriguingly, bladder smooth muscle tissue
taken from patients with neurogenic bladder over-activity exhibit
little to no response to BK channel inhibition by iberiotoxin,
or the channel agonist NS1619, indicating severe BK channel
dysfunction (Oger et al., 2010). Macroscopic current recordings
from these tissues demonstrated a significantly lower BK channel
current density that mirrors that reported for experimentally-
induced partial urethral obstruction in rats (Aydin et al., 2012).
Patients with benign prostatic hyperplasia experiencing overac-
tive bladder symptoms also demonstrate a parallel reduction in
BK channel expression (Chang et al., 2010). Overexpression of

BK channel protein in rats with experimentally-induced partial
urethral obstruction proved to be an effective treatment for the
existing overactive bladder activity (Christ and Hodges, 2006).
These data collectively indicate that BK channels are important
regulators of bladder smooth muscle excitability, and a poten-
tial target for therapeutic intervention for overactive bladder
conditions.

ROLE OF BK CHANNELS IN NEURONAL
FUNCTION/DYSFUNCTION
BK channels are abundantly expressed in both central and periph-
eral neurons, with prominent expression reported in both the
cell body and pre-synaptic terminals (Faber and Sah, 2003).
Functionally, these channels are key regulators of neuronal
excitability, as channel opening will reduce action potential (AP)
amplitude and duration, increase the magnitude of the fast after-
hyperpolarization (fAHP) immediately following repolarization
and limit the frequency of AP burst firing (Bielefeldt and Jackson,
1993; Faber and Sah, 2003; Gu et al., 2007; Haghdoost-Yazdi et al.,
2008). At the pre-synaptic nerve terminal, localized BK chan-
nel activity can modulate both the amplitude and duration of
depolarization-evoked Ca2+ entry as a result of the rapid repolar-
ization and deactivation of voltage-gated Cav 2.1 (i.e., P/Q-type)
and 2.2 (N-type) Ca2+ channels (Robitaille and Charlton, 1992;
Issa and Hudspeth, 1994; Marrion and Tavalin, 1998; Fakler and
Adelman, 2008). Reduced Ca2+ influx will limit vesicle fusion
at active zones, leading to decreased neurotransmitter release
(Roberts et al., 1990; Hu et al., 2001; Raffaelli et al., 2004).

Dissecting the functional roles of BK channels in the nervous
system has been greatly aided by the availability of highly selec-
tive toxins (i.e., iberiotoxin) (Kaczorowski and Garcia, 1999) and
small molecule inhibitors (e.g., penitrem A, paxilline, lolitrem B)
(Knaus et al., 1994b; Imlach et al., 2008; Nardi and Olesen, 2008),
along with the generation of genetically-engineered mice lacking
either BKα or β subunits (Brenner et al., 2000b, 2005; Plüger et al.,
2001; Meredith et al., 2004; Sausbier et al., 2004). Such strategies
have revealed that the loss of neuronal BK current, either acutely
or chronically, increases membrane excitability by decreasing the
magnitude of the fAHP. Reducing the fAHP facilitates more rapid
membrane depolarization in response to a tonic stimulus, lead-
ing to higher frequency AP firing. Such alterations in neuronal
activity are typically associated with neurological disorders in the
CNS, including tremor and ataxia (Sausbier et al., 2004; Brenner
et al., 2005; Imlach et al., 2008). Interestingly, a point mutation
in the RCK1 domain of the BKα subunit (i.e., D434G) identified
in a subset of epileptic patients has been shown to increase neu-
ronal BK channel activity by enhancing Ca2+-dependent channel
gating (Du et al., 2005; Wang et al., 2009; Yang et al., 2010).
Functionally, increasing BK activity and the associated fAHP may
augment membrane excitability in the soma by enhancing the
recovery rate of fast Na+ currents from voltage-dependent inac-
tivation and reducing the absolute refractory period of neuronal
firing.

In the CNS of mice and humans, genetic knockout or muta-
tional disruption of the molecular chaperone cysteine string
protein (CSPα) is linked with early onset neurodegeneration
(Fernandez-Chacon et al., 2004; Donnelier and Braun, 2014),
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and interestingly, these conditions are associated with a signif-
icant up-regulation of BK channel expression in mouse brain
and cultured neurons (Kyle et al., 2013a; Ahrendt et al., 2014).
Although the mechanistic link between increased BK expres-
sion/activity and neurodegeneration remains undefined, it is
hypothesized that increased BK current density in pre-synaptic
terminals and/or the soma may lead to disrupted synaptic mem-
brane excitability and neurotransmitter release. As described
below, elevated BK channel expression in the CNS is closely linked
with epilepsy, strongly suggesting that increased BK current den-
sity can lead to neurological disorders and possibly synaptic
dysfunction/degeneration.

POST-TRANSLATIONAL MODIFICATION
Heteromeric BK channel complexes are the subject of exten-
sive post-translational modifications, which can significantly alter
channel behavior. Some modifications are highly-complex and
require prior upstream modification(s) to the channel subunits.

BK CHANNEL MODULATION VIA PROTEIN PHOSPHORYLATION
Perhaps the most studied enzymatically-driven modification of
BK channels is the addition of phosphate (PO3−

4 ) groups to
functionally-important residues (Ser/Thr/Tyr) present within the
channel’s pore-forming α subunit. These reactions are catalyzed
by select protein kinases and are reversed by the actions of protein
phosphatases that dephosphorylate these sites following removal
of the stimulus. Phosphorylation can be either stimulatory or
inhibitory with respect to the open probability of the channel and
can depend on several variables (see below).

Regulation of BK channel activity in smooth muscles by
phosphorylation-dependent signaling pathways is well docu-
mented (Schubert and Nelson, 2001) and the main modifying
enzymes include cAMP- and cGMP-dependent protein kinases
(i.e., PKA and PKG, respectively), protein kinase C (Zhou et al.,
2010) along with c-Src tyrosine kinase (Davis et al., 2001).
Biochemically, PKA is comprised of 2 catalytic and 2 regulatory
subunits and kinase activation occurs in response to the direct
binding of the second messenger cAMP to the regulatory sub-
units (Taylor et al., 1990). Cyclic AMP synthesis occurs following
stimulation of adenylyl cyclase by hormones (e.g., adenosine, β-
adrenergic agonists, PGI2, PGE2, etc.) or direct activators (e.g.,
forskolin). In the case of PKG activation, synthesis of cGMP
can occur via a soluble or a membrane-bound form of guany-
lyl cyclase (Münzel et al., 2003); the former is typically activated
by NO and the latter by natriuretic peptides acting on the cell
surface receptors NPR-A and NPR-B. Structurally, PKG exists as
a homodimer in which each monomer consists of a regulatory
and catalytic domain linked in a single polypeptide chain (Francis
et al., 2010); holo-PKG thus closely resembles the overall struc-
ture of PKA. Generally, PKA and PKG-mediated phosphorylation
leads to BK channel enhancement, whereas PKC leads to channel
inhibition. It should be stressed, however, that these regulatory
effects on BK channel activity depend upon contextual phospho-
rylation/modification at multiple sites (Zhou et al., 2010, 2012;
Kyle et al., 2013c), and may be further influenced by the constitu-
tive phosphorylation status of the channel complex (see below).
Selective blockade of the phosphodiesterase enzymes responsible

for cGMP metabolism by pharmacologic agents such as sildenafil
will prolong cGMP effects in smooth muscle and this process has
been exploited therapeutically to treat erectile dysfunction and
pulmonary hypertension (Francis et al., 2010). For a comprehen-
sive overview of early studies describing BK channel regulation by
kinase-associated pathways, see Schubert and Nelson (2001).

Using a multi-faceted strategy involving protein biochemistry,
site-directed mutagenesis and patch clamp recordings, our group
has recently reported that NO/cGMP/PKG signaling in VSM cells
leads to the modification of three distinct Ser residues in the BKα

C-terminus (i.e., Ser 691, 873 and 1111–1113), which directly cor-
relate with enhancement of channel activity (Kyle et al., 2013c).
Not unexpectedly, one of these sites (i.e., Ser873) is also impor-
tant for PKA-mediated enhancement of BK activity (Nara et al.,
1998). The regulatory phosphorylation status of BK channels also
appears to differ developmentally, as BK channels in fetal arter-
ies display more enhanced activity compared with channels from
adult VSM (Lin et al., 2005, 2006). Augmentation of BK chan-
nel activity by NO/cGMP/PKG signaling is readily reversible and
this is largely due to dephosphorylation via Ser/Thr protein phos-
phatases. Several studies have described involvement of protein
phosphatases 1 and 2A in the regulation of BK channel activity,
based mainly on the selective actions of inhibitors, such as okadaic
acid (Zhou et al., 1996, 2010; Sansom et al., 1997).

Activation of PKC is reported to inhibit BK channel activity
in VSM via the putative phosphorylation of Ser695 and Ser1151,
and these modifications also appear to interfere with the stim-
ulatory effects mediated by PKA and PKG (Zhou et al., 2010).
Interestingly, this PKC-mediated inhibition of channel activity
is absent in STREX-containing BKα splice variants (Zhou et al.,
2012) (see below).

Similar to VSM, neuronal BK channel activity can be enhanced
in response to regulatory phosphorylation of the pore-forming
BKα subunit by both PKA and PKG, which can be reversed by
the actions of Ser/Thr phosphatases 1 and 2A (Reinhart et al.,
1991; Reinhart and Levitan, 1995; Sansom et al., 1997; Tian et al.,
1998). Interestingly, proteomic analyses of rat brain BK channels
isolated under basal conditions has identified ∼30 Ser and Thr
residues that appear to be constitutively phosphorylated in vivo,
with 23 of these modified residues located within the channel’s
C-terminus (Yan et al., 2008). Such observations suggest that con-
stitutive phosphorylation may help stabilize BK channel tertiary
structure and/or create binding sites for interacting proteins. The
various protein kinases responsible for these in vivo modifica-
tions are presently unknown, as is the extent to which channels
from other tissues or expressed heterologously exhibit consti-
tutive phosphorylation. Our recent data describing a role for
multiple phosphorylation sites to support cGMP-dependent aug-
mentation of BK channel activity in VSM cells (Kyle et al., 2013c)
promote the idea that individual phospho-Ser/Thr residues act
synergistically to enhance BK channel activity.

In neurons and neuroendocrine cells (e.g., pituitary, adrenal
gland) and more recently in VSM (Nourian et al., 2014), a portion
of BK channels identified by qRT-PCR contain the STREX splic-
ing insert, a 59 amino acid insert present at splice site C2 within
the C-terminus (Xie and McCobb, 1998; Shipston, 2001). In
response to cAMP/PKA signaling, a Ser residue within the STREX
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insert can undergo phosphorylation, which has been shown to
decrease BK channel activity (Tian et al., 2001). Functionally, such
a change would be expected to enhance membrane excitability in
neuroendocrine cells and promote exocytosis. Interestingly, phos-
phorylation of the STREX domain also appears to override the
positive gating effects mediated by PKA-induced phosphoryla-
tion at other C-terminal sites, leading to an overall dominant-
negative effect of STREX phosphorylation on BK channel activity
(i.e., a single STREX-containing α subunit within a tetrameric
channel is sufficient to flip PKA-mediated phosphorylation from
stimulatory to inhibitory) (Tian et al., 2004). Furthermore, this
inhibitory effect of PKA on BK channel activity appears to depend
upon the presence of palmitoyl fatty acid groups within the
STREX insert (Shipston, 2014), as palmitoylation-incompetent
BK channels do not undergo PKA-mediated phosphorylation of
the STREX insert and a decrease in activity (Tian et al., 2008).
Collectively, these findings suggest that presence of STREX insert
will lead to association of a C-terminal domain with the plasma
membrane, which appears necessary for PKA-mediated phos-
phorylation within the STREX insert and inhibition of channel
activity. Interestingly, presence of the STREX insert also appears
to prevent the inhibitory effect of protein kinase C (PKC) on BK
channel opening, possibly by inducing a conformation that pre-
cludes PKC-induced phosphorylation of Ser695 within the linker
joining RCK1 and RCK2 domains (Zhou et al., 2012).

In addition to Ser/Thr phosphorylation, BK channels also
undergo direct Tyr phosphorylation in the presence Src fam-
ily kinases (i.e., c-Src and Hck) and the Ca2+-sensitive tyrosine
kinase Pyk-2 (Ling et al., 2000, 2004; Alioua et al., 2002; Yang
et al., 2012). Functionally, direct tyrosine phosphorylation of
the BKα subunit has been reported to either increase (Ling
et al., 2000, 2004; Yang et al., 2012) or decrease (Alioua et al.,
2002) channel activity, although the reason(s) for this discrep-
ancy remains unclear. Work from our group has shown that Phe
substitution of Tyr766 in the C-terminus largely inhibits c-Src-
induced BKα subunit phosphorylation, but does not appear to
disrupt Pyk-2 mediated modification (Ling et al., 2000, 2004).
Future studies examining the direct phosphorylation of native
BK channels by tyrosine kinases in situ are needed to clarify the
physiologic importance of this regulatory event.

ENDOGENOUS REGULATORY MOLECULES
Endogenous molecules (e.g., heme, carbon monoxide (CO), reac-
tive oxygen species) have been reported to interact with the BK
channel complex (for review, see Hou et al., 2009). Similarly, acid-
ification of the cytosol (i.e., pH 6.5) is able to increase BK channel
activation by left-shifting the voltage dependence by ∼45 mV,
but such effects can be readily masked by physiological levels of
free Mg2+ (i.e., 1 mM) and Ca2+ (i.e., 1 μM) (Avdonin et al.,
2003). The importance of [H+] with regards to BK channel activ-
ity may become more apparent during pathological conditions
where fluctuations in [H+] and [Ca2+] may occur (e.g., cerebral
ischemia) (Lipton, 1999).

The linker between the RCK1 and RCK2 regions of the BKα

subunit (Figure 1) reportedly contains a binding site for intracel-
lular heme molecules (Hou et al., 2009). Application of heme to
the cytosolic face of BK channels was found to inhibit channel

opening with an IC50 ∼70 nM (Tang et al., 2003), likely via an
allosteric process. Moreover, the direction of gating modulation
by heme appears to be closely-linked to membrane potential, as
BK channel Po is enhanced at negative membrane potentials and
inhibited at positive potentials. Heme regulators, transporters and
degradation products (e.g., CO) are currently under investigation
for their therapeutic potential in influencing BK channel activity
and thus, global membrane potential (Hou et al., 2009).

Soluble guanylyl cyclase (sGC) contains an iron (heme) cen-
ter that serves to bind NO, however, this site is also targeted
by CO, which can activate sGC, leading to increased cytosolic
[cGMP], PKG activation and enhanced BK channel activity (see
Figure 2B). It has been further suggested that CO, along with NO,
can also directly augment BK channel activity when applied at
sufficiently-high concentrations (Hou et al., 2009; Leffler et al.,
2011). Further examination of the physiologic contribution of
such effects to BK channel regulation are warranted.

Reactive oxygen species (ROS) that are reported to influence
BK channel behavior include hydrogen peroxide (H2O2), super-
oxide (O−

2 ) and peroxynitrite (ONOO−). Increased levels of ROS
may occur under localized conditions, such as atherosclerosis
(Li and Förstermann, 2009) and are particularly troublesome,
as H2O2 and O−

2 will react with free NO to generate ONOO−,
thereby reducing NO bioavailability and cGMP/PKG signaling in
vascular smooth muscle. For detailed discussions on impact of
ROS on BK channel activity, the reader is referred to excellent
review articles (Tang et al., 2004; Hou et al., 2009).

REGULATION OF BK CHANNEL EXPRESSION BY UBIQUITINATION
Protein ubiquitination has emerged as a ubiquitous quality
control mechanism for the regulation of protein trafficking
and turnover and has been implicated in the dynamic control
of diverse cellular processes (e.g., gene transcription, synap-
tic development and plasticity, oncogenesis, etc.) (Hershko and
Ciechanover, 1998). Protein ubiquitination functions as a tagging
system to mark proteins for degradation by the 26S proteasome
complex and the human genome is reported to contain >600
genes encoding E3 ubiquitin ligases (Li et al., 2008), the enzyme
responsible for conjugating ubiquitin monomers to target sub-
strates. Given this level of abundance, the ubiquitin-proteasome
system (UPS) appears to enzymatically parallel protein phos-
phorylation, for which ∼520 putative kinase genes have been
described (Manning et al., 2002), as a widespread mechanism
for protein modification and the regulation of cellular function.
Recent evidence indicates that BK channels also undergo ubiquiti-
nation, which appears to have important functional implications.
In the CNS, interaction of BK channels with cereblon (Jo et al.,
2005), a substrate receptor for the CRL4A E3 ligase, leads to ubiq-
uitination of the BKα subunit and retention of modified channels
in the endoplasmic reticulum (Liu et al., 2014). Preventing ubiq-
uitination of BK channels by pharmacologic or genetic interfer-
ence of the CRL4A enzyme complex leads to increased trafficking
of BK channels to the neuronal cell membrane and a higher inci-
dence of seizure induction and epilepsy in mice. Such data point
to ubiquitination as an important quality control mechanism to
limit BK channel expression in neurons, which will ultimately
impact membrane excitability. Given that cereblon transcripts
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FIGURE 3 | A summary of cellular events/factors leading to BK channel activation (open pore) and deactivation/inactivation (closed pore).

Abbreviations: Em, membrane potential; STREX, stress-axis regulated exon; PKC, protein kinase C; Ser, serine.

are also widely expressed in tissues outside the CNS, this regula-
tory paradigm may have broader functional importance. As noted
above, disruption of the neuronal chaperone CSPα in mice also
elevates BK channel expression, suggesting that increased chan-
nel density be a common contributing factor to excitation-related
neuropathologies.

In VSM, BKβ1 subunits are reported to undergo ubiquitina-
tion in cultured myocytes exposed to high glucose and in arteries
obtained from mice made diabetic by injection of streptozotocin,
a pancreatic β-cell poison. Diabetes-like conditions elevate the
expression of a muscle-specific RING finger E3 ubiquitin ligase
via enhanced NF-κB transcriptional activity, leading to increased
BKβ1 subunit ubiquitination and proteolysis (Yi et al., 2014). As
previously described, loss of the BKβ1 subunit would be expected
to decrease Ca2+- and voltage-dependent activation of VSM BK
channels (Brenner et al., 2000b), leading to exaggerated mem-
brane depolarization and smooth muscle contraction. As BKβ1
subunits may be capable of dynamically assembling with BKα

subunits at the membrane (Leo et al., 2014), ubiquitination of
BKβ1 alone may not necessarily result in a decreased cellular level
of BKα subunits.

CONCLUDING REMARKS
BK channel activity is regulated both directly and indirectly
through a diverse range of modulatory pathways involving cova-
lent modifications, metabolic factors, trafficking events and tran-
scriptional processes (see Figure 3). Given the formidable effect
that BK channels can exert on membrane excitability, as a result
of their large single channel conduction and dual activation by
membrane depolarization/cytosolic free Ca2+, such “fine-tuning”
affords cells the ability to precisely control the impact of these
channels on their function and responsiveness to both acute and
chronic stimuli. As reinforced by the accompanying articles in this
thematic issue, BK channels represent powerful effectors in tis-
sue health and dysfunction and that understanding their modes
of regulation may lead to novel therapeutic strategies in disease
treatment.
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AUTHOR NOTE
Lingle and coworkers have demonstrated that the γ1 subunit
(i.e., LRRC26) mediated leftward shift in BK channel gating
occurs in an all-or-none fashion, in contrast to the incremen-
tal shifts in gating produced by stoichiometric association of
BKβ1 subunits (Proc. Natl. Acad. Sci. U.S.A. 111, 4873, 2014. doi:
10.1073/pnas.1322123111). Subsequently, Evanson et al. (2014)
have reported that LRRC26 is endogenously expressed in rat
cerebral vascular myocytes and may function as an auxiliary γ1
subunit by altering the voltage and calcium sensitivity of BK chan-
nel gating (Circ. Res. 115, 423–431. doi: 10.1161/CIRCRESAHA.
115.303407).
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