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Abstract

Bacteria that produce the broad-spectrum Carbapenem antibiotic New Delhi Metallo-b-lactamase (NDM) place a burden on health

care systems worldwide, due to the limited treatment options for infections caused by them and the rapid global spread of this

antibiotic resistancemechanism.Although it isbelievedthat theassociatedresistancegeneblaNDM-1originated inAcinetobacter spp.,

the role of Enterobacteriaceae in its dissemination remains unclear. In this study, we used whole genome sequencing to investigate

the dissemination dynamics of blaNDM-1-positive plasmids in a set of 21 clinical NDM-1-positive isolates from Colombia and Mexico

(Providencia rettgeri, Klebsiella pneumoniae, and Acinetobacter baumannii) as well as six representative NDM-1-positive Escherichia

coli transconjugants. Additionally, the plasmids from three representative P. rettgeri isolates were sequenced by PacBio sequencing

and finished. Our results demonstrate the presence of previously reported plasmids from K. pneumoniae and A. baumannii in

different genetic backgrounds and geographically distant locations in Colombia. Three new previously unclassified plasmids were

also identified in P. rettgeri from Colombia and Mexico, plus an interesting genetic link between NDM-1-positive P. rettgeri from

distant geographic locations (Canada, Mexico, Colombia, and Israel) without any reported epidemiological links was discovered.

Finally, we detected a relationship between plasmids present in P. rettgeri and plasmids from A. baumannii and K. pneumoniae.

Overall, our findings suggest a Russian doll model for the dissemination of blaNDM-1 in Latin America, with P. rettgeri playing a central

role in thisprocess, and revealnew insights into theevolutionanddisseminationofplasmidscarryingsuchantibiotic resistancegenes.

Key words: metallo-beta-lactamase, genomics, antibiotic resistance, Providencia rettgeri, mobile genetic elements,

bacterial evolution.
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Introduction
In the first global report on antimicrobial resistance issued by

the World Health Organization very high resistance rates were

found in the bacteria that are the main causes of community

and health care associated infections, including

Enterobacteriacea and Acinetobacter baumannii (World

Health Organization 2014). For instance, the prevalence of

Enterobacteriaceae resistant to broad-spectrum b-lactam

type antibiotics often used as “last-line-of-defence” agents,

such as carbapenems, are persistently increasing across the

world (Rhomberg and Jones 2009; Prabaker and Weinstein

2011; van Duijn et al. 2011; CDC 2013). Infections caused by

carbapenem-resistant bacteria increase health care costs by

requiring hospitalization of patients and increase the risk of

mortality (Lemos et al. 2014; World Health Organization

2014). It is therefore important to gain greater insight into

how resistance spreads, recognizing in doing so that resist-

ance can spread either vertically, through distribution of

clones of established “successful” resistant bacterial species,

or horizontally, through dispersal of mobile genetic elements

(e.g., transposons, plasmids, and prophages) carrying genes

for antimicrobial resistance (Woodford et al. 2011). The hori-

zontal transfer of antibiotic resistance genes between bacteria

can contribute rapid expansion in the suite of resistance

mechanisms present in a bacterial strain.

One mechanism for resistance that can be acquired from

the mobile gene pool is the capability for drug modification,

an example of which is the group of metallo-b-lactamases.

These enzymes have great impact on public health due to

their broad substrate range, and are increasing in frequency

in clinically important Gram-negative bacteria (Palzkill 2013).

A new member of this group of enzymes was identified in

2008 in a patient treated in New Delhi, India (Yong et al.

2009), and named New Delhi Metallo-b-lactamase (NDM).

Initially, NDM dissemination was epidemiologically linked to

the Indian subcontinent, though the complexity of transmis-

sion of this antibiotic resistance determinant became appar-

ent rapidly, due to the presence of NDM-encoding genes

(blaNDM) in diverse Gram-negative bacteria, both fermenters

(Enterobacteriaceae) and nonfermenters (Acinetobacter bau-

mannii and Pseudomonas aeruginosa) (Johnson and

Woodford 2013). Subsequently, NDM-positive strains were

isolated in multiple countries on all continents in a great var-

iety of bacterial genera without any epidemiological or mo-

lecular links to the strains circulating in the Indian sub-

continent (Johnson and Woodford 2013).

The blaNDM gene is usually carried by conjugative plasmids,

although the host plasmid characteristics can vary greatly in

attributes such as size, incompatibility group, gene content,

and organization. As conjugative plasmids are self-

transmitting, this underscores the point that these resistance

genes can spread independently of clones of the original bac-

terial host. In Acinetobacter spp., although the blaNDM gene

has been reported to be located in the chromosome (Espinal

et al. 2011), it mainly resides in a family of plasmids known as

pNDM-BJ01-like, named after the first completely sequenced

Acinetobacter spp. NDM-plasmid, reported in 2012 (Hu et al.

2012). The pNDM-BJ01-like plasmids are highly conserved,

with>99% nucleotide identity extending over at least 85%

of the 47-kb pNDM-BJ01 length; they do not belong to any

reported incompatibility (Inc) group (Hu et al. 2012); they

have a Type IV Secretion System (T4SS); and they have a re-

gion of replication and transfer genes separated by a variable

region containing a Tn125 composite transposon (Hu et al.

2012). It is within Tn125 that blaNDM is located, along with

other genes conserved in the order 50-blaNDM-bleMBL-trpF-tat-

dct-groES-groEL-ISCR21-Dpac-30, flanked upstream and

downstream by ISAba125, though the Tn125 structure has

been found to be truncated in some strains. Among non-

Acinetobacter bacteria—with the exception of Enterobacter

aerogenes (Chen et al. 2015) where blaNDM-1 was found in a

pNDM-BJ01-like plasmid—blaNDM is carried in a great variety

of plasmids belonging to diverse Inc groups (FII, FIB, A/C2,

HI1A, HI1B, L/M, N, N2, X3, R, T as well as unclassified plas-

mids) (Johnson and Woodford 2013; Khong et al. 2016).

Despite the diversity of NDM-encoding plasmids in non-

Acinetobacter, the immediate genetic context of the blaNDM

gene remains the same in all known cases to date, in that it is

always found within Tn125 or its remnants (Poirel et al. 2011;

Partridge and Iredell 2012; Wailan, Paterson, et al. 2016).

However, Tn125 is often surrounded by other transposons

(Tn) or insertion sequence (IS) elements, including ISKpn14,

IS26, IS5, ISCR1 or Tn3-like elements, which are frequently

found in Enterobacteriaceae and may be involved in the fur-

ther dissemination of blaNDM through a combination of trans-

position and homologous recombination (Toleman et al.

2012; Khong et al. 2016; Wailan, Sidjabat, et al. 2016).

Although the blaNDM gene is believed to have originated in

an Acinetobacter spp. as the result of the fusion of an amino-

glycoside resistance gene with a pre-existing metallo-b-lacta-

mase (Toleman et al. 2012) and later transferred to

Enterobacteriaceae, aside from the Tn125 remnants and the

case of the Enterobacter aerogenes harboring a pNDM-BJ01-

like plasmid, little is known about this transmission from

Acinetobacter spp. to Enterobacteriaceae, nor about how

the diverse blaNDM positive plasmids in Enterobacteriaceae

evolved.

NDM-positive Enterobacteriaceae, particularly Providencia

spp. play an increasingly important role in multidrug resistant

infections and dissemination of blaNDM around the world, as

evidenced by the rapidly accumulating reports of isolation of

this bacteria harboring this gene (Carvalho-Assef et al. 2013;

Mataseje et al. 2014; Pollett et al. 2014; Tada et al. 2014;

Carmo Junior et al. 2015; Manageiro et al. 2015; Nachimuthu

et al. 2015; Wailan, Paterson, et al. 2016). Previously, we

reported the first South American blaNDM-1 outbreak, which

occurred in Colombia in Klebsiella pneumonia, as well as an

NDM-1-positive Providencia rettgeri outbreak in Mexico, both
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of which occurred in 2011–2012, without any link to the

Indian subcontinent (Barrios et al. 2013; Escobar Perez et al.

2013). Shortly thereafter, we commenced a surveillance study

across Colombia, and found the majority of NDM-positive

bacteria isolated were P. rettgeri. Here we describe the use

of whole genome sequencing (WGS) to investigate the dis-

semination dynamics of blaNDM-1-positive plasmids among

Enterobacteriaceae and A. baumannii clinical isolates from

this surveillance study, as well as from the previous outbreaks

in Mexico and Colombia. Our results demonstrate interesting

genetic links between NDM-1-positive P. rettgeri from distant

geographic locations, and between their plasmids and those

present in K. pneumoniae and Acinetobacter spp. isolates,

providing insights into the central role of P. rettgeri in anti-

biotic resistance dissemination in Latin America.

Materials and Methods

Isolate Collection and Culture Conditions

Twenty-one NDM-1-positive clinical isolates were included in

this study (supplementary data set 1, Supplementary Material

online, strains used in this study and statistics of assemblies): P.

rettgeri (14), K. pneumoniae (6), and A. baumannii (1). Of

these, 12 (11 P. rettgeri and one A. baumannii) were isolated

from samples obtained in a surveillance study for carbapenem

resistant bacteria that was conducted over a period of

20 months, from September 2012 to April 2014, in three

different hospitals in three distant cities in Colombia

(Bogota, Cali, and Bucaramanga) (supplementary data set 1,

Supplementary Material online). The other nine clinical iso-

lates were obtained from two, previously described clinical

outbreaks generated by blaNDM-1 positive K. pneumoniae

and P. rettgeri, respectively, reported in Colombia and

Mexico (Barrios et al. 2013; Escobar Perez et al. 2013).

Clinical and epidemiological features of the all blaNDM-1 posi-

tive isolates are listed in supplementary data set 1,

Supplementary Material online. Escherichia coli transconju-

gants were obtained from six representative samples using

as donor the blaNDM-1 positive clinical isolate and as recipient

the sodium azide-resistant E. coli J53 strain. Equal amounts of

a four hours Luria–Bertani (LB) (Oxoid Limited) broth culture of

both donor and recipient, were mixed and 100 ml were placed

onto a LB agar plate, then conjugation was allowed for 16 h at

37 �C. Subsequently, the NDM-1-positive sodium azide-

resistant E. coli transconjugants were selected using LB agar

plates supplemented with ceftazidime (30lg/ml) and sodium

azide (100lg/ml) (Sigma–Aldrich Co. LLC.). The E. coli species

(uidA gene) and the blaNDM-1 gene were verified in the trans-

conjugants by PCR. Possible donor strain contamination in the

transconjugants was ruled out by PCR using specific primers

to the genes khe for K. pneumoniae, gyrB for A. baumannii,

and dnaA for P. rettgeri (see supplementary table S1,

Supplementary Material online). Otherwise indicated, all

NDM-1-positive bacteria were routinely grown in brain hearth

infusion agar or broth supplemented with ceftazidime (30lg/

ml) as a selective pressure for guarantee of plasmid

permanence.

Whole Genome Sequencing

Total DNA was extracted from 21 blaNDM-1 positive clinical

isolates and six transconjugants (supplementary data set 1,

Supplementary Material online) using the PureLinkVR

Genomic DNA mini kit from ThermoFisher. Multiplexed total

DNA libraries were prepared using the Nextera XT Library

Preparation Kit and 300-bp paired end sequencing was per-

formed on the Illumina MiSeq platform using the MiSeq

v3 600-cycle reagent kit. Sequencing reads were trimmed

and filtered using cutadapt v1.1.7 (Martin 2011) to remove

adapters, and PRINSEQ-lite v0.20.4 (Schmieder and Edwards

2011) to remove any low quality reads with average read

quality less than Q20, low quality trailing ends with base qual-

ity less than Q20 and short reads<87 bp. Reads were then de

novo assembled using SPAdes v3.5.0 (Bankevich et al. 2012)

with default settings and the assemblies were improved to

high-quality draft genome standard (Chain et al. 2009) by

scaffolding using SSPACE v2.0 (Boetzer et al. 2011), gap filling

using GapFiller v1.10 (Boetzer and Pirovano 2012) and re-

moval of contigs shorter than 300 bp. Details of the sequenc-

ing data, assemblies and accession numbers for each of these

genomes are listed in supplementary data set 1,

Supplementary Material online. The blaNDM-1 gene variant

was verified by comparing the genome assemblies against

the reported sequence (accession NC_015872) using

BLASTn (Altschul et al. 1990). Assembly for each strain was

searched for matches to any known blaNDM-positive plasmids,

by BLASTn (Altschul et al. 1990) against an extensive database

compiled from all fully sequenced blaNDM-carrying plasmids

deposited in the NCBI nucleotide repository (a total of 141

complete plasmids as at 18 May 2017; supplementary data

set 2, Supplementary Material online).

Phylogenetic Analysis of Providencia rettgeri Clinical
Isolates

Since a MLST scheme for the phylogenetic characterization of

P. rettgeri isolates does not exist, was built a phylogenetic tree

based on the core-genome SNPs determined from the

assembled contigs of the 14 P. rettgeri genomes sequenced

in this study, plus the draft genome of P. rettgeri Dmel1

(NZ_AJSB00000000.1), the most complete published P.

rettgeri genome available at the time, as an out-group con-

trol. To build the phylogenetic tree, partially assembled

genomes were annotated using Prokka v1.11 (Seemann

2014) and an alignment of concatenated core genes (genes

present in all genomes with�90% of nucleotide identity) was

created with Roary (Page et al. 2015) using PRANK (Loytynoja

2014). Poorly aligned positions and divergent regions were

eliminated using Gblocks (Talavera and Castresana 2007).
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Finally, the phylogenetic tree was created using RAxML ver-

sion 8.2.9 (Stamatakis 2014) running 1,000 bootstrap repli-

cates under the generalized time reversible model (GTRCAT).

Finally, the consensus tree was plotted using Dendroscope

(Huson and Scornavacca 2012). Branch lengths are expressed

in units of changes/nucleotide position (scale bar).

Complete Plasmid Sequencing

Total DNA was extracted from three representative P. rettgeri

isolates (16Pre36, RB151, and 06-1619) using the UltraClean
VR

Microbial DNA Isolation Kit (Mo Bio Laboratories, Inc.).

BluePippin (Sage Science) 20-kb size-selected libraries were

prepared, then sequenced using one SMRT cell each on the

PacBio RS II platform (Pacific Biosciences) using P6-C4 chem-

istry. Sequencing reads were processed and de novo

assembled using the HGAP 3 program of SMRT Analysis

v2.3 (Chin et al. 2013) with default parameters. To check

the assemblies, the filtered PacBio subreads were mapped

to the genome assemblies using BWA-MEM (http://bio-bwa.

sourceforge.net/bwa.shtml). The assembly was visually

inspected and manually verified using Tablet v1.15.09.01

(Milne et al. 2013). Misassembled terminal repeat overlap

sequences, known to be an error of the HGAP assembly of

circular molecules (Chin et al. 2013; Hunt et al. 2015), were

identified and subsequently trimmed manually.

Circularization results were verified using Circlator (Hunt

et al. 2015), confirming that the manual assembly correction

correlated with the automated method. The complete

sequences of five plasmids were confirmed: two plasmids

for the strain 16Pre36, one plasmid for strain RB151 and

two plasmids for strain 06-1619 (table 1). As the sequence

start point of assemblies are arbitrary, the position one of each

plasmid was shifted according to the repA gene (pRB151-

NDM and p16Pre36-2), pPrY2001 (p16Pre36-NDM and

p06-1619-2) or pNDM-BJ01 (p06-1619-NDM) to facilitate

comparative genomics. The plasmids were annotated using

Prokka v1.11 (Seemann 2014) and manual curation of the

automated annotation was facilitated using Artemis

(Rutherford et al. 2000). Antibiotic resistance genes were

identified using ARIBA (https://github.com/sanger-patho

gens/ariba/wiki) and insertion sequence (IS) elements and

transposons (Tn) were identified using ISfinder (Siguier et al.

2012) and BLASTn (Altschul et al. 1990). Presence of class 1, 2

or 3 integrons was determined in silico using the primers

reported by Marquez et al. (2008).

Comparative Genomics

We used mapping of consensus data from the MiSeq libraries

to explore our set of samples for the presence (or residues) of

Colombian and Mexican blaNDM-1-positive sequenced plas-

mids (table 1) and other related blaNDM-1-positive (pPrY2001

and pNDM-BJ01) and blaNDM-1-negative (p06-1619-2) plas-

mids. For use in the mapping consensus, a reference database

was generated using the concatenated complete sequence of

the plasmids p6234-178kb, p16Pre36-NDM, pRB151-NDM,

p06-1619-NDM, p06-1619-2, pPrY2001 and pNDM-BJ01,

broken in fragments of 300 bp (x axis). This reference data-

base was mapped with SHRiMP2 (David et al. 2011) and

Nesoni (https://github.com/Victorian-Bioinformatics-

Consortium/nesoni) against the total MiSeq reads from each

sample (y axis). The presence of� 90% nucleotide identity

when comparing each 300-bp window from the reference

plasmids against the consensus generated from MiSeq reads

was determined and visualized as black blocks using SeqFindR

(http://github.com/mscook/seqfindr). It was included as in-

ternal control MiSeq simulated reads to the reference plas-

mids, generated with ART read simulator (Huang et al. 2012).

Pairwise plasmid comparisons, verification of SeqFindR

results and figures were performed by using BLASTn

Table 1

General features of blaNDM-1-positive plasmids harboured in the strains included in this study.

Plasmid Size (bp) Inc Group Host Resistance Gene Profile GenBank Accesion No Reference

pNDM-BJ01 47,274 Not assigned Acinetobacter spp. aph(30)-VIa, blaNDM-1 NC_019268 Hu et al. (2012)

p6234-178kb 178,193 IncA/C2 K. pneumoniae aph(30)-VIa, aacA29, aadA2,

blaNDM-1, blaCARB-2, mph(E),

msr(E), catB3, cmlA1, sul2, sul1

NZ_CP010391 Rojas et al. (2016)

p16Pre36-NDM 244,116 Not assigned P. rettgeri aadA1, aph(30)-Ia, blaNDM-1,

sul2, sul1, tet(B), dfrA1

KX832927 This study

p16Pre36-2 43,191 Not assigned P. rettgeri aac(3)-IIa, blaTEM-1B KX832926 This study

pRB151-NDM 108,417 Not assigned P. rettgeri blaNDM-1 CP017672 Marquez-Ortiz et al. (2017)

p06-1619-NDM 54,712 Not assigned P. rettgeri aph(30)-VIa, blaNDM-1 KX832928 This study

p06-1619-2 90,666 Not assigned P. rettgeri No resistance genes KX832929 This study

pPrY2001 113,295 Not assigned P. rettgeri aph(30)-VIa, armA, aacA4,

blaNDM-1, aac(60)Ib-cr,

mph(E), msr(E), sul1

NC_022589 Mataseje et al. (2014)

Note.—Plasmids sequenced in this study are shown in bold letters. The blaNDM-1-positive pPrY2001 plasmid reported previously in a P. rettgeri from Canada was also included.
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(Altschul et al. 1990), ACT (Carver et al. 2005), Easyfig

(Sullivan et al. 2011), and BRIG (Alikhan et al. 2011).

Results

The blaNDM-1 Gene Is in a Conjugative Element in the
Colombian and Mexican Isolates

From a surveillance study in Colombia a total of 12 NDM-

positive isolates were collected from 12 patients (one NDM-

positive strain per patient). Among these 12 isolates, which

were mostly from outpatients with wound or urinary tract

infections, 11 were P. rettgeri (five from Bucaramanga and

six from Bogota) and one was A. baumannii isolated in Cali

(supplementary data set 1, Supplementary Material online).

Additionally, six K. pneumoniae and three P. rettgeri from

previously reported (Barrios et al. 2013; Escobar Perez et al.

2013) clinical outbreaks in a neonatal unit in Bogota

(Colombia) and an intensive care unit in Monterrey

(Mexico), respectively, were also included in this study. The

K. pneumoniae and P. rettgeri from Bogota were isolated in

the same hospital (supplementary data set 1, Supplementary

Material online). Analyses of PCR products confirmed the

blaNDM-1 variant was present in all isolates. Thus, in total, 21

NDM-1-positive isolates from Colombia and Mexico were

available to investigate in this study.

To explore if the blaNDM-1 gene in the Latin American iso-

lates could be transferred between bacteria, conjugation

experiments were performed using six representative NDM-

1-positive isolates as donor strains: one representing the K.

pneumoniae from Bogota, one the A. baumannii from Cali,

one the P. rettgeri from Bogota, two representing the P.

rettgeri from Bucaramanga and one the P. rettgeri from

Mexico, with the sodium azide-resistant Escherichia coli strain

J53 used as the recipient strain. Escherichia coli NDM-1-

positive transconjugants were obtained from all six of the

donor strains (supplementary data set 1, Supplementary

Material online). These results indicate that the blaNDM-1

gene is located in a conjugative element in the Colombian

and Mexican isolates, and that it can be transferred to other

strains allowing dissemination within and between genera. To

determine the relationship among the conjugative blaNDM-1-

positive genetic structures and among the NDM-1-positive

strains circulating in Latin America WGS was performed on

the set of 21 Latin American NDM-1-positive clinical isolates

as well as the six NDM-1-positive E. coli transconjugants (sup-

plementary data set 1, Supplementary Material online).

Acinetobacter baumannii 19Aba78 Harbors blaNDM-1

within a pNDM-BJ01-Like Plasmid

The WGS assembly of A. baumannii isolate 19Aba78 from

Cali, Colombia, had 100% nucleotide identity over 99% of

the pNDM-BJ01 length (fig. 1A and supplementary data set 2,

Supplementary Material online), suggesting that blaNDM-1 is

located on a pNDM-BJ01-like plasmid, as has been

broadly reported in Acinetobacter spp. (Hu et al. 2012;

FIG. 1.—blaNDM-1-plasmids circulating among Acinetobacter baumannii and Klebsiella pneumoniae in Colombia. (A) BLASTn comparison of WGS

assemblies of A. baumanni 19Aba78 from this study and its Escherichia coli transconjugant C19-78, the Providencia rettgeri NDM-positive isolates from

Mexico (06-1617, 06-1619 and 06-1623) and the E. coli transconjugant C06-1623 against the plasmid pNDM-BJ01. Also were included the plasmids p6200-

47kb and p6411-9kb previously reported in Colombia. (B) BLASTn comparison of WGS assemblies of K. pneumoniae isolates from this study and the E. coli

transconjugant C16-1 against the plasmid p6234-178kb. Regions Tra1 and Tra2 common to IncA/C2 plasmids are highlighted (Fernandez-Alarcon et al.

2011); the Tra2 region is disrupted by a variable region. Black circles correspond to the reference plasmids p6234-178kb (A) and pNDM-BJ01 (B), included as

internal control.

Genomic Epidemiology of NDM-1-Encoding Plasmids GBE

Genome Biol. Evol. 1725–1741 doi:10.1093/gbe/evx115 Advance Access publication July 4, 2017 1729

Deleted Text: g
Deleted Text: i
Deleted Text: c
Deleted Text: e
Deleted Text: i
Deleted Text: <italic>E.</italic>
Deleted Text: whole genome sequencing (
Deleted Text: )
Deleted Text: <italic>A.</italic>
Deleted Text: <italic>b</italic>
Deleted Text: h
Deleted Text: u
Deleted Text: p
Deleted Text: Espinal, et<?A3B2 show $146#?>al. 2015; 


Sun et al. 2013; Espinal et al. 2015). The 19Aba78 pNDM-

BJ01-like plasmid assembled into seven contigs, so the loca-

tion of all these contigs together on a single plasmid cannot

be confirmed from the current assembly. Of note however,

blaNDM-1 is located within Tn125 adjacent to plasmid sequen-

ces that are identical to pNDM-BJ01, on a single contig in the

19Aba78 assembly (see supplementary fig. S1A,

Supplementary Material online), supporting the presence of

blaNDM-1 on a pNDM-BJ01-like plasmid. Additionally, the E.

coli transconjugant C19-78 allowed confirmation of blaNDM-1

located on a pNDM-BJ01-like plasmid (fig. 1A and supple-

mentary data set 2, Supplementary Material online). All con-

tigs that mapped to the genome sequence of the recipient

strain, E. coli J53 (accession AICK00000000), were removed

from the WGS assembly of the transconjugant C19-78, and

all remaining contigs were found to map to pNDM-BJ01,

confirming the pNDM-BJ01-like plasmid harbored by C19-

78 had no insertions or additional sequences (see supplemen-

tary fig. S1A, Supplementary Material online).

Two other NDM-1-positive strains of Acinetobacter spp.,

isolated from other Colombian cities (Neiva and Pasto,

520 km away from each other, and 320 and 390 km away

from Cali, respectively) were recently reported (Rojas et al.

2016). The blaNDM-1-positive plasmids from these strains,

p6200-47kb and p6411-9kb were also found to be pNDM-

BJ01-like, each with 99% nucleotide identity over 100% of

the pNDM-BJ01 length (fig. 1A and supplementary data set

2, Supplementary Material online). In contrast to the similarity

between the blaNDM-1-positive plasmids found in the three

Colombian NDM-1-positive strains of Acinetobacter spp., the

strains themselves were of different, unrelated sequence type

(ST). The Neiva A. baumannii (harboring p6200-47kb) was

ST322 and the Pasto A. nosocomialis (harboring p6411-9kb)

was ST464 (Rojas et al. 2016), but the Cali A. baumannii isolate

19Aba78 belongs to ST239, as determined by the Pasteur

MLST scheme for A. baumannii (Diancourt et al. 2010).

Theseobservationsof the19Aba78 isolateand the E. coli trans-

conjugant C19-78 thus contribute further evidence of dissem-

ination of closely related pNDM-BJ01-like plasmids among

unrelated Acinetobacter spp. isolates, as has been reported in

Asia and Latin America (Hu et al. 2012; Sun et al. 2013;

Waterman et al. 2013; Zhang et al. 2013; Wang et al. 2014;

Brovedan et al. 2015; Espinal et al. 2015; Feng et al. 2015;

Jones et al. 2015; Li et al. 2015; Rojas et al. 2016), and also

its capability to transfer to Enterobacteriaceae.

The blaNDM-1-Positive Plasmids Circulating in K.
pneumoniae from Colombia Are Closely Related IncA/C2
Plasmids

Analysis of the WGS assemblies for the six K. pneumoniae

isolates showed they all have sequences with high similarity

to p6234-178kb (>99% nucleotide identity over>98% of

the p6234-178kb length, fig. 1B and supplementary data

set 2, Supplementary Material online), an IncA/C2 plasmid

harboring blaNDM-1 from a recently reported K. pneumoniae

isolated in Neiva (Rojas et al. 2016), which is 300 km away

from Bogota in Colombia. It therefore seems likely that the

blaNDM-1 gene is located on a closely related conjugative plas-

mid in all seven of these Colombian K. pneumoniae strains.

Despite the plasmid similarities, the K. pneumoniae strains

from Bogota (16Kpn1, 16Kpn2, 16Kpn3, 16Kpn5, 16Kpn7

and 16Kpn10) are all ST1043 (Escobar Perez et al. 2013), and

not related to the ST392 of the K. pneumoniae isolate from

Neiva (Rojas et al. 2016). The sequences that mapped to

p6234-178kb, assembled into several contigs for each of

the six Bogota K. pneumoniae strains (supplementary data

set 1, Supplementary Material online), so the order of the

contigs and their genomic location could not be determined.

However, the WGS assembly of the NDM-1-positive E. coli

transconjugant C16-1, obtained using K. pneumoniae strain

16Kpn1 as the donor, also showed 99% nucleotide identity

over 98% of the length of p6234-178kb (fig. 1B and supple-

mentary data set 2, Supplementary Material online), reinforc-

ing the evidence that blaNDM-1 is likely to be located on such a

related conjugative plasmid in the Bogota outbreak. To rule

out the possibility that any related sequences were located in

the recipient strain, all contigs that mapped to the chromo-

some of E. coli J53 were removed from the genome assembly

of the transconjugant C16-1, and all remaining contigs were

found to map to p6234-178kb, with no additional sequences

relative to p6234-178kb (see supplementary fig. 1B), and only

one confirmed difference due to the absence of an IS5075

element. Thus, this data demonstrates that highly related

NDM-1-positive IncA/C2 conjugative plasmids are circulating

among K. pneumoniae with different genetic backgrounds

(ST392 and ST1043) in two distant cities in Colombia.

Providencia rettgeri from Colombia and Mexico Harbor
blaNDM-1 in Different Not Reported Plasmids

Comparison of the WGS assemblies of the Colombian P.

rettgeri isolates against the database of complete blaNDM-1-

positive plasmid sequences (supplementary data set 2,

Supplementary Material online), revealed that there were no

matches over the full length of any known plasmid. The most

closely related plasmid was the Inc group unclassified

pPrY2001, from a Canadian P. rettgeri strain (Mataseje

et al. 2014), with>99% nucleotide identity over 69–77%

of the length of pPrY2001 (supplementary data set 2 and

fig. S2, Supplementary Material online). By way of exception,

16Pre47 (isolated in Bogota) and RB152 (isolated in

Bucaramanga) had significant nucleotide identity over only

22% and 15% of the length of pPrY2001, respectively (sup-

plementary data set 2, Supplementary Material online). All

four NDM-1-positive E. coli transconjugants derived from P.

rettgeri donors, regardless of the relationship of the respective

donor strain with the pPrY2001 plasmid, had sequences that
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matched to only a small section of pPrY2001 (<15% of the

pPrY2001 length covered with>99% nucleotide identity).

The main region of identity to pPrY2001 for all four trans-

conjugants, as well as for 16Pre47 and RB152, was limited to

the Tn125 remnant (see supplementary fig. S2,

Supplementary Material online).

The P. rettgeri isolates from Colombia also had significant

sequence matches with the IncA/C2 plasmid p6234-178kb

(supplementary data set 2, Supplementary Material online),

and in general to all the IncA/C2 NDM-positive plasmids, with-

>99% nucleotide identity over �50% of the length of IncA/

C2 plasmids (supplementary data set 2, Supplementary

Material online). However, the key characteristics of IncA/C2

plasmids were not found in the P. rettgeri genome assemblies,

as neither the repA gene, which is highly conserved among

IncA/C2 plasmids, nor any marker for known incompatibility

groups (except 16Pre46 with an IncN match), could be iden-

tified (see supplementary fig. S3, Supplementary Material on-

line). Furthermore, the corresponding representative E. coli

transconjugant(s) of P. rettgeri isolates from Bogota and

Bucaramanga differed in their sequence coverage of IncA/

C2 plasmids. Providencia rettgeri isolates from Bogota

had>99% nucleotide identity over �65% of the length of

p6234-178kb (except 16Pre45 with identity to only 28% of

the length), as did the corresponding representative E. coli

transconjugant C16-36, suggesting the blaNDM-1-positive

plasmids circulating in Bogota in P. rettgeri and in K. pneumo-

niae may be related. By contrast, although the P. rettgeri

isolates from Bucaramanga had>99% nucleotide identity

over �60% of the length of p6234-178kb (except RB152

with only 26% coverage), the corresponding representative

E. coli NDM-1-positive transconjugants CRB151 and CRB152

mapped just to 9% of p6234-178kb (supplementary data set

2, Supplementary Material online), the 9% associated with

just the Tn125 remnant. Thus, the high relatedness to the

IncA/C2 plasmids observed in the donor strains but not the

transconjugants, suggests that the Bucaramanga P. rettgeri

isolates probably have the blaNDM-1 gene located in a plasmid

that is unrelated to p6234-178kb, as well as a blaNDM–nega-

tive structure that is related to the blaNDM-1-positive plasmid

circulating among P. rettgeri and K. pneumoniae in Bogota.

Interestingly, the Mexican P. rettgeri isolates (06-1617, 06-

1619 and 06-1623) and the corresponding representative E.

coli transconjugant (C06-1623) showed a high level of simi-

larity to the Acinetobacter spp. pNDM-BJ01-like plasmids

(>99% of nucleotide identity over 74–80% of the length of

pNDM-BJ01; fig. 1A and supplementary data set 2,

Supplementary Material online). This suggests that a pNDM-

BJ01-like plasmid harboring blaNDM-1 is circulating among the

P. rettgeri from Mexico, but with a truncated Tn125 and

downstream deletion, relative to pNDM-BJ01 (fig. 1A).

Additionally, the Mexican P. rettgeri isolates showed close

relatedness to the pPrY2001 plasmid (>99% of nucleotide

identity over 64–76% of the length of pPrY2001); however,

the C06-1623 E. coli transconjugant did not. It mapped to only

11% of pPrY2001, which corresponded to the Tn125 rem-

nant (see supplementary fig. S2, Supplementary Material on-

line), suggesting that there is another blaNDM-negative genetic

structure in the Mexican P. rettgeri that is related to pPrY2001.

No known Inc group was identified in any of the genomes for

the P. rettgeri isolates from Mexico (except 06-1623, with a

match to the IncT group), as is also the case for pNDM-BJ01

(see supplementary fig. S3, Supplementary Material online),

further supporting the evidence that blaNDM-1 is located on a

pNDM-BJ01-like plasmid in these strains.

Phylogenetic Concordance with the Geographic Origin of
P. rettgeri

To investigate the genetic relationship in the P. rettgeri, the

major NDM-1-positive pathogen identified in the Colombian

clinical surveillance (supplementary data set 1, Supplementary

Material online), we used the WGS assemblies to build a

phylogenetic tree based on the core genome SNPs among

the 14 NDM-1-positive P. rettgeri isolates included in this

study, and found that all but one of the isolates clustered

according to the city of origin (fig. 2). The exceptional isolate,

16Pre45, clustered together with the strains from

Bucaramanga, even though it was isolated in Bogota.

Despite the genetic relationship, no epidemiological link

with the Bucaramanga region was identified for the patient

harboring 16Pre45 (supplementary data set 1, Supplementary

Material online). These results suggest that blaNDM-1 dissem-

ination in P. rettgeri in Colombia and Mexico is following a

clonal behavior according to the geographic origin.

General Features of the Complete blaNDM-1-Positive
Plasmids from Latin American P. rettgeri

The complete sequences of plasmids from one representative

isolate for each of the three P. rettgeri clusters (16Pre36 from

FIG. 2.—Phylogenetic tree of Providencia rettgeri isolates based on

core-genome SNPs. A Maximum Likelihood (ML) tree was built based on

the SNPs in the core-genome assemblies of the NDM-1-positive P. rettgeri

strains reported in this study (red, blue and green) with the P. rettgeri

Dmel1 included as an outgroup control. Branch lengths are expressed in

units of changes/nucleotide position (scale bar).
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Bogota, RB151 from Bucaramanga and 06-1619 from

Monterrey), were obtained by PacBio sequencing. The num-

ber of plasmids in each strain varied: 16Pre36 had two plas-

mids (p16Pre36-NDM and p16Pre36-2), RB151 had one

plasmid (pRB151-NDM) and 06-1619 had two plasmids

(p06-1619-2 and p06-1619-NDM) (table 1). Among these

representative P. rettgeri isolates, the blaNDM-1 gene was

located on unrelated plasmids (fig. 3). None of the plasmids

belonged to any reported incompatibility group using

Carattoli et al. (2014) schemes (see supplementary fig. S3,

Supplementary Material online), however, annotation of the

plasmids pRB151-NDM and p06-1619-NDM, showed they

have two and one repA genes, respectively (fig. 2), which

are closely related to each other (>85% nucleotide identity

over the full repA sequence). The putative plasmid replication

proteins encoded by these repA genes each had a significant

match to the IncFII RepA protein family in Pfam (Finn et al.

2016). However, these three repA genes showed a poor re-

lation (<51% nucleotide identity over the full repA sequence)

to the reported IncFII repA genes (Carattoli et al. 2014), and

plasmids pRB151-NDM and p06-1619-NDM are not related

to any reported IncFII plasmid (not shown). In p06-1619-NDM

the repA gene is located inside a putative mobile element,

which possibly brought repA from another plasmid (fig. 3).

Plasmid p16Pre36-NDM was found to encode two differ-

ent putative conjugative transfer-associated regions (fig. 3).

One (described here as Tra-Pre), has so far only been reported

in the blaNDM-1-positive plasmid pPrY2001; the other, is a

common transfer-associated region of IncA/C2 plasmids

described as Tra1 by Fernandez-Alarcon et al. (2011), which

is frequently found in widely disseminated plasmids in a broad

host range (Sekizuka et al. 2011; Doublet et al. 2012; Diene

et al. 2013; Tijet et al. 2015; Wang et al. 2015; Wasyl et al.

2015; Rojas et al. 2016), including the IncA/C2 p6234-178kb-

like blaNDM-1-positive plasmids in the Colombian K. pneumo-

niae strains (supplementary data set 1, Supplementary

Material online). At 244,116 bp, p16Pre36-NDM is the largest

and most variable of the blaNDM-1-positive plasmids

sequenced in this study, and among the largest blaNDM-1-posi-

tive plasmids ever reported (supplementary data set 2,

Supplementary Material online). It has two resistance regions

each containing a toxin–antitoxin system and a class 1

integron. Both class 1 integrons have the genes dfrA1-

aadA1-qacED1-sul1 associated with resistance to quaternary

ammonium compounds, aminoglycosides, sulphonamides

and trimethoprim. This plasmid also carries the additional re-

sistance genes aph(30)-Ia, sul2 and tet(B). One of the resistance

regions contains a Tn125 remnant (with its blaNDM-1 gene

intact) inside a shuffled Tn21 element, with the two Tn21

inverted repeats flanking the Tn125 remnant (fig. 4). This

shuffled Tn21 element has its typical components IS1353,

IS1326, the mer operon and a class 1 integron (Liebert et al.

1999), but they are rearranged and the mer operon is sepa-

rated from the rest of the Tn21 by the Tn125 remnant (fig. 4).

Tn21-like elements are implicated in the global dissemination

of antibiotic resistance genes among Enterobacteriaceae and

Pseudomonas (Liebert et al. 1999) and have been reported to

generate mosaic structures (Yurieva et al. 1997; Noguchi et al.

2000; Partridge et al. 2001; Valverde et al. 2006). Moreover,

the DTn125 (having just one copy of the ISAba125 element)

surrounding blaNDM-1 in p16Pre36-NDM has suffered a re-

arrangement that has not been previously reported: the genes

FIG. 3.—General description of the blaNDM-1-positive plasmids from three representative Providencia rettgeri isolates sequenced in this study, including

regions encoding genes for transposition and for replication, and virulence and resistance regions. Plasmid p16Pre36-NDM has two tra regions, one reported

only for a P. rettgeri isolate (Tra-Pre) and the other reported in different IncA/C2 plasmids (Tra1). Plasmids pRB151-NDM and p06-1619-NDM have putative

repA genes belonging to the IncFII family. Insertion sequences or transposons are shown as rectangles containing their respective CDS for transposition and

accessory genes. Gray bars between pairs of sequences indicates>90% nucleotide identity in a window of 400 bp. The scale bar indicates sequence length.
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tat-dct-groES-groEL-ISCR21-Dpac that are found upstream

of the blaNDM-1 in p16Pre36-NDM, have always been

previously reported downstream (fig. 4). These odd rear-

rangements of the DTn125 and the Tn21 in p16Pre36-NDM

were confirmed by mapping of the PacBio reads to the

assembled plasmid (no regions of low read coverage or quality

were found that could suggest an assembly issue); by inves-

tigation of the MiSeq assembly (the same rearrangement was

identified on a single contig, see supplementary fig. S4A,

Supplementary Material online); and by using PCR to

confirm the location of the DTn125 inside the Tn21 (see sup-

plementary fig. S4B, Supplementary Material online). The en-

tire DTn21 region in p16Pre36-NDM is flanked upstream and

downstream by copies of IS26 (fig. 4), thus it is possible

that this entire region of DNA may be mobilized as a

composite transposon. IS26 intramolecular replicative

transposition has been previously identified as the source

of reorganization of plasmids carrying multidrug-resistant

determinants as could have happened here (He et al.

2015).

Compared with p16Pre36-NDM the pRB151-NDM (from

Bucaramanga, Colombia) is a less complex plasmid, with a

size of 108,417 bp. This is a novel plasmid backbone, unre-

lated to any previously reported (without any significant

match against the NCBI nucleotide database), that encodes

a putative conjugative transfer machinery, plasmid replication

and partition proteins, a restriction-modification system and a

putative fimbrial operon (fig. 3). It possesses only one resist-

ance and virulence region, and that contains the blaNDM-1

gene as the plasmid’s only antibiotic resistance determinant

(table 1). The variable region has a DTn125 harboring the

blaNDM-1 with a typical structure except that the two flanking

ISAba125 are both truncated (fig. 4). Downstream of the

DTn125 in the resistance region is a novel transposon, regis-

tered as Tn6369 in the Tn Number Registry (Roberts et al.

2008), whilst upstream there is another putative mobile elem-

ent (or its remains) encoding two putative transposon resol-

vases and a ParED toxin–antitoxin system that is also present

in the p06-1619-NDM plasmid, plus an upstream DISYal1

(fig. 4).

FIG. 4.—Comparison of variable blaNDM-1-containing regions from plasmids p16Pre36-NDM, pRB151-NDM, p06-1619-NDM, p6234-178kb, pPrY2001

and pNDM-BJ01. Insertion sequences or transposons are shown as rectangles containing their respective CDS for transposition and accessory genes in

different colors. Outside orange and green triangles correspond to the inverted repeats of a putative Tn3-like (Tn6369) and a Tn21, respectively. The

prototype sequence of the Tn21 was included (Liebert et al. 1999). Dashed lines indicate the 2,928-bp sequence containing ISVsa3 carried by p6234.178kb

(once) and p16Pre36-NDM (twice). Gray and red (inverted matches) shading between pairs of sequences indicates>90% of nucleotide identity in a window

of 400 bp. The scale bar indicates sequence length.
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The p06-1619-NDM plasmid (from Mexico) has a size of

54,712 bp, and belongs to the conserved pNDM-BJ01-like

family of plasmids (from Acinetobacter spp.), with the same

backbone (99% nucleotide identity over 74% of the pNDM-

BJ01 length, fig. 5A). However, it has a putative mobile gen-

etic element (MGE) flanked by identical copies of a novel

transposon with intact transposition genes, registered as

Tn6368, that has inserted downstream of the blaNDM-1

gene. The insertion of this MGE, has truncated the Tn125

after the tat gene upstream (fig. 4), as well as deleted the

genes parB and virB5 and truncated virB4 downstream, so

truncating the T4SS locus (fig. 5A). These genes are implicated

in the mating pair formation and DNA partitioning process

(Christie et al. 2005; Schumacher and Funnell 2005; Kusiak

et al. 2011). Their loss in this plasmid may not affect its con-

jugation capability given that in this study we were able to

obtain an E. coli transconjugant from a Mexican P. rettgeri

strain harboring the p06-1619-NDM plasmid (fig. 1A and sup-

plementary fig. S1E, Supplementary Material online); al-

though, it is also possible that the other plasmid in this

strain, p06-1619-2, which contains the putative P. rettgeri

conjugation machinery (Tra-Pre), could act as a helper for

the conjugation process, as has been reported for other

antibiotic resistance plasmids (Dery et al. 1997; Bennett

2008; Al-Marzooq et al. 2015). As well as the deletions

described here, insertion of the putative novel mobile

element has given the plasmid two toxin–antitoxin sys-

tems (parED and relEB), repA and the IS elements IS5

and IS26 (fig. 5A).

Pairwise comparisons show there is no relationship be-

tween the three different P. rettgeri blaNDM-1-positive plasmids

circulating in Colombia and Mexico, apart from the Tn125

remains and the presence of multiple copies of the IS26 elem-

ent (fig. 3). Only the p16Pre36-NDM plasmid shows some

relationship with p6234-178kb-like plasmids found in

Colombian K. pneumoniae strains (supplementary data set

2, Supplementary Material online, and fig. 5B). Both

p16Pre36-NDM and p6234-178kb share the same Tra1 re-

gion, although the Tn125 (harboring blaNDM-1) is located

within a different genetic context (figs. 4 and 5B). These sim-

ilarities explain the genetic relationship found among the

blaNDM-1-positive IncA/C2 plasmids and the P. rettgeri from

Bogota (supplementary data set 2, Supplementary Material

online). However, p6234-178kb does not have the Tra-Pre

region found in p16Pre36-NDM, and has a more complex

antibiotic resistance gene profile (table 1) due to the presence

FIG. 5.—BLASTn comparison of (A) pNDM-BJ01 with the related p06-1619-NDM plasmid from Providencia rettgeri, and (B) pPrY-like plasmids

(p16Pre36-NDM, pPrY2001 and p06-1619-2) from P. rettgeri with the IncA/C2 related p6234-178kb plasmid reported in Klebsiella pneumoniae.

Conserved pPrY-like region is highlighted in purple rectangles with dashed lines. Gray and red (inverted matches) shading between pairs of sequences

indicate>90% of nucleotide identity in a window of 400 bp. The scale bar indicates sequence length.
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of an additional class 1 integron containing most of those

genes.

Surprisingly, despite no previously reported epidemio-

logical connection, a genetic link between P. rettgeri strains

from Colombia, Mexico and Canada was found through ana-

lysis of the plasmids the strains harbor. We found the putative

P. rettgeri conjugation machinery (Tra-Pre) and some add-

itional regions, first identified in pPrY2001 from the

Canadian P. rettgeri strain 09ACRGNY2001, were also pre-

sent in the blaNDM-negative p06-1619-2 plasmid from Mexico

and in the blaNDM-1 positive p16Pre36-NDM plasmid from

Bogota, Colombia (fig. 5B).

Genomic Epidemiology of the blaNDM-1-Positive Plasmids
Circulating in Colombia and Mexico

To gain a better understanding of the dissemination dynamics

of blaNDM-1—positive plasmids in Latin America, the MiSeq

sequencing reads for all isolates included in the study were

mapped against the fully sequenced blaNDM-1-positive

plasmids from the representative Colombian and Mexican

strains, as well as the related blaNDM-1-positive plasmids

pNDM-BJ01, pPrY2001 and the blaNDM-negative p06-1619-

2 (fig. 6).

The reads from four out of six P. rettgeri strains from

Bogot�a were found to map well over the entire sequence

of p16Pre36-NDM (fig. 6), so are likely have blaNDM-1 in a

plasmid closely related to p16Pre36-NDM. Of the remaining

two P. rettgeri strains from Bogota, one, 16Pre47, lacked the

Tra-Pre locus and the mapped reads covered only one section

of the p16Pre36-NDM sequence, suggesting that 16Pre47

carries a much smaller variant of that plasmid; the other,

16Pre45, is positive for the Tra-Pre region, but has no reads

mapping to several other regions of p16Pre36-NDM, so it is

possible that it has a pPrY-like plasmid or an unrelated plasmid

harboring the blaNDM-1 gene. Additionally, the reads for the E.

coli transconjugant strain C16-36, generated from 16Pre36,

did not map to the whole of the donor plasmid sequence,

covering only a 138,178 bp section of p16Pre36-NDM, from

position 67,813–206,190 bp (fig. 6 and supplementary fig.

FIG. 6.—Presence of blaNDM-1-plasmids in the clinical isolates and transconjugants. Complete sequence of blaNDM-1-plasmids circulating among

Colombian and Mexican NDM-1-positive isolates and some related blaNDM-1-positive (pPrY2001 and pNDM-BJ01) and blaNDM-negative (p06-1619-2)

plasmids are shown along the x axis. Black shading indicates a match of�90% nucleotide identity in a window of 300 bp, calculated by comparing the

query sequence (x axis, reference plasmids) against the consensus from mapped reads for each strain (y axis). Horizontal orange and light green bars

represent the Tra1 and pPrY-like regions, respectively; blue rectangles represent the Tn125 (or remnants) region in each plasmid. Vertical bars correspond to:

gray for Klebsiella pneumoniae from Bogota (Colombia), red for Providencia rettgeri from Bogota (Colombia), blue for P. rettgeri from Bucaramanga

(Colombia), green for P. rettgeri from Monterrey (Mexico), purple for Acinetobacter baumannii from Cali (Colombia). Simulated reads for the reference

plasmids were included as an internal control.
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S1C, Supplementary Material online). This 138-kb region enc-

odes the Tra1 region and DTn125 harboring the blaNDM-1 and

has a 2,928-bp direct repeat sequence at each end (99%

nucleotide identity to each other), which encodes ISVsa3

(known as an ISCR2-like element). The mapping profile (fig.

6) showed no C16-36 reads mapped to the Tra-Pre region

common to pPrY2001 and its related plasmids (fig. 5B). Using

primers specific to the Tra-Pre region a PCR product was

generated for the donor strain 16Pre36 but not the transcon-

jugant C16-36 (data not shown), confirming the absence of

the Tra-Pre region in the transconjugant was due to transfer

of only part of the donor plasmid and not a problem with the

WGS data. Taken together, these data indicate that

p16Pre36-NDM contains a smaller, self-mobilizing transpos-

able element, 138 kb in size, that can be transferred via con-

jugation to a new host, possibly via the self-encoded Tra1

conjugative apparatus, common to IncA/C2 plasmids.

The sequencing reads from all five P. rettgeri isolates from

Bucaramanga and the corresponding representative transcon-

jugants CRB151 and CRB152, mapped to almost the entire

pRB151-NDM sequence, suggesting that they harbor blaNDM-

1 in a plasmid closely related to pRB151-NDM (fig. 6). Plasmid

pRB151-NDM does not encode the Tra-Pre and Tra1 regions

and the strain RB151 does not have additional plasmids, yet

four out of five of the related P. rettgeri isolates from

Bucaramanga (including RB151) had sequences that mapped

to the pPrY2001-like and IncA/C2 Tra1 regions (fig. 6).

Investigation of the complete RB151 genome sequence

(Marquez-Ortiz et al. 2017) revealed the presence of a gen-

omic island with a high degree of similarity to p16Pre36-

NDM, including the Tra-Pre and Tra1 regions, which is chro-

mosomally inserted in strain RB151, flanked by 14.6-kb direct

repeats (99% nucleotide identity) (see supplementary fig.

S5A, Supplementary Material online). This chromosomal in-

sertion was confirmed by PCR using specific primers (see sup-

plementary fig. S5B, Supplementary Material online).

The read mapping data also showed that all three of the P.

rettgeri Mexican isolates have both p06-1619-NDM and p06-

1619-2 plasmids, and the reads from the representative trans-

conjugant C06-1623 showed good coverage over the entire

length of p06-1619-NDM, confirming the presence of

blaNDM-1 on this plasmid.

Thus, the conjugative transfer-associated region Tra-Pre

was observed to be present in 12 out of 14 NDM-1-positive

P. rettgeri isolates (fig. 6), from Colombia (Bogota and

Bucaramanga) and Mexico. In addition to the first report in

the Canadian P. rettgeri blaNDM-1-positive plasmid pPrY2001,

this Tra-Pre region is also found in the partially sequenced

genome of a NDM-positive P. rettgeri isolated in Israel, strain

H1736 (Olaitan et al. 2015) (see supplementary fig. S2,

Supplementary Material online). However, the partial assem-

bly of the Israeli isolate prevented determination of whether

or not the blaNDM-1 gene is located in the same plasmid as the

Tra-Pre region. Together, these results validate a genetic link

among epidemiologically unrelated isolates of NDM-1-

positive P. rettgeri.

Discussion

In this study, we used WGS data to provide a high-resolution

picture of blaNDM-1 dissemination in Latin America, which led

us to interesting findings about the dissemination route of this

gene between Enterobacteriaceae and Acinetobacter species.

Acinetobacter spp. harboring blaNDM-1 in pNDM-BJ01-like

plasmids are frequently detected all over the world (Feng

et al. 2015; Fu et al. 2015); these (or NDM-positive isolates

with blaNDM-1 genetic surroundings suggesting the presence

of pNDM-BJ01-like plasmids) have even been found in Latin

America (Waterman et al. 2013; Pasteran et al. 2014;

Brovedan et al. 2015; Quinones et al. 2015; Montana et al.

2016; Rojas et al. 2016). Here, we report an A. baumannii

clone isolated in Colombia that also harbors blaNDM-1 in a

pNDM-BJ01-like plasmid. This finding supports observations

of such a blaNDM-1-harboring plasmid present in Acinetobacter

spp. of different genetic backgrounds. However, although the

majority of plasmids harboring blaNDM in Acinetobacter spp.

are pNDM-BJ01-like plasmids, and although there is some

evidence to suggest that Acinetobacter spp. passed blaNDM

on to the Enterobacteriaceae (Toleman et al. 2012), pNDM-

BJ01-like plasmids do not seem to have good fitness in non-

Acinetobacter bacteria, or at least in Enterobacteriaceae. To

date, only one non-Acinetobacter harboring a pNDM-BJ01-

like plasmid has been reported (Feng et al. 2015), whereas a

plethora of Enterobacteriaceae hosting diverse, completely

unrelated blaNDM-positive plasmids have been found (supple-

mentary data set 2, Supplementary Material online). The

mechanisms of blaNDM gene transmission from

Acinetobacter spp. to Enterobacteriaceae are not yet

understood.

In this study, we identified a second Enterobacteriaceae

family member harboring a pNDM-BJ01-like plasmid (p06-

1619-NDM), a P. rettgeri isolated in an outbreak in Mexico

(Barrios et al. 2013). However, the p06-1619-NDM plasmid

has suffered a major modification in the variable region, with

the insertion of a previously unreported mobile element intro-

ducing two toxin–antitoxin systems (flanked by two novel

Tn6368 transposons). It seems plausible that the toxin–anti-

toxin systems have generated a strong dependence on that

plasmid as has been previously reported (Kamruzzaman et al.

2017), thereby avoiding transposition of blaNDM-1 to another

more compatible plasmid and its subsequent elimination.

Adding to the advantages conferred by the two addictive

systems is the high selective pressure of the environment—

an Intensive Care Unit—from which the Mexican P. rettgeri

strains were isolated. As the other plasmid hosted by these

isolates (p06-1619-2) does not have any resistance genes

(table 1), selective pressure could force permanent residence

of the pNDM-BJ01-like plasmid due to the conferred
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resistance to aminoglycosides and beta-lactams, including

carbapenems.

Providencia species are frequently found in environmental

settings, but are also opportunistic human pathogens, mainly

as the causative agents of urinary tract infections (Wie 2015).

They are not among the most significant or prevalent human

threats, but recently they have been attracting interest due to

increasing reports of P. rettgeri NDM-positive isolates found

around the world (Barrios et al. 2013; Carvalho-Assef et al.

2013; Mataseje et al. 2014; Pollett et al. 2014; Tada et al.

2014; Carmo Junior et al. 2015; Manageiro et al. 2015;

Nachimuthu et al. 2015; Wailan, Paterson, et al. 2016).

Here, we also found P. rettgeri to be the most frequent bac-

teria harboring the blaNDM-1 gene in three hospitals at distant

locations from each other in Colombia. Most of the cases

correspond to outpatients, suggesting that NDM-1-positive

P. rettgeri strains are present in the community in Colombia.

In spite of the increase in NDM-positive P. rettgeri cases, only

two completely sequenced blaNDM-1-positive plasmids are in

the NCBI nucleotide database for P. rettgeri, both of which

were isolated in Canada (supplementary data set 2,

Supplementary Material online). Here, we report three add-

itional unrelated complete plasmids hosted by P. rettgeri (two

from Colombia and one from Mexico), providing more infor-

mation to help elucidate blaNDM-1 dissemination in the

Enterobacteriaceae.

Interestingly, despite the geographic distances between

the sites of isolation of NDM-1-positive P. rettgeri strains

and despite the very different structures of their blaNDM-1-

positive plasmids, we found a common feature—a putative

conjugative transfer region named here as Tra-Pre—that

appears to be stable among P. rettgeri from different regions.

Supporting this hypothesis of a common, stable feature for

blaNDM-1-positive P. rettgeri, is the fact that this Tra-Pre region

is also found in the partially sequenced genome of the NDM-

1-positive P. rettgeri H1736, reported in Israel in 2011 (Olaitan

et al. 2015).

The Tra-Pre-family plasmids harboring blaNDM-1 that are

hosted by P. rettgeri (pPrY2001 and p16Pre36-NDM) are un-

related to the pNDM-BJ01-like plasmids from Acinetobacter

species. Nevertheless, it is possible the blaNDM-1-positive Tra-

Pre-encoding plasmids emerged in P. rettgeri through trans-

position of blaNDM-1 from a pNDM-BJ01-like plasmid (prior to

its loss) to a more stable plasmid, as suggested by the coex-

istence of a blaNDM-negative plasmid containing the Tra-Pre

region (p06-1619-2) and a pNDM-BJ01-like plasmid in the P.

rettgeri from Mexico. This proposed mechanism is further

supported by the presence of the Tra-Pre region in almost

all P. rettgeri isolates in this study (12 out of 14), even isolates

in which blaNDM-1 is found on an unrelated plasmid, for ex-

ample in the P. rettgeri isolates from Bucaramanga,

Colombia. The simultaneous detection in the Bucaramanga

P. rettgeri isolates of a new plasmid harboring the blaNDM-1,

and of a region in the bacterial chromosome encoding both

the IncA/C2-related and Tra-Pre regions similar to those found

in the blaNDM-1-positive plasmid circulating in Bogota, indi-

cates how a possible transposition of the blaNDM-1 region to

a new, different backbone may have occurred in this strain.

Thus, our study supports the role of gene module transpos-

ition in the spread of blaNDM-1 among P. rettgeri clinical iso-

lates, a role that has been identified as relevant to the

evolution of blaNDM-1-positive plasmids (Khong et al. 2016).

We found a further interesting genetic link in the relation-

ship between blaNDM-1-positive plasmids present in P. rettgeri

(p16Pre36-NDM) and those found in K. pneumoniae (p6234-

178kb). The isolates harboring p16Pre36-NDM and p6234-

178kb were detected in the same Colombian hospital

(supplementary data set 1, Supplementary Material online).

Although p16Pre36-NDM and p6234-178kb cannot be clas-

sified in the same Inc group, they share a large region, com-

monly found in the IncA/C2 blaNDM-1-positive and negative

plasmids from diverse Enterobacteriaceae. This region was

also found to be inserted in the chromosome of the P. rettgeri

isolates from Bucaramanga. These results suggest that the

complex p16Pre36-NDM plasmid originated in P. rettgeri,

through the co-integration of a pPrY2001-like plasmid with

an acquired IncA/C2 broad host range plasmid from a differ-

ent Enterobacteriaceae. This IncA/C2 plasmid may then have

been transferred to (or from) a non-Providencia

Enterobacteriaceae, such as the K. pneumoniae in this study.

Conjugation of p16Pre36-NDM to E. coli J53 resulted in trans-

fer of only part of the plasmid, a putative self-mobilizable

ISVsa3 (an ISCR2-like element) composite transposon encod-

ing the blaNDM-1 and Tra1 regions, but not the Tra-Pre region.

The mapping data indicates that the clinical isolate 16Pre47

also only contains this ISVsa3 composite transposon, and is

missing the remainder of p16Pre36-NDM, suggesting this Tra-

Pre-negative strain 16Pre47 may have receive the ISVsa3 com-

posite transposon from other P. rettgeri strain (through partial

conjugation) or from a K. pneumoniae. This putative blaNDM-1-

positive conjugative transposon may have derived from the

p6234.178kb circulating in K. pneumoniae in Colombia prior

to the isolation of the P. rettgeri, given their similarity and the

presence of a closely related sequence containing ISVsa3

(2,928 bp) in both p6234.178kb and p16Pre36-NDM (figs.

4 and 5). Interestingly, this transposable element was found

to be conserved (99% nucleotide identity over the 2,928 bp)

in the genomes of a very wide range of bacteria, in a search

against the NCBI database, and also ISVsa3-like elements has

been recognized as key players in IncA/C plasmids evolution

(Toleman and Walsh 2010). Therefore, the novel blaNDM-1-

positive putative conjugative transposon identified in this

study could facilitate broad dissemination of blaNDM-1 through

transposition, conjugation and integration of the transferred

circular intermediate into the host genome or to other plas-

mids via homologous recombination.

The low levels of similarity in the vicinity of Tn125 (or its

remnants) between p16Pre36-NDM and p6234-178kb could
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be due to the later isolation of the P. rettgeri strain harboring

p16Pre36-NDM.Althoughboth theP. rettgeriand theK.pneu-

moniae strains were isolated at the same hospital (supplemen-

tary data set 1, Supplementary Material online), P. rettgeri

harboring p16Pre36-NDM was isolated more than a year after

the K. pneumoniae outbreak. The length of time the P. rettgeri

were present in the hospital under selective pressure, could

promote the genetic rearrangements observed in the

p16Pre36-NDMplasmid. Inanearlier isolateofK.pneumoniae,

the blaNDM-1 surroundings on the p6234-178-kb plasmid are

more closely related to those in Acinetobacter species.

Dissemination of the IncA/C2 p6234-178kb plasmid in dif-

ferent cities and in strains of different genetic backgrounds, is

consistent with the globally observed trend for IncA/C2 (re-

cently designated as IncC; Harmer et al. 2016) group plas-

mids, which are known to be associated with spread of

multidrug resistance genes to different countries and different

bacterial hosts (Fricke et al. 2009; Roy Chowdhury et al. 2011;

Carattoli et al. 2012), meaning they post a significant risk to

human health, particularly as they are capable of disseminat-

ing blaNDM-1. The importance of improving existing infection

control measures, such as isolation of patients harboring

resistant pathogens and hand hygiene, is further substanti-

ated by our findings suggesting that some blaNDM-1-positive

plasmids are likely to have originated by co-integration of less

stable blaNDM-1-positive plasmids with more stable and dis-

seminative plasmids in environmental bacteria. A case in point

is found in the P. rettgeri isolates, in which the Tn125 (or its

remains) may have transposed from pNDM-BJ01-like plasmids

to pPrY2001-like or IncA/C2-related plasmids that could sub-

sequently be transferred to other bacterial species, including

more problematic non-Providencia Enterobacteriaceae. An

important scenario where all these factors can be found sim-

ultaneously is in the mammalian gut where

Enterobacteriaceae can thrive, aiding the inter-species and

inter-genera dissemination of the NDM-1 antibiotic resistance

gene among the bacterial community of the gut. Host-

specific conditions, such as the inflammatory host response,

can also boost horizontal gene transfer and hence microbiota

evolution (Stecher et al. 2012), that may have led to the plas-

mid rearrangements observed here, probably under the se-

lective pressure of the hospital environment. However, direct

transfer from Acinetobacter spp. to non-Providencia

Enterobacteriaceae cannot be ruled out, due to conjugation

FIG. 7.—Possible roles of Providencia rettgeri in blaNDM-1-plasmids evolution in Latin America. In an initial stage pNDM-BJ01-like plasmids are acquired

from Acinetobacter spp. (�1). Shortly after, blaNDM-1 is transposed to pPrY-like plasmids (from P. rettgeri circulation;�2) or IncA/C2 plasmids (from Klebsiella

pneumoniae, Escherichia coli or other Enterobacteriaceae;�3) via Tn125 transposition or by mean of other mobile genetic elements surrounding the Tn125

(or its remnants). IncA/C2 blaNDM-1-plasmids could be transferred to a broad bacteria host range (�4). It is also possible that a non-Providencia

Enterobacteriaceae could capture a pNDM-BJ01-like plasmid and transposes Tn125 to a broad host range IncA/C2 plasmid (�5); later this IncA/C2

blaNDM-1-plasmid could be conjugated to P. rettgeri (�6). An interesting finding of the present study is the generation in P. rettgeri of new plasmids by

mean of co-integration of pPrY-like plasmids and IncA/C2 plasmids (�7). These chimeric structures can also be transposed to the P. rettgeri chromosome

(�8). The Tn125 (or its remnants) could be transposed to new plasmid backbones with possible implications upon its dissemination (�9). Additionally, by

mean of partial conjugation could be disseminated IncA/C2-related (repA negative) blaNDM-1-plasmids (�10).
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of pNDM-BJ01-like plasmids from Acinetobacter spp. to non-

Providencia Enterobacteriaceae (mainly E. coli) has been dem-

onstrated in this and other studies (Hu et al. 2012; Huang

et al. 2015). However, more work needs to be done to better

understand the genetic basis of the dissemination of blaNDM-1-

positive plasmids in Latin America, by evaluating the stability,

fitness cost and conjugation capability of pNDM-BJ01-like and

pPrY2001-like plasmids to other Enterobacteriaceae.

In our analysis of NDM-1-positive clinical isolates in Latin

America, thehigh variabilityofblaNDM-1-positive plasmids pre-

sent in different species, highlights that blaNDM-1-dissemin-

ation has not only followed a predominantly clonal

evolution, but rather a Russian doll model (Sheppard et al.

2016). In this Russian doll model, a resistance gene such as

blaNDM-1 resides on nested transmissible units and therefore

can move through the environment at multiple different lev-

els, that can be both coincident and independent of one an-

other. For example, bacterial cell hosting resistance gene;

plasmidwithinbacterial cell harboring resistancegene;mobile

elementwithinplasmidharboringresistancegene;andmobile

element within mobile element harboring resistance gene,

with the consequence that the resistance gene may move

between plasmids within a bacterial cell via multiple mecha-

nisms (Sheppard et al. 2016). In line with this model, different

clones have acquired different blaNDM-1-positive plasmids and

related strains have disseminated locally, as for example in the

NDM-1 outbreaks in Colombia and Mexico (Barrios et al.

2013; Escobar Perez et al. 2013) and also the cases of the P.

rettgeri isolated in Bogota and Bucaramanga (Colombia) in

the recent surveillance study. These related strains acquired

the blaNDM-1 from a variety of plasmids, such as IncA/C2-

related or pPrY2001-like plasmids, that in turn received

blaNDM-1 from plasmid co-integration or transposition from

another plasmid, or from Acinetobacter spp. pNDM-BJ01-

like plasmids in an initial dissemination stage. In our Russian

doll model, P. rettgeri plays an important role as a reservoir of

blaNDM-1 available for transmission into highly disseminative

plasmids due to its high recombination capability supported

by the high plasmid variability found in this species (fig. 7). In

this study, the presence of pNDM-BJ01-like, Tra-Pre-encoding

and IncA/C2-related plasmids or genetic structures in P.

rettgeri, and their relationship with the plasmids present in

K. pneumoniae and Acinetobacter species, illustrates the evo-

lution route of blaNDM-1-positive plasmids in Latin America,

where P. rettgeri appears to be crucial for blaNDM-1 transmis-

sion from Acinetobacter spp. to Enterobacteriaceae.

Taken together, these findings expose the role of micro-

organisms such as P. rettgeri, that generally are not the target

of public health surveillance systems, in the dissemination and

storage of resistance genes, highlighting the importance

of more comprehensive studies, which do not merely focus

on the most frequently occurring pathogens but also

encompass the resistance determinants and their mobilization

machinery.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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