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Abstract

Background: Current treatments for idiopathic inflammatory myopathies (collectively called myositis) focus on the
suppression of an autoimmune inflammatory response within the skeletal muscle. However, it has been observed that there
is a poor correlation between the successful suppression of muscle inflammation and an improvement in muscle function.
Some evidence in the literature suggests that metabolic abnormalities in the skeletal muscle underlie the weakness that
continues despite successful immunosuppression. We have previously shown that decreased expression of a purine
nucleotide cycle enzyme, adenosine monophosphate deaminase (AMPD1), leads to muscle weakness in a mouse model of
myositis and may provide a mechanistic basis for muscle weakness. One of the downstream metabolites of this pathway, D-
ribose, has been reported to alleviate symptoms of myalgia in patients with a congenital loss of AMPD1. Therefore, we
hypothesized that supplementing exogenous D-ribose would improve muscle function in the mouse model of myositis. We
treated normal and myositis mice with daily doses of D-ribose (4 mg/kg) over a 6-week time period and assessed its effects
using a battery of behavioral, functional, histological and molecular measures.

Results: Treatment with D-ribose was found to have no statistically significant effects on body weight, grip strength, open
field behavioral activity, maximal and specific forces of EDL, soleus muscles, or histological features. Histological and gene
expression analysis indicated that muscle tissues remained inflamed despite treatment. Gene expression analysis also
suggested that low levels of the ribokinase enzyme in the skeletal muscle might prevent skeletal muscle tissue from
effectively utilizing D-ribose.

Conclusions: Treatment with daily oral doses of D-ribose showed no significant effect on either disease progression or
muscle function in the mouse model of myositis.
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Introduction

Idiopathic inflammatory myopathies are characterized by

symmetrical muscle weakness and easy fatigability. Examinations

of patients’ skeletal muscle tissue typically reveal signs of fiber size

variation, muscle fiber degeneration, and autoimmune inflamma-

tion. In humans, the most commonly diagnosed idiopathic

inflammatory myopathies are polymyositis, dermatomyositis, and

inclusion body myositis, commonly referred to as myositis. Since

muscle inflammation is a predominant feature of histological

disease, these diseases are treated with immunosuppressants such

as prednisone or methotrexate. These therapies successfully

modulate the disease activity and show clinical benefits in a

majority of patients. However, patients are expected to neither

fully recover muscle function nor be cured of the disease by

current therapies. The reasons for the lack of full response to

immunosuppressive therapies are unknown. There is evidence in

the literature to suggest that metabolic abnormalities in the skeletal

muscle of myositis patients may contribute to muscle weakness

independent of the inflammation and damage caused by

autoimmune response [1,2,3]. In patients, it was previously

observed that muscle weakness is associated with an acquired

deficiency of the adenosine monophosphate deaminase (AMPD1)

enzyme [4,5]. We recently confirmed these findings in the MHC

class I transgenic mouse model of myositis [6]. ‘‘Similarly, patients

with a congenital loss of AMPD1 enzyme activity are also reported

to experience symptoms of muscle weakness and fatigue [7,8].

There are case reports suggesting that oral ribose administration

reduced exercise-related symptoms in an AMPD1-deficient

patient, as well as cases that have shown no benefit after taking

ribose [9,10,11]. In order to examine the therapeutic potential of
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D-ribose more thoroughly, we decided to test the therapeutic

efficacy of D-ribose in the mouse model of myositis. This mouse

model has proven to very closely mimic some features of human

polymyositis [12]. Furthermore, novel observations made using

this disease model were later confirmed to be present in human

patients [13,14]. We consider this is an appropriate mouse model

to evaluate potential therapies.

We have now demonstrated that there is a deficiency of

AMPD1 as well as hypoxanthine and other AMP breakdown

products in myositis mice, but treatment of these mice with daily

oral doses of D-ribose showed no beneficial effects. These results in

our mouse disease model are consistent with other reports

indicating that D-ribose has no effect on muscle performance in

healthy patients or in patients with other metabolic diseases

[15,16,17]. We also propose that low expression levels of the

enzyme ribokinase may contribute to inefficient utilization of D-

ribose in skeletal muscle.

Materials and Methods

Animals
All mice were handled according the local guidelines established

by the Institutional Animal Care and Use Committee (IACUC) of

the Washington D.C. VA Medical Center, and all procedures

were carried out under the approved animal protocol (#00993).

Animals were housed at room temperature with a 12–12-h light-

dark cycle. Genotyping was carried out at 3–4 weeks as previously

described [18]. The mouse model of myositis used in this study is

known as the MHC-I overexpression transgenic model and has

been described previously in multiple publications [6,12,19]. In

brief, the mouse model of myositis utilizes a double-transgenic

mouse, in which the T gene (an MCK promoter-driven tet-Off

transcription factor) forces the expression of the H gene (a TRE-

driven H-2Kb MHC class I molecule). Double-transgenic animals

are labeled ‘‘HT’’ and spontaneously develop myositis after

doxycycline withdrawal. Single-transgenic animals are referred

to as ‘‘H’’ mice and do not develop myositis regardless of

doxycycline administration. For all animals, doxycycline was

withdrawn from the water supply at 5 weeks of age. The

constitutive forced expression of MHC class I results in a chronic

ER stress response in the muscle. In this model, female mice show

the first sign of pathology at about 8 weeks of age, when a drop in

AMPD1 enzyme activity and a drop in fast twitch muscle strength

can be measured [4]. HT mouse body weight gain will typically

plateau around 10 weeks of age, and may drop over the following

months. The infiltration of lymphocytes is not typically seen until

the animals reach 13 weeks of age or older. AMPD1 enzyme

activity and muscle function continue to decrease up to 16 weeks

of age, and may continue to drop over the following months.

Measurable decreases in grip strength and open field activity can

be seen at 16 weeks of age. For ethical reasons, mice are typically

euthanized by 20 weeks of age. Measurable decreases in grip

strength and voluntary movement can be seen as early as 16 weeks

of age. Mice younger than 20 weeks have no difficulty feeding and

drinking ad libitum.

Treatment Schedule
For controls, single-transgenic age- and sex-matched littermates

were used. All mice were left untreated until they reached 10

weeks of age, at which point they were randomly assigned to either

a control group or treatment group. D-ribose (Sigma-Aldrich

R9629) was dissolved in double-distilled water and prepared fresh

weekly for treatments. A measured volume of D-ribose was

delivered by a syringe and voluntarily ingested by the mice. The

dosage given was 4 mg/kg daily between 10:00am and 12:00pm.

The body weight of each mouse was measured weekly. Symptoms

of myositis were readily apparent by 15 weeks of age. Since the

disease progresses at different rates in male mice versus female

mice, only female mice were utilized for this trial. Functional,

behavioral and histological data was collected and analyzed in a

blinded fashion. At the end of the experiments, the mice were

killed by CO2 inhalation followed by cervical dislocation,

according to IACUC guidelines. Muscle tissue was immediately

dissected and flash-frozen in isopentane pre-chilled with liquid

nitrogen and stored at 280uC.

Histology
Frozen muscle tissues were mounted in Optimal Cutting

Temperature compound (Tissue-Tek) and cut on a microtome

to produce 8 mm-thick cross-sections. Sections were allowed to air

dry for 5 min., and then stained with filtered 0.1% Mayer’s

Hematoxylin (Sigma-Aldrich) for 10 min. Stained sections were

then rinsed in running ddH20 for 5 minutes and then dipped in

0.5% Eosin 12 times. Stained slides were then washed in ddH20 to

remove excess Eosin and then progressively dipped 10 times each

in 50% ethanol, 70% ethanol, 95% ethanol, and 100% ethanol.

Slides were then dipped in Xylene, cleaned with a Kimwipe, and

mounted with Permount (Fisher Scientific) and coverslips. For

CD3 staining in muscle sections, 8 micron-thick sections were first

allowed to air dry for 5 minutes, then incubated in blocking

solution (5% BSA and 10% Normal Sheep serum in PBS) for 1

hour at room temperature, washed in PBS, then incubated with

primary anti-CD3 antibody ([ab16669, Abcam] diluted 1:50 in

PBS+0.5% BSA) overnight at 4uC. Slides were then washes in PBS

before incubation with anti-Rabbit HRP secondary ([P0448,

Dako] diluted 1:200 in PBS+0.5% BSA) for 1 hour at room temp,

then developed using a DAB substrate Kit (SK-4100, Vector) for 9

minutes at room temp. Stained slides were rinsed in ultrapurified

water, counterstained with Hematoxylin, and rinsed again for

10 min. Slides were allowed to dehydrate overnight and then

mounted with Permount (Fisher Scientific) and coverslips. Images

were captured using a Nikon Eclipse E800 microscope with an

attached Spot RT Slider digital camera. Counting was performed

in a blinded fashion, where a focus was defined as either 3 or more

CD3+ cells adjacent to each other.

Functional and Behavioral Activities
Grip strength test. Grip strength in both thoracic and pelvic

limbs was assessed using a grip strength meter consisting of a

horizontal thoracic limb mesh and an angled pelvic limb mesh

(Columbus Instruments, Columbus, OH) according to a previously

published protocol [20]. Five successful thoracic limb and pelvic

limb strength measurements were recorded within 2 min. The

maximum values for each day over a 5-day period were averaged

and normalized to body weight and expressed as KGF/kg unit. All

grip strength measurements were begun when mice were 15 weeks

of age and concluded prior to animal sacrifice at 16 weeks of age.

Behavioral activity. Activity in an open field was measured

using an open-field Digi-Scan apparatus (Omnitech Electronics,

Columbus, OH) as described previously [20]. The data were

collected every 10 min over a 1-hr period each day for 4

consecutive days. The results were calculated as means6 standard

error for all recordings. The recorded quantitative measures of

activity were horizontal activity, vertical activity, and total

distance. Total distance is measured in centimeters, while

horizontal activity and vertical activity are measured as the

number of beam breaks (arbitrary units). All Digi-Scan measure-

Effects of D-ribose in a Mouse Model of Myositis
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ments were begun when mice were 15 weeks of age and concluded

prior to animal sacrifice at 16 weeks of age.

Force Contractions on Isolated Skeletal Muscle
Force contraction experiments were conducted on the extensor

digitorum longus (EDL) and soleus muscles of the right pelvic

limbs of mice. The mouse was anesthetized with an intraperitoneal

injection containing ketamine (100 mg/kg) and xylazine (10 mg/

kg). The muscles were isolated, and 6–0 silk sutures were tied

securely to the distal and proximal tendons. Each muscle was then

carefully removed from the mouse and placed vertically in a bath

containing buffered mammalian Ringer’s solution (137 mM NaCl,

24 mM NaHCO3, 11 mM glucose, 5 mM KCL, 2 mM CaCl2,

1 mM MgSO4, 1 mM NaH2PO4 and 0.025 mM turbocurarine

chloride) maintained at 25uC and bubbled with 95% O2-5% CO2

to stabilize the pH at 7.4. The distal tendon of the muscle was tied

securely to the lever arm of a servomotor/force transducer (model

305B, Aurora Scientific), and the proximal tendon was tied to a

stationary post in the bath. After removal of the muscle, the mouse

was euthanized by gassing with CO2 according to IACUC

guidelines. The muscle was stimulated between two stainless steel

plate electrodes. The voltage of single 0.2-msec square stimulation

pulses was increased until supramaximal stimulation of the muscle

was achieved, and the muscle length was then adjusted to the

length that resulted in maximal twitch force (i.e., optimal length

for force generation). With the muscle held at optimal length, the

force developed during trains of stimulation pulses was recorded,

and stimulation frequency was increased until the maximal

isometric tetanic force was achieved. For the EDL muscle, 300-

ms trains of pulses were used, and a stimulus frequency of

,220 Hz was typically needed to achieve the maximum isometric

force. Maximal isometric force for the soleus muscle was achieved

at a frequency of 120 Hz with 1000-ms trains. The muscle length

was measured with calipers, and the optimal fiber length was

calculated by multiplying the optimal muscle length by a constant

of 0.45, an established fiber length/muscle length ratio for EDL

muscle, and 0.71 for the soleus muscle. The muscle mass was

weighed after removal of the muscle from the bath. The muscle-

specific force, a measure of the intrinsic force generation of the

muscle, was calculated according the following equation: specific

force =maximal isometric force/(muscle mass * (density of muscle

tissue * fiber length)
21). The muscle tissue density was 1.056 kg/L.

Quantification of Metabolites
Quantification of hypoxanthine. Frozen skeletal muscle

(quadriceps) was homogenized in a liquid N2-chilled ceramic

mortar and pestle, and then lysed by repeated freeze-thaw cycles

(x3) in RIPA buffer (Sigma-Aldrich). The concentration of soluble

protein was determined, and the cleared lysates were stored at

280uC. The concentration of hypoxanthine in 50 ml of cleared

lysate was then determined with an Amplex Red Xanthine/

Xanthine Oxidase Kit (Life Technologies) according to the

manufacturer’s protocol. The levels of hypoxanthine for each

sample were then normalized using the protein concentration of

each sample.

Quantification of inosine monophosphate. Intramuscular

levels of IMP were determined by triple-quad mass spectrometry.

In brief, frozen skeletal muscle (quadriceps) was homogenized in a

liquid N2-chilled ceramic mortar and pestle and then resuspended

in 250 ml of 50% methanol solution to precipitate protein. The

IMP internal standard was also resuspended in 50% methanol.

Quantities for IMP were acquired in triplicate runs on a Xevo TQ

mass spectrometer (Waters). Serial dilutions of the IMP internal

standard (0.1–1275 pmoles/ml) were prepared, and a standard

curve made from the measurements after being acquired three

times. Two transitions were selected to quantify the concentration

in each sample. Target Lynx software (Waters) was used to

quantify the concentration of IMP the in the samples, and the

quantity of each sample was normalized to the protein concen-

tration of each sample, as determined by a Bradford protein

concentration assay.

Quantitative QRT-PCR analysis. To isolate RNA for

QRT-PCR analysis, frozen EDL and soleus muscle tissues were

diced with a sterile razor and homogenized in Trizol (Life

Technologies) using a Kontes pestle. After isolation according to

the manufacturer’s instructions, RNA was quantified on a

Nanodrop N1000 spectrophotometer. A total of 800 ng of RNA

was used to produce cDNA using a Promega Reverse Transcrip-

tion System kit. Primers were designed for mouse AMPD1, ADSL,

ADSSL1, NT5C2, PNP, CKM, HK2, RBKS, and GAPDH using

Primer3 v0.4.0 software [21]. The sequences of the primers used

were: AMPD1 forward, TATCA GCATG CAGAG CCTCG

CTTA; AMPD1 reverse, TGTGG CAGGA AATTC TTGGA

TCGG; ADSSL1 forward, AGACT CTCCC AGGAT GGAAC;

ADSSL1 reverse, GTTGC TGGCA ATCCT TAGAA; ADSL

forward, TACTT CAGCC CCATC CACTC; ADSL reverse,

TCACT GTAAC CGGGT TCTCC; NT5C2 forward, CCCAT

TCAGC TACCT CTTCA; NT5C2 reverse, ATGGC AGTGT

GTGAT CTCCT; PNP forward, GGCTT CTGCA ACACA

CTGAA; PNP reverse, TTCAG CAATC CAAAC ACCAG;

CKM forward, GATTC TCACT CGCCT TCGTC; CKM

reverse, GCCCT TTTCC AGCTT CTTCT; HK2 forward,

AGAAC CGTGG ACTGG ACAAC, HK2 reverse, GCCAG

ATCTC TCACC GTCTC; RBKS forward, AAGAA GGCAG

CCAGT GTCAT; RBKS reverse GAGCT GGGTT GAACA

AGGTT; CCL5 forward, GTGCC CACGT CAAGG AGTAT;

CCL5 reverse, CCCAC TTCTT CTCTG GGTTG; IL-1b
forward, GGGCC TCAAA GGAAA GAATC; IL-1b reverse,

TACCA GTTGG GGAAC TCTGC; IFIT2 forward, CGCTT

TGACA CAGCA GACAG; IFIT2 reverse, TGCAG TGCTG

CCTCA TTTAG; MXB forward, AGGAG GAAGC TGAGG

AGGAG; MXB reverse, ACTGG ATGAT CAAGG GAACG;

CD3e forward, ATCAC TCTGG GCTTG CTGAT; CD3e

reverse, GTCCA CAGAA GGCGA TGTCT; CD19 forward,

GTTGG CAGGA TGATG GACTT; CD19 reverse, TCCCA

TGCTG GTTCT AGGTC; EMR1 forward; CCATT GCCCA

GATTT TCATC, EMR1 reverse, GGTCA GTCTT CCTGG

TGAGG; GAPDH forward, CGTCC CGTAG ACAAA

ATGGT; GAPDH reverse, GAATT TGCCG TGAGT GGAGT.

All primers were verified to produce single, specific amplicons of

the correct size before being used for QRT-PCR. All QRT-PCR

reactions were prepared according to the manufacturer’s protocol

using a hot-start SYBR green premade mix (NEB F-410) and

measured on an ABI HT7900 thermal cycler. Relative gene

expression was calculated using the DDCt method, with GAPDH

as the internal reference gene.

Results

An Acquired Loss of AMPD1 is Correlated with a Loss of
Downstream Metabolites
Metabolic pathway that links the catabolism of AMP and the

production of D-ribose within skeletal muscle are depicted in

Figure 1. To verify that this pathway was affected by the acquired

deficiency of AMPD1, we quantified the relative abundance of the

metabolites inosine monophosphate (IMP) and hypoxanthine

(Fig. 2). Quadriceps muscles from 16-week-old H and HT mice

were dissected, flash-frozen, and then homogenized to generate

Effects of D-ribose in a Mouse Model of Myositis
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skeletal muscle lysates. IMP is the immediate downstream product

of AMPD1, and we found that IMP levels in the myositis mice

were 24.6% lower than those in healthy controls (Fig. 2B). A more

significant deficit was seen in hypoxanthine levels in HT mice

(58.2% lower) (7.17 mM, n= 10) when compared to healthy

controls (17.19 mM, n= 10). Hypoxanthine is produced simulta-

neously with ribose-1P at a 1:1 ratio and therefore serves as an

indicator of the amount of free ribose-1P that is produced within

the skeletal muscle fibers. These data indicate that supplementing

D-ribose could potentially compensate for an acquired deficiency

in AMPD1 activity.

Effects of D-ribose Treatment on Behavioral Activity
Mice were treated with oral supplements of D-ribose according

to the schedule depicted in Fig. 1B. Doxycycline was withdrawn at

5 weeks of age to initiate the onset of myositis in HT mice, while H

mice remained healthy. Treatment with D-ribose began when

mice were 10 weeks old and continued until mice were 16 weeks

old. This treatment schedule was chosen to reflect the reality that

the diagnosis and treatment of patients cannot begin until the

disease has already set in. Four groups were evaluated in this trial:

untreated healthy mice (H), healthy mice given daily doses of oral

D-ribose (H+Rib), untreated myositis mice (HT), and myositis

mice treated with daily doses of oral D-ribose (HT+Rib). The
onset of myositis resulted in a significant decrease in body weight

(14.260.5% decrease) in HT mice (Fig. 3A). Treatment with D-

ribose resulted in no significant change in body weight but showed

a trend towards a decrease in weights. Untreated HT mice showed

reduced thoracic limb grip strength when compared to untreated

H mice, a 19.260.1% decrease. Treatment with D-ribose did not

alter thoracic limb grip strength in either treatment group (Fig. 3B).

We measured open-field behavioral activity using a Digi-scan

chamber and found that HT mice showed reduced total distance,

horizontal activity, and vertical movements when compared to H

mice. Treatment of H mice with ribose resulted in decreased

horizontal activity (35.260.1% decrease, Fig. 3C), total distance

(60.6621.7% decrease, Fig. 3D), and vertical movements

(64.7634.1% decrease, Fig. 3E) when compared to untreated H

mice. Treatment with ribose did not significantly alter the open-

field activity of the HT mice (Fig. 3C–E).

D-ribose Treatments did not Improve Body Weight Gain
Mice were treated with oral supplements of D-ribose beginning

when the animals were 10 weeks old, and continued until the

animals were sacrificed at 16 weeks. Mice were weighed weekly

during this time, and the bodyweights of the treatment groups are

presented in Figure 4. Untreated Healthy mice (H) show normal

weight gain while untreated myositis mice (HT) show a progressive

weight loss (Fig. 4A). Treatment with D-ribose did not ameliorate

weight loss in diseased mice (Fig. 4B). A two-way ANOVA

Figure 1. AMP catabolism can generate free D-ribose. The catabolism of AMP into hypoxanthine (Hpx) and ribose is illustrated, along with the
utilization of ingested D-ribose (A). The treatment schedule of mice is depicted (B). Mice received a total of 6 weeks of daily oral D-ribose
supplements. Behavioral assays require 5 days to conduct, and were therefore carried out one week prior to sacrificing the animals and performing
electrophysiology. Abbreviations: IMP: inosine monophosphate, Hpx: hypoxanthine, D-ribose-1P: D-ribose-1-phosphate, D-ribose-5P: D-ribose-5-
phosphate.
doi:10.1371/journal.pone.0065970.g001

Figure 2. Mice with myositis are deficient for the breakdown
metabolites of AMP. Hypoxanthine levels in mice with myositis (HT
mice, n = 10) were significantly lower than in healthy (H mice, n = 10)
littermates (A). IMP levels in HT mice were also lower in HT mice than in
healthy controls (B). All mice involved in metabolite assays were 16-
week-old females. Metabolite levels were measured in lysates from
quadriceps muscle tissue.
doi:10.1371/journal.pone.0065970.g002

Effects of D-ribose in a Mouse Model of Myositis
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statistical analysis confirmed that treatment resulted in no

significant differences between either healthy (H vs. H+Rib)
animals, or myositis (HT vs. HT+Rib) mice.

Effect of D-ribose on Skeletal Muscle Histology and
Markers of Inflammation
For hematoxylin and eosin (H&E) staining, quadriceps muscles

from H and HT mice were dissected, flash-frozen, sectioned, and

stained with H&E (Figures 5A–D). The images shown are

representative of the histological appearance seen in each

treatment group. The untreated H mice (Fig. 5A) possessed

normal muscle histology, while untreated HT myositis mice

(Fig. 5C) showed inflammation and abnormal variations in muscle

fiber size. In order to visualize infiltrating T-cells, we performed

immunohistochemical staining for CD3 (Supplemental Fig. S1).

We found multiple foci of T-cell infiltrates in the muscle sections of

HT mice. No CD3-positive cells were detected in sections from

healthy mice. Treatment with D-ribose did not reduce the number

of inflammatory foci present observed in HT mice (Fig. S1E).

While histology is useful for identifying infiltrations and muscle

damage, histological sections can be misleading because inflam-

mation is patchy in muscle sections. To better quantify the amount

of inflammation in the skeletal muscle tissue of treated mice, we

used QRT-PCR to examine the expression of several genes related

to inflammation. Fig. 6 shows the QRT-PCR results from the

quadriceps muscle tissue of healthy mice (H), untreated myositis

mice (HT), and treated myositis mice (HT+Rib). Transcripts for
the cytokines CCL5 (also known as RANTES) and IL-1b were

both found to be significantly upregulated in HT mice relative to

untreated control H mice. Treatment with D-ribose failed to

significantly reduce the expression of these genes. The expression

of the IFIT2 and MXB genes is upregulated by Type 1 interferons,

and both were significantly upregulated in HT mice when

compared to untreated control H mice. Treatment with ribose

resulted in a significant decrease in IFIT2 transcripts, but not in

MXB transcripts. Expression of CD3e, CD19, and EMR1 (also

known as F4/80) mRNA indicated the presence of T cells, B cells,

and macrophages, respectively. The CD3e and EMR1 transcripts

were significantly upregulated in HT mice when compared to

healthy mice, but not significantly altered by treatment with D-

Figure 3. Treatment with daily oral D-ribose did not improve mouse body weight, grip strength and open field behavioral activity.
Data from four treatment groups are shown: Healthy untreated mice (H, n = 8), healthy mice given daily oral D-ribose (H+Rib, n = 7), untreated
myositis mice (HT, n = 6), and myositis mice given daily oral D-ribose (HT +Rib, n = 8). The body weight for all animals was measured at 16 weeks of
age (A). Thoracic limb grip strength for all animals was measured over 5 days and normalized to body weight (B). Mouse voluntary movement in an
open field was measured as movement in an hour averaged over 5 days. Horizontal motion measured how many times an infrared beam was broken
in the open field (C). Distance traveled was measured by how many centimeters each mouse moved (D). Vertical movements indicate the number of
times each mouse stood upright (E). Overall, the onset of myositis resulted in a significant loss of body weight, while grip strength measurement did
not discriminate well between groups. Treatment with ribose showed no beneficial effect on any of the measured parameters.
doi:10.1371/journal.pone.0065970.g003

Figure 4. Treatment with oral doses of D-ribose does not improve body mass over time. Body weights for mice were recorded starting at
the time of D-ribose administration. Mice were sacrificed at 16 weeks of age. The gap in bodyweight between healthy controls and untreated
diseased mice widened over time (A). Treatment with D-ribose had no apparent failed to prevent weight loss in HT animals (B).
doi:10.1371/journal.pone.0065970.g004

Effects of D-ribose in a Mouse Model of Myositis
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ribose. In the case of CD19, there were no statistically significant

differences among the three groups. From these data, we

concluded that treatment of HT mice with ribose did not affect

the inflammation.

Effect of D-ribose on Muscle Function in the EDL and
Soleus Muscle
Type 1 (slow-twitch) and Type 2 (fast-twitch) muscle fibers are

differentially affected in myositis patients and in the mouse model.

Therefore, we assessed muscle function in both Type 1 (soleus) and

Type 2 (EDL) muscles. The EDL muscle mass was significantly

lower (18.0160.1% decrease) in HT mice than in control H mice,

but the mass of the soleus was not significantly reduced (compare

Fig. 7A and 6D). Similarly, the maximum force produced from the

EDL was significantly lower in myositis mice (29.4560.1%

decrease) when compared to H mice, but the maximal force

generated by the soleus was not significantly diminished (compare

Fig. 7B and 6E). These differences suggest that Type 2 muscle

fibers are more severely affected at 16 weeks of age in this mouse

model. The specific force generated by the EDL and soleus

muscles was found to be significantly lower in diseased mice than

in healthy controls (241.0460.1% in the EDL and 225.1760.1

in the soleus). Treatment with D-ribose showed no significant

improvement in specific force for either the EDL or the soleus in

this mouse model.

The EDL muscles were also tested for fatigue resistance after

completing the force contraction analysis. The soleus was not

tested because slow-twitch muscles are considered resistant to

fatigue. Fatigue resistance is measured as a ratio between the

maximal force production and the force production remaining

after 60 consecutive contractions. The EDL muscles from HT

myositis mice showed fatigue resistance when compared to H

mice. The fatigue resistance seen in HT mice has also previously

been observed by other investigators in this mouse model [22].

Treatment with oral D-ribose did not have any significant effect on

the fatigue resistance of the EDL in either treatment group

(Fig. 8A). The increased fatigue resistance seen in HT animals

could be related to the size of the fiber sand the rate at which

metabolites such as lactic acid and H+ can diffuse out of the muscle

during the 60 consecutive contractions. This is a particular

concern here, since Fig. 7A shows a significant drop in the average

muscle mass between H and HT mice. This experimental artifact

is visible in Fig. 8B, in which we plotted EDL muscle fatigue

resistance against EDL cross-sectional area for all untreated (H

Figure 5. Histological analysis of mouse skeletal muscle showed no difference between untreated and treated animals. After mice
were sacrificed at 16 weeks of age, quadriceps tissue was sectioned and stained with H&E. Untreated healthy mice (H) showed normal muscle
histology (A). Healthy mice treated with daily oral D-ribose (H+Rib) also showed normal muscle histology (B). Untreated myositis mice (HT) showed
variable muscle fiber diameter consistent with myositis (C). Myositis mice treated with daily oral D-ribose (HT+Rib) showed no apparent improvement
at the histological level (D).
doi:10.1371/journal.pone.0065970.g005

Figure 6. Treatment with ribose did not significantly reduce
expression of inflammatory markers. After mice were sacrificed,
RNA was isolated from the quadriceps muscle tissue and used to
determine the expression of several markers of inflammation. The
expression of each gene was normalized to the level of GAPDH mRNA.
With the exception of IFIT2, there was no statistically significant
reduction in the expression of these genes related to inflammation
when untreated HT and ribose treated HT mice were compared.
doi:10.1371/journal.pone.0065970.g006
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and HT) and all D-ribose treated mice (H+Rib and HT+Rib). The
linear regressions for the two groups formed nearly parallel lines,

and while the y-intercept for the D-ribose-treated animals was

larger than the y-intercept for untreated animals, the results for the

two groups were not statistically different.

Expression of RBKS in Skeletal Muscle
We quantified the expression of each of the enzymes shown in

the pathway depicted in Fig. 1, as well that of as other genes

important for muscle metabolism. The genes for both AMPD1

and muscle creatine kinase (CKM) are known to be downregu-

lated in humans and mice with myositis. As mentioned previously,

AMPD1 is believed to control AMP levels in skeletal muscle, while

CKM is essential for regulating levels of phosphocreatine. The

data obtained for AMPD1 (Fig. 9A) and CKM (Fig. 9B) show that

both genes are downregulated in untreated HT mice when

compared to untreated H mice. Treatment with a daily dose of

oral D-ribose had no significant effect on the expression of these

genes when untreated and treated HT mice were compared.

QRT-PCR analyses of the expression of NT5C2, PNP, and

PGM2 showed that each of these genes was expressed in the

skeletal muscle, but no significant differences in gene expression

were observed between any of the treatment groups (data not

shown). However, QRT-PCR analysis of RBKS and hexokinase 2

(HK2) revealed that the basal expression of RBKS was only 18.9%

that of HK2 expression. The low expression of RBKS suggests

that mouse muscle cells may not effectively retain and metabolize

ingested D-ribose.

Discussion

In this work, we used a mouse model of myositis to investigate

the therapeutic potential of daily oral D-ribose supplements for the

treatment of myositis. Treatment with D-ribose did not signifi-

cantly affect body weight, grip strength, open-field behavioral

activity, muscle histology, or expression of inflammatory markers

in mouse skeletal muscle. The performance of the EDL and soleus

muscles was not affected by treatment with D-ribose with regard to

any of the measured parameters (maximal force, specific force, and

fatigue resistance). Gene expression analysis suggested that a low

basal expression of the ribokinase enzyme in mouse skeletal muscle

tissues, which might prevent the effective utilization of, ingested D-

ribose.

Myositis is an autoimmune disease of skeletal muscle, and

patients are typically treated with immunosuppressive drugs (e.g.

prednisone, methotrexate), but metabolic abnormalities are not

addressed. However, it has been observed that there is a poor

correlation between the successful suppression of inflammation

and recovery of muscle function [1,3], indicating that non-immune

metabolic defects are potential therapeutic targets in this disease.

This work was originally proposed on the basis of a combination of

previously published findings. First, it has been observed that both

patients and mice with myositis acquire a deficiency of the muscle

specific enzyme AMPD1 [4,6]. Second, there are published case

reports describing the successful treatment of muscle weakness and

fatigue with D-ribose in patients with congenital deficiency of

AMPD1 enzyme activity [9,10,11]. Finally, an examination of the

metabolites within the muscle tissue of myositis mice revealed a

deficiency in metabolites related to the internal production of D-

ribose. It should be noted that while D-ribose is not known to have

any effect on healthy individuals, who are not expected to have an

AMPD1 deficiency. Taken together, these observations suggested

that in mice with myositis, supplementing the mice with D-ribose

could reverse the symptoms of muscle weakness and fatigue.

Figure 7. Muscle force contraction analysis of the EDL and
soleus showed no differences between treated and untreated
groups. The EDL (A–C) and soleus (D–F) muscles were dissected out of
anesthetized 16-week-old mice and subjected to force contraction
analysis. The wet mass of both muscles was measured following force
contraction analysis (A,D). The maximal force exerted by each muscle
was measured (B,E). The specific force that each muscle was able to
produce was measured (C,F). Specific force was calculated using the
maximal force and cross-sectional area of each muscle. Treatment with
ribose showed no significant effect on the performance of either the
EDL or soleus muscle.
doi:10.1371/journal.pone.0065970.g007

Figure 8. Treatment with D-ribose showed negligible effects on
the fatigability of the EDL muscle. The EDL muscle was dissected
out of anesthetized 16-week-old mice and subjected to fatigue
resistance analysis. Fatigability was measured for all four treatment
groups (A). The relationship between fatigue resistance and EDL fiber
cross sectional area was graphed on a scatter plot (B). Linear regression
was used to formulate the trend lines. Treatment with daily oral D-
ribose showed no significant improvement in fatigue resistance in
treated mice when compared to untreated mice. The two approx-
imately parallel trend lines show that relationship between fiber size
and fatigue resistance may account for the apparent increase in fatigue
resistance seen in HT animals.
doi:10.1371/journal.pone.0065970.g008
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Despite the lack of data concerning treatment for myositis, the lay

community has touted D-ribose as a treatment for both myositis

and fibromyalgia. Since patients with myositis are expected to

have acquired deficiency in AMPD1 enzyme activity, treatment

with D-ribose remained an untested potential therapeutic option.

Before we undertook this trial, we first identified a possible

mechanism whereby D-ribose could provide energy during

strenuous exercise. It has been proposed that D-ribose could

ameliorate muscle weakness by serving as an energy source

[10,11], but there is little research that specifically addresses this

topic. While it is known that D-ribose is well absorbed in the small

intestine [23] and that pentose sugars can be reversibly converted

into hexose sugars, most sources focus on the production of ribose

from glucose. Nevertheless, there is evidence in the literature to

suggest that Type I skeletal fibers can catabolize AMP molecules in

order to create free ribose as a potential energy source. The

strongest evidence supporting the catabolism of AMP comes from

observations of an ‘‘adenylate deficit’’ following strenuous exercise

and a spike in levels of hypoxanthine in the serum after strenuous

exercise [24,25]. In brief, it is known that the total pool of

adenylate molecules (i.e., ATP+ADP+AMP) in skeletal muscle

tissue is significantly decreased after exercise but recovers over

time. The drop in the number of adenylates coincides with a sharp

increase in serum levels of hypoxanthine (a breakdown product of

AMP), suggesting that excess AMP is broken down into its purine

base (hypoxanthine) and phospho-ribose backbone (ribose-1P)

after exercise. An excess of free ribose-1P can then be used to fuel

glycolysis, since three ribose-1P molecules can be converted into

two molecules of fructose-6P and one molecule of glyceraldehyde-

3P via the non-oxidative phase of the pentose phosphate pathway.

After treating myositis mice for 6 weeks with daily oral

supplements of D-ribose, we observed that the treated mice failed

to show any improvement by any measurement. Mice with

myositis fared poorly when compared to their healthy littermates,

and treatment with D-ribose had no significant effect on either

diseased or healthy mice. Treatment with D-ribose did not protect

against muscle wasting or prevent an overall loss in body weight.

In addition, D-ribose did not protect against the loss of muscle

function (maximal and specific force generation) in the myositis

mice. Histologically, treatment with D-ribose did not appear to

have any statistically significant effect on the degree of muscle fiber

damage or infiltration lymphocytes into the mouse skeletal muscle

tissues. In terms of muscle fatigue, supplementation with D-ribose

had no statistically significant effect on muscle fatigue in mice.

After performing QRT-PCR analysis on the genes related to the

internal production of D-ribose (via AMP catabolism), we found

that the first enzyme utilizing ingested D-ribose, RBKS, was

expressed at very low basal levels in both healthy and myositis

mice. The lack of other observed changes in gene expression

suggests that the ingested D-ribose had little regulatory effect on

the expression of these genes. We propose that the lack of effect of

D-ribose in treated mice is due to a low basal expression of RBKS

in the skeletal muscle, resulting in the utilization of an insignificant

amount of the molecule. A comparison of RBKS expression

profiles in humans and mice using publicly available data (NCBI

UniGene Hs.11916 ) suggests that both humans and mice have

low basal expression of RBKS in skeletal muscle. While we cannot

directly extrapolate from this mouse model, the suggestion that D-

ribose cannot be utilized by skeletal muscle tissue is in agreement

with prior publications in humans showing that D-ribose has no

effect on muscle function in healthy patients [15,16,17].

In fact, a pattern of potential harm becomes apparent after

examining body weight, voluntary activity, muscle mass, and

muscle function. In all of these analyses, the treated mice

performed worse on average than the untreated controls.

Although this drop in performance was not statistically significant

in any single measured parameter, the consistency of this pattern

suggests that daily oral D-ribose has potentially negative conse-

quences. The mechanism behind this consistent drop in perfor-

mance is not known. There was some prior concern that D-ribose

supplements would allow greater proliferation of lymphocytes,

since ribose can be a limiting factor in the synthesis of new DNA in

dividing cells. However, the histology immunohistochemistry and

QRT-PCR results indicate that there were no apparent differences

between treated and untreated animals in the degree of

lymphocyte infiltration. Similarly, QRT-PCR analysis for several

inflammatory markers indicated that D-ribose showed no effect on

inflammation.

In summary, the results of this research refute the hypothesis

that oral supplements of D-ribose can be used to treat the muscle

weakness in myositis. Contrary to the initial hypothesis, animals

treated with D-ribose showed worse performance on average when

compared to controls. The failure of D-ribose in treating myositis

in this model does not invalidate the hypothesis that the catabolism

Figure 9. Quantitative RT-PCR analysis suggests that a lack of RBKS prevents the utilization of D-ribose. After mice were sacrificed, RNA
was isolated from the quadriceps muscle tissue and used to determine the expression of several genes. The expression of each gene was normalized
to the level of GAPDH mRNA. QRT-PCR was performed to measure the expression of AMPD1 (A) and muscle creatine kinase (CKM) in the quadriceps
muscle of mice (B). Results for the expression of ribokinase (RBKS) in the quadriceps muscle in mice are shown (C), as are results for hexokinase (HK2)
in mice (D). HT mice showed an acquired deficiency of AMPD1 expression that was not significantly affected by daily oral D-ribose treatments. QRT-
PCR analysis also revealed that RBKS was 5.53-fold less abundant than hexokinase in both healthy and diseased mice.
doi:10.1371/journal.pone.0065970.g009
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of AMP provides substrates for glycolysis, because ingested D-

ribose requires RBKS to be utilized, whereas the internal

production of D-ribose via catabolism does not require RBKS.

These results from this mouse model are also consistent with the

broader literature on D-ribose and its lack of observed effects in

humans.

Supporting Information

Figure S1 Immuno-histological staining for CD3 in
mouse skeletal muscle showed no difference between
untreated and treated animals. Sections of quadriceps tissue
were stained for CD3 via DAB deposition. Healthy mice showed

negative staining regardless of treatment (A&B). Untreated

myositis mice (HT) were positive for foci of CD3+ cells between

fibers (C), as were HT mice treated D-ribose (D). Treatment with

D-ribose did not significantly decrease the number of CD3+ foci

per cross-section (E).

(TIF)
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