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Abstract

Plant community ecologists use the null model approach to infer assembly pro-

cesses from observed patterns of species co-occurrence. In about a third of pub-

lished studies, the null hypothesis of random assembly cannot be rejected.

When this occurs, plant ecologists interpret that the observed random pattern

is not environmentally constrained – but probably generated by stochastic pro-

cesses. The null model approach (using the C-score and the discrepancy index)

was used to test for random assembly under two simulation algorithms. Logistic

regression, distance-based redundancy analysis, and constrained ordination were

used to test for environmental determinism (species segregation along environ-

mental gradients or turnover and species aggregation). This article introduces

an environmentally determined community of alpine hydrophytes that presents

itself as randomly assembled. The pathway through which the random pattern

arises in this community is suggested to be as follows: Two simultaneous envi-

ronmental processes, one leading to species aggregation and the other leading

to species segregation, concurrently generate the observed pattern, which results

to be neither aggregated nor segregated – but random. A simulation study sup-

ports this suggestion. Although apparently simple, the null model approach

seems to assume that a single ecological factor prevails or that if several factors

decisively influence the community, then they all exert their influence in the

same direction, generating either aggregation or segregation. As these assump-

tions are unlikely to hold in most cases and assembly processes cannot be

inferred from random patterns, we would like to propose plant ecologists to

investigate specifically the ecological processes responsible for observed random

patterns, instead of trying to infer processes from patterns.

Introduction

To answer the fundamental question of how species

assemble to form communities, plant ecologists often use

the null model approach (G€otzenberger et al. 2012) intro-

duced by Connor and Simberloff (1979). Assuming that

assembly processes can be inferred from observed patterns

of species co-occurrence (Harvey et al. 1983), the ecolo-

gist tests the null hypothesis of random species co-occur-

rence (or random assembly). This null hypothesis states

how a community would present itself if it were struc-

tured only by stochastic factors (Gotelli and Ulrich 2012),

that is, in the absence of biotic interactions, dispersal and

environmental variability (G€otzenberger et al. 2012).

Once the hypothesis test is completed, the ecologist draws

inferences on the assembly processes that shaped the

observed pattern of species co-occurrence (Gotelli and

Ulrich 2012).

The null hypothesis of random assembly cannot be

rejected in about a third of published experimental plant

matrices (Ulrich and Gotelli 2013, Table 7) or in about

60% of published co-occurrence tests (G€otzenberger

et al. 2012; Table 2). When this occurs, plant ecologists

do not use to investigate further the processes responsi-

ble for the random patterns. Instead, they may deny a

strong influence of deterministic processes (Burns 2007)
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or suggest that chance (Wilson et al. 1992), lack of

equilibrium (Wilson 1988) or dispersal constraints (Reit-

alu et al. 2008) cause random co-occurrence. They may

also discuss the hypothetical existence of combinations

of biotic interactions, periodical disturbances and dis-

persal constraints (Borcard et al. 1992) or unspecified

but otherwise nondominant processes (Zhang et al.

2009) that counteract competition. Plant ecologists, in

sum, explicitly or implicitly assume that if a plant

assemblage presents a random structure, then it is not

environmentally determined – but instead is caused by

stochastic processes.

For that reason, when we found that an undisturbed

and environmentally driven assemblage of alpine hydro-

phytes in Iberian soft water lakes presented itself as

randomly structured, it seemed to be a theoretical con-

tradiction. However, the mistake – if existing – was not

evident. On the one hand, our null model analysis

appeared correct. On the other hand, our ongoing

study agreed with prior research, which shows how spe-

cies composition in Pyrenean (Gacia et al. 1994) and

northern European (Murphy 2002) soft water lakes is

explained by physical constraints (lake area and eleva-

tion) and trophic state (water conductivity and pH).

These facts have been used in lake restoration (Brand-

rud 2002; Brouwer et al. 2002), and, crucially, the cau-

sal links between hydrophyte presence–absence and

trophic state at a finer scale are known. Trophic state

is mostly determined by catchment characteristics

(Br€onmark and Hansson 2005), which, in alpine sys-

tems, are bedrock and surrounding vegetation (Catalan

et al. 1993). Conductivity is a proxy for cations

(Gorham et al. 1983), which are limiting in soft water

lakes, so nutrient enrichment enhances the growth of,

for instance, Ranunculus peltatus Schrank (Roelofs

1983). Change in pH is related to the carbon dioxide-

bicarbonate system (Br€onmark and Hansson 2005), and

the emergence of Sparganium angustifolium Michx and

other species on limed lakes is related to increased

availability of inorganic carbon (Brandrud 2002; Lucas-

sen et al. 2009).

Hence, aiming to solve this apparent theoretical

contradiction, we considered a first question: Can envi-

ronmental constraints determine random patterns of

plant species co-occurrence? An affirmative answer

would lead to theoretical implications, but a mere dem-

onstration that environmental determinism and random

pattern co-occur would not suffice. A satisfactory expla-

nation should also reveal the precise pathway between

environmental constraints and species co-occurrence

(Cox and Donnelly 2011). This led us to ask a second

question: How do environmental constraints generate a

random pattern?

Material and Methods

Field survey and study area

The presence–absence of aquatic vascular plants (“hydro-

phytes”) in the n = 17 permanent lakes that exist in the

Gredos Massif (Central System, Spain) was surveyed by

means of line transect sampling (Krebs 1999). In each

lake or pond, line transects of width 1 m were laid out in

a radial pattern and searched for plant species. The lake

shoreline constituted the baseline along which the begin-

ning of each transect was randomly located; the end of

each transect was the geometric center of the lake. The

number of transects used for each lake was not fixed in

advance. Instead, in order to minimize sampling effort

and yet achieve the same level of precision for all lakes,

sequential sampling (Thompson 1992; Krebs 1999) was

used. An initial random sample of five transects was

selected for each lake. Additional transects (also randomly

selected) from the same lake were added to the sample

using the decision (stopping) rule to quit sampling as

soon as three subsequent transects added no new species

to the lake species list. The lakes occur in three sectors

(Bejar, E Gredos and W Gredos), and the aquatic vegeta-

tion is classified as Littorellion uniflorae Koch 1926

(Sardinero 2004). According to prior research (Catalan

et al. 1993; Gacia et al. 1994), we measured conductivity

(expressed as specific conductance in lS cm�1 at 25°C)
and pH in water samples once (July 2008). Conductivity

and pH were measured in each of the five transects that

compose the above-mentioned initial sample, and the val-

ues here reported are lake averages. Lake area and eleva-

tion data were obtained from Toro et al. (2006). The

vegetation surrounding the lakes consists of Nardus and

Festuca pastures and Juniperus-Cytisus scrubs. The bed-

rocks are formed by mineralogically complex and broadly

variable monzogranites and granodiorites (Gibbons and

Moreno 2002).

Data analysis

A three-matrix dataset was constructed: a species composi-

tion matrix of 17 lakes 9 9 hydrophytes; a geographic

matrix of 17 lakes 9 2 Cartesian coordinates (X, Y) derived

from latitude and longitude; and an environment matrix of

17 lakes 9 2 physical descriptors (elevation in m and lake

area in m2) and two chemical descriptors (pH and water

conductivity in lS cm�1). The geographic matrix is neces-

sary to test for spatial autocorrelation and check the

assumptions of independence of errors in the context of

logistic and Poisson regression (see below). The physical

descriptors were obtained from Toro et al. (2006). The

analysis summarized next was carried out using R software
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v.2.15.2 (R Core Team 2012). Supporting information

provides the full dataset (Appendix S1) and R code

(Appendix S2) to replicate the analysis described below

(section 0 of this code is an exploratory analysis that is not

reported in the Results section).

The null hypothesis of random assembly was tested

using the C-score (Stone and Roberts 1990) and the dis-

crepancy (Brualdi and Sanderson 1999) indices. Their dis-

tributions were simulated by 1000 iterations of the

sequential swap algorithm (Gotelli and Entsminger 2003),

using the function “oecosimu” in the “vegan” package

(Oksanen et al. 2010); row and column sums were kept

fixed (Gotelli 2000). Thus, one-sample tests were con-

structed, where the swap algorithm and the fixed-fixed

constraints (standard choices to mimic stochastic assem-

bly) create tests with low probability of type I error and

good power to detect departures from random assembly

(Ulrich and Gotelli 2007, 2013). Benchmark research (Ul-

rich and Gotelli 2013; Table 4) shows that this type of

null model analysis can generally detect 75–80% of depar-

tures from random expectation; hence, type II errors are

relatively unlikely. The analysis described in this para-

graph corresponds to section 1 in the accompanying R

code. Additionally, a second test that used the C-score

metric and maintained fixed rows and incorporated site

(column) weights was performed, where the area of the

lakes was used as weights. Row sums were kept fixed to

prevent type I errors; weights for the sites (columns) were

used because the lakes differ much in size (online

resource 1), and hence, they cannot be assumed to be

equiprobable. As this type of simulation is not available

in the vegan package, Ecosim software (Gotelli and

Entsminger 2011) was used to carry out this test.

The “vegan” package (Oksanen et al. 2010) was used to

test for spatial autocorrelation in species composition and

to carry out a partition of variation in community com-

position according to environmental descriptors (mission

V3 in Anderson et al. 2011). In both analyses, the

response was a dissimilarity matrix based on the Jaccard

coefficient (Legendre and Legendre 1998); a dummy spe-

cies was previously added (Clarke et al. 2006) to circum-

vent the double zero problem. To test for spatial

autocorrelation in species composition, a Mantel correlo-

gram (Mantel 1967; Oden and Sokal 1986) with Holm

correction (Holm 1979) was used to obtain correct P-val-

ues. To partition variation in community composition

according to environmental descriptors, distance-based

redundancy analysis (dbRDA) (Legendre and Anderson

1999) was used. dbRDA is an extension of regression to

multivariate responses (Legendre and Legendre 1998).

Here, dbRDA was implemented via the function “cap-

scale” of “vegan”. Backward and forward selection with

the AIC criterion was applied with the function ‘ordistep’

to find a parsimonious dbRDA model. Finally, a posterior

partitioning of variation (Borcard et al. 1992; Anderson

and Gribble 1998) in species composition between chemi-

cal and physical components was carried out. The analysis

described in this paragraph corresponds to sections 2 and

3 in the accompanying R code.

Species’ responses were studied using logistic regression

(McCullagh and Nelder 1989; Madsen and Thyregod

2010). We tested the dependence of the probability of

presence on the environmental gradients for all the spe-

cies in the dataset, except those (E. acicularis, M. alterni-

florum, and S. aquatica) with very low frequency (n ≤ 2).

Model selection with the AICc criterion (Burnham and

Anderson 2002) was carried out with the function

“dredge” in package “MuMin” (Barton 2012) to find par-

simonious models that minimize the loss of information.

As AICc does not assess how well a model fits the data,

the function “lrm” in the R package “rms” (Harrell 2012)

was used to check the fit of logistic models. For each fit-

ted model, an analogue of R2 was calculated as follows:

1-(null deviance/model deviance). Overdispersion was

assessed using the ratio of residual deviance to degrees of

freedom. The assumption of independence of errors was

tested using spline correlograms (BjØrnstad and Falck

2001). The analysis described in this paragraph corre-

sponds to section 4 in the accompanying R code.

Simulation of species assembly

Species assembly under two simultaneous processes, one

leading to species aggregation and the other leading to

species segregation, was simulated 500 times. In the man-

ner of the experimental matrix considered in this work,

60% of species were simulated as constrained by two

environmental gradients. For these species, the probability

of occurrence depended on the values of two environ-

mental gradients (X1 and X2) at each site. Values for X1

and X2 were generated from independent normal distri-

butions with mean 2.5 and standard deviation 1.5, in

such a way that slightly more than 90% of the possible

values lie within the interval [0,5]. The species occur-

rences in a certain site depended on gradients, X1 and X2,

by the combination of two probability functions that were

either decreasing on X1 and increasing on X2 or increas-

ing on both X1 and X2. Occurrence probability in each

location was modeled through generalized logistic func-

tions, where the product of f1(X1) and f2(X2) was used as

event probability in a Bernoulli experiment. Also in the

manner of the experimental matrix considered in this

work, the presence/absence in the 25 different sites for

the other 40% of species was simulated without reference

to any environmental gradient, that is by considering ran-

dom occurrences with probabilities of either 0.05 or 0.4.
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In this way, both frequent and infrequent species were

modeled.

As a result, we achieved a collection of five hundred

25 9 10 matrices, where each element of each matrix rep-

resented the presence/absence of species at a site. These

simulated matrices correspond to five hundred scenarios

of species assembly under simultaneous processes of spe-

cies aggregation and segregation. Then, C-Score and dis-

crepancy index tests of the null hypothesis of random

assembly were applied to the simulated matrices. These

tests were constructed using the swap algorithm and

fixed-fixed constraints.

Results

Nine hydrophytes were found. Six were euhydrophytes

sensu Den Hartog and Segal (1964): Callitriche brutia

Petagna (relative frequency = 0.42), Isoetes velatum subsp.

asturicense (M. La�ınz) Rivas Mart. & Prada (r. f. = 0.47),

Subularia aquatica L. (r. f. = 0.12), Myriophyllum alterni-

florum DC. in Lam. & DC. (r. f. = 0.06), Ranunculus pelt-

atus Schrank (r. f. = 0.41), and Sparganium angustifolium

Michx (r. f. = 0.47). Two were pseudo-hydrophytes:

Antinoria agrostidea fma. natans (Hackel) Ascherson &

Graebner, Syn. Mitteleur. Fl. 2(1): 97. 1899 (r. f. = 0.41),

and Juncus bulbosus var. fluitans (Lam.) Beck (r.

f. = 0.24). The last one, Eleocharis acicularis (L.) Roem. &

Schult., was an amphiphyte (r. f. = 0.06). The conductiv-

ity values here reported (Table S1 in online resource 1)

are very low, though natural in small headwater lakes on

igneous rocks.

The aquatic vegetation of the Gredos lakes
presents itself as randomly structured

Both tests (Fig. 1) using the fixed-fixed simulation were

not significant (observed C-score index = 3.6, with mean

of simulated indices = 3.4 and P > 0.4; observed discrep-

ancy index = 10.0 with mean of simulated indices = 10.7

and P > 0.8). The test that used the fixed-weighted simu-

lation was not significant either (observed C-score

index = 3.6, with mean of simulated indices = 2.7 and

variance = 1.0; P(observed ≤ expected) = 0.802; P

(observed ≥ expected) = 0.203). Hence, the null hypothe-

sis of random assembly cannot be rejected.

The species composition is environmentally
determined

None of the Mantel statistics were significant (a = 5%)

after Holm’s correction, and hence, the species composi-

tion, as measured by the Jaccard coefficient, is not spa-

tially structured at distances 0–20 km. The environmental

variables (Table 1) pH and conductivity (chemical com-

ponent) and elevation (physical component) explained

R2 = 57% (R2–adj. = 47%) of variation in community

composition (Table 2), but lake area and geographic sec-

tor were not significant. In the corresponding constrained

ordination (Fig. 2), the first axis (CAP1) is strongly

related with conductivity, whereas the second axis (CAP2)

is mainly related with pH and secondarily with elevation.

Partitioning of variation (Fig. 3) shows that the vegeta-

tion, as expected, is primarily structured by the pure

chemical component (R2 = 37%), with a quantitatively

less important contribution by the pure physical compo-

nent (R2 = 19%). The very small overlap between both

components (R2 = 1%) occurs because pH is partly struc-

tured through elevation, with the higher lakes possessing

more neutral conditions than the lower lakes – which are

slightly more acidic.
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Figure 1. Comparison of the observed indices (vertical lines) to the

densities simulated under the null hypothesis of random assembly.

The densities (both the C-score and the discrepancy index are treated

as continuous) were generated using 1000 iterations with the

sequential swap algorithm and the fixed-fixed null model. None of

the tests were significant.
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Regarding species and the first ordination axis (Fig. 2),

all of them are positively correlated with conductivity

(hydrophytes seem to require minimum conductivity val-

ues of about 4–5 lS cm�1), but species such as C. brutia

or I. asturicense are strongly correlated (preferring about

8–9 lS cm�1). These species appear only in lakes with

higher conductivity conditions, but, crucially, they do not

exclude less exigent species. This constitutes a process of

species aggregation that is constrained by increasing con-

ductivity. This aggregation process is confirmed not only

by the species’ individual responses (Table 3, Fig. 4), but

also by the presence of a positive significant association

between hydrophyte richness and conductivity revealed by

the Spearman rank correlation coefficient (rS = 0.679,

p = 0.003). In relation with the second axis, most species

are associated with medium pH conditions. However, as

further confirmed by logistic regressions (Table 3, Fig. 4),

A. natans appears associated with lower pH conditions,

and, in contrast, S. erectum is associated with a more

neutral pH. This is a process of species turnover that is

constrained by pH and elevation gradients.

Regarding the sampling units (the lakes), 13 of them

(numbered 5–17 in Fig. 2), belonging to the sectors E

Gredos and W Gredos, are characterized by differing

combinations of pH and conductivity levels. The Bejar

lakes (1–4 in Fig 2), though generally more acidic and

with a relatively high conductivity, may also have a rela-

tively high pH (lake 4) and a relatively low conductivity

(lake 2). Consistently, lakes 5 and 8 (W Gredos) and lakes

11 and 14 (E Gredos), which are characterized by acidic

and low-conductivity conditions, harbor none species or

just one. In contrast, lakes with higher conductivity con-

ditions (e.g., 1 in Bejar and 6 in W Gredos) harbor 5–7
hydrophytes. Lake 9 harbors seven species, although it has

low conductivity. However, it is one of the larger lakes in

Gredos, and, although lake area was not significant in this

analysis, this descriptor is a known ecological factor

affecting hydrophytes.

Contrasting processes of species
segregation and aggregation seem to
counterbalance each other to co-generate a
resulting pattern of random species co-
occurrence

As shown above, community composition is determined by

at least two contrasting processes. The first process, species

turnover along pH and elevation gradients, leads to species

segregation (turnover). The second process consists of spe-

cies aggregation constrained by increasing conductivity.

The segregation process seems to generate more checker-

boards than would be expected by chance (see examples in

Table 4A–C). In contrast, the aggregation process seems to

generate fewer checkerboards than would be expected by

chance (see examples in Table 4D–F). Overall, these

contrasting processes seem to counterbalance each other to

co-produce a resulting pattern of species co-occurrence

that is not aggregated or segregated, but random.

Assembly simulations under simultaneous
processes of species aggregation and
segregation generate random patterns of
species assembly over 90% of times

The collection of simulated matrices had, on average, 28%

of species presences. The subsequent tests of the null

hypothesis of random assembly, at 5% significance level,

lead to the rejection of the said null hypothesis 8.4% of the

Table 1. Descriptive statistics of environmental variables and

hydrophyte richness in n = 17 permanent lakes of the Gredos Massif

(Central System, Spain). Chemical descriptors (conductivity and pH)

were measured in mid-summer. Physical descriptors (elevation and

lake area) were obtained from Toro et al. (2006).

Variable Maximum Minimum Range Mean SD

Conductivity

(lS cm�1)

15.4 3.4 12.0 7.0 3.3

pH 7.0 5.8 1.2 6.3 0.3

Elevation (m a.s.l.) 2300 1595 705 2019 168

Lake area (ha) 20.3 0.1 20.2 3.3 5.2

Species Number 7 0 7 3 2

Table 2. Parsimonious distance-based redundancy analysis (dbRDA)

results (see plots in Figs. 2–4): (i) model summary, (ii) marginal effects

of terms, and (iii) variation explained by individual axes. The response

is a dissimilarity matrix computed on the presence–absence of hydro-

phytes in the Gredos lakes (n = 17) using the Jaccard coefficient. Vari-

ance inflation factors are 1.52 (conductivity), 1.68 (pH), and 1.24

(elevation).

df var. F P

(i)

Model 3 1.94 5.28 0.001

Residual 13 1.59

R2 = 57%

Adj. R2 = 47%

(ii)

Conductivity 1 0.85 6.97 0.002

pH 1 0.44 3.57 0.008

Elevation 1 0.65 5.31 0.002

Residual 13 1.59

(iii)

CAP1 1 1.24 10.13 0.001

CAP2 1 0.54 4.44 0.005

CAP3 1 0.16 1.27 0.271

Residual 13 1.59

CAP, canonical analysis of principal coordinates axes.
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times with the C-Score test and 8.6% of the times with the

discrepancy index test. In other words, simulation of spe-

cies assembly under concurrent contrasting processes lead-

ing to species aggregation and segregation generated

random assembly patterns about 91.5% of times. Although

simulation results (Fig. 5) suggest that the C-score test is

better calibrated than the discrepancy test (a property

inherent in the tests, not in the simulation), the p-value dis-

tributions (Fig. 6) show that simulation of species assembly

under the said contrasting processes generates random

patterns most of the time, as expected. Therefore, the

simulation results support the suggestion that concurrent

processes of species segregation and aggregation counter-

balance each other to co-generate a resulting pattern of

random species co-occurrence.

Discussion

Sources of uncertainty and causality

Readers might object that these results rely on mere

relationships found in survey data, not in manipulative

research. Hence, to find evidence supporting causality,

now we aim to revise the two sources of uncertainty usu-

ally present in survey data (Cox and Donnelly 2011). The

first is that the ordering of the variables might be wrong.

If so, the (supposedly) right ordering would imply the

use of the lake environment as response and the hydro-

phyte presence–absence as explanatory variables. This,

however, is contrary to the field knowledge, which affirms

that bedrock, soil, and surrounding vegetation shape the

chemical composition of the lakes (Catalan et al. 1993;

Br€onmark and Hansson 2005), not the opposite. Hence,

we believe that our ordering of the variables (hydrophyte

presence/absence as response and environmental charac-

teristics of the lakes as explanatory variables) is right.

The second source of uncertainty is the (supposed)

presence of third variables controlling both response and

potential cause. To “help strengthen (. . .) a causal effect”,
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0Figure 2. Plot of the distance-based

redundancy analysis model summarized in

Table 2. Numbers identify lakes (1–4: Sector

Bejar; 5–8: Sector W Gredos; 9–17: Sector E

Gredos). Antinata = Antinoria natans;

Callbrut = Callitriche brutia;

Eleoacic = Eleocharis acicularis;

Isoeastu = Isoetes asturicense;

Juncbulb = Juncus bulbosus;

Myrialte = Myriophyllum alterniflorum;

Ranupelt = Ranunculus peltatus;

Sparangu = Sparganium angustifolium;

Subuaqua = Subularia aquatica.

Elev = elevation; Cond = conductivity;

CAP = canonical analysis of principal

coordinates.

Figure 3. Partitioning of variation in species composition of the

aquatic vegetation in the Gredos lakes (Spain) between chemical (C)

and physical (P) components after redundancy analysis (Table 2 and

Fig. 2). The chemical component includes pH and conductivity, but

the physical component includes only elevation (lake area was not

significant).
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Cox and Donnelly (2011) recommend B. Hill’s guidelines

(Hill 1965). Accordingly, evidence that an association is cau-

sal if (1) the association is strong, which in this case is true

(Tables 2 and 3, Figs. 2–4), and (2) the association has an

explanation that is available beforehand, which – as

explained in the introduction – is also true (see Roelofs et al.

1984; Brouwer et al. 2002; Murphy 2002; Br€onmark and

Hansson 2005). Similarly, causality is supported if (3) the

effect is found in independent studies, which is certain (Ga-

cia et al. 1994; Murphy 2002), and (4) the association is

based on manipulative research. Our results are consistent

with prior manipulative research: For example, liming and

nutrient enrichment have been shown to cause the emer-

gence of S. angustifolium (Lucassen et al. 2009) and R. pelta-

tus, (Roelofs 1983), respectively, which are relationships

found here (Tables 2 and 3; Figs. 2 and 4). Likewise, (5) a

potential cause must precede its proposed effect, which is

also certain because, as earlier explained, variation in pH

and conductivity precedes variation in species co-occur-

rence. Equally (6) monotonic relationships support causal-

ity. This is certain because the logistic regressions (Fig. 4)

show how the presence/absence of species is monotonically

explained by pH, conductivity, and elevation. Finally, (7) a

causal effect should be specifically generated by a defined

pathway. Here, the pathway consists of two contrasting pro-

cesses that compensate each other to co-generate the

observed pattern of co-occurrence, which is not aggregated

or segregated, but random. In sum, we believe that evidence

supports causality.

What is the underlying mechanism that
generates the pattern of random species co-
occurrence?

We have shown that community composition in the

Gredos lakes is determined by two contrasting processes

of species turnover (constrained by pH and elevation)

and species aggregation (constrained by increasing con-

ductivity). Also, it has been shown by means of examples

that segregation generates more checkerboards than

expected by chance and that aggregation generates more

co-occurrence than expected by chance. Thus, the

observed patterns of segregation and aggregation strongly

suggest that these contrasting environmentally constrained

processes might counterbalance each other to co-produce

a pattern of random species co-occurrence. Although the

effect of the aggregation process on community composi-

tion seems to be larger than the effect of the turnover

process, the resulting effect seems to create a pattern of

species co-occurrence in the Gredos lakes that is not

aggregated or segregated, but random. We believe that

our simulation study supports this suggestion.

What can we infer from a random pattern
of species assembly?

Assuming that patterns of species co-occurrence can be

used to draw inferences about assembly processes (Harvey

et al. 1983; Gotelli and Ulrich 2012), plant ecologists

either explicitly or implicitly judge that if an undisturbed

plant assemblage presents a random pattern of species

co-occurrence, then the pattern is not environmentally

determined – but totally or partly caused by stochastic

processes (Wilson 1988; Wilson et al. 1992; Burns 2007;

Boschilia et al. 2008; Reitalu et al. 2008). However, under

the logic of Neyman–Pearson hypothesis testing (Under-

wood 1997; Lehmann and Romano 2005), which is used

in the null model approach (Gotelli and Ulrich 2012), if a

null hypothesis is not rejected, the conclusion is that the

alternative hypothesis is disproven – but the null hypoth-

esis itself is not proven. Hence, when the null hypothesis

of random assembly cannot be rejected, the test

Table 3. Summaries of logistic regressions testing the dependence of the mean probability of presence on environmental gradients for Antinoria

natans (R2 = 0.29), Callitriche brutia (R2 = 0.30), Isoetes asturicense (R2 = 0.35), Ranunculus peltatus (R2 = 0.28), and Sparganium angustifolium

(R2 = 0.36). No model was fitted for Juncus bulbosus. As no overdispersion was found, the dispersion parameter was taken to be 1 in all cases.

See plots in Fig. 4.

Species Null deviance Residual deviance Parameter Estimate SE z P

A. natans 23.04 16.41 Intercept 34.25 17.88 1.9 0.06

on 16 df on 15 df pH �5.57 2.90 �1.9 0.05

C. brutia 23.04 16.12 Intercept �4.35 2.13 �2.0 0.04

on 16 df on 15 df Conductivity 0.58 0.31 1.9 0.06

I. asturicense 23.51 15.2 Intercept �4.91 2.37 �2.1 0.04

on 16 df on 15 df Conductivity 0.73 0.36 2.0 0.04

R. peltatus 23.04 16.63 Intercept 20.71 11.07 1.9 0.06

on 16 df on 15 df Elevation �0.01 0.01 �1.9 0.06

S. angustifolium 23.51 15.01 Intercept �39.42 18.44 �2.1 0.03

on 16 df on 14 df Conductivity 0.53 0.25 2.1 0.03

pH 5.66 2.75 2.1 0.04
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conclusion should not be that stochastic processes caused

the observed random patterns (which remains unproven),

but that biotic interactions, dispersal, and environmental

variability – in sum, the ecological processes excluded

under the null hypothesis – did not cause the observed

random patterns. This conclusion, however, is rarely writ-

ten down by plant ecologists – though Burns (2007) did.

To sum up, when upon retention of the null hypothesis

of random assembly, a researcher denies environmental

determinism, he or she is inferring a right conclusion –
but it cannot imply prevalence of stochastic processes.

This is a posterior explanation, not a logical conclusion

under Neyman–Pearson hypothesis testing.

Also, this research provides a counter-example where a

plant assemblage that presents itself as randomly

structured is indeed environmentally determined. It is a

single example but, on the one hand, suffices to prove the

generality of the assertion that “prevalence of contingent

processes can be inferred from random assembly pat-

terns” to be false. On the other hand, environmental

determinism (as suggested here) and stochastic processes

(presumably but not positively proved), two clearly differ-

ent processes, might cause the same random pattern.

Additionally, Ulrich (2004) has shown that computer-

simulated neutral dispersal – a true stochastic process –
leads to patterns of segregation, not to random patterns.

So, in consequence, we cannot infer stochastic assembly

or deny environmental determinism from random pat-

terns. Hence, we believe that, upon retention of the null

hypothesis of random assembly (and assuming that a type
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Figure 4. Fitted relationships (parsimonious

logistic models) between species A. natans (A)

S. angustifolium (B–C), C. brutia (D), I.

asturicense (E) and R. peltatus (F) probability of

presence and environmental predictors (see

Table 3).
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II error did not occur), we only can conclude that the

observed pattern is neither segregated nor segregated, but

random.

Are there unstated assumptions in the null
model approach?

There remains a paradox to be explained. If denial of

environmental determinism is a logical consequence of

Table 4. Examples of species pairs contributing to patterns of segregation (A, Antinoria natans vs. Sparganium angustifolium; B, Callitriche brutia

vs. Antinoria natans; C, Sparganium angustifolium vs. Ranunculus peltatus) and aggregation (D, Callitriche brutia vs. Isoetes asturicense; E, Isoetes

asturicense vs. Ranunculus peltatus; F, Ranunculus peltatus vs. Callitriche brutia). Co-occurrence and checkerboard-like patterns are shaded. The

null hypothesis of no more co-occurrence than expected by chance was not rejected for A, B, and C in Pearson’s chi-squared tests (m = 1) with

Yates’ continuity correction (A: Χ2 = 0.00, P = 0.999; B: Χ2 = 0.38, p = 0.536; C: Χ2 = 0.04, P = 0.839). In contrast, the same null hypothesis

was rejected for D, E, and F (D: Χ2 = 4.74, P = 0.029; E: Χ2 = 4.74, P = 0.029; F: Χ2 = 6.87, P = 0.009). The numbers identify the lakes as in

Table 1 of online resource 1. Lakes 8, 11, and 14 harbor no species.

A 1 9 6 4 2 13 5 15 7 12 17 3 11 10 8 14 16

A. natans 1 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0

S. angustifolium 1 1 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0

B 1 2 9 6 3 5 16 17 4 7 8 10 14 12 11 15 13

C. brutia 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0

A. natans 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0

C 9 6 1 3 15 2 12 16 13 7 4 11 14 5 8 17 10

S. angustifolium 1 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0

R. peltatus 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0

D 1 2 3 4 6 9 7 16 17 5 8 10 11 12 13 14 15

C. brutia 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0

I. asturicense 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0

E 9 6 1 3 2 7 4 16 17 15 12 13 11 14 5 8 10

I. asturicense 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0

R. peltatus 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0

F 1 2 3 16 9 6 4 7 8 10 11 12 13 14 15 5 17

R. peltatus 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0

C. brutia 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
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Figure 5. Q-Q (quantile-quantile) plots showing the agreement

between the simulation (sample) P-value quantiles and the [0,1]-

uniform quantiles for (A) the C-score test and (B) the discrepancy

index test. Under the null hypothesis of random assembly, and

assuming that the tests are well calibrated, the dots should be close

to the diagonal line.
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Figure 6. Histograms of simulated P-values for (A) the C-score and

(B) the discrepancy index tests. Under the null hypothesis of random

assembly, and assuming that the tests are well calibrated, the
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p-value distribution should be close to the horizontal line.
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retaining the null hypothesis of random assembly, but (as

suggested here) a random pattern might be caused by

environmental constraints. . . Where is the mistake? We

believe that the paradox arises from unstated assumptions

of the research model from which the null hypothesis

derives. This simple research model, without specializing

too much (Gotelli and Ulrich 2012), states that biotic

interactions, dispersal and environmental variability struc-

ture species co-occurrence (G€otzenberger et al. 2012).

However, we believe that the model (though apparently

simple) assumes that a single ecological factor prevails

and structures species co-occurrence or that if several

factors co-exist, then all of them act in a unique

direction, generating either aggregation or segregation.

Consequently, if two opposing processes concurrently

constrained a community with contrasting effects, thus

co-generating a pattern which would be neither segre-

gated nor segregated (but random), then an apparently

paradoxical result might occur. Our simulation study

supports this suggestion.

The advantages of the simplicity of null model analysis

versus more explicit models have been emphasized

(Gotelli and Ulrich 2012). However, regarding plant com-

munities, are the unstated assumptions of the implicit

research model plausible? We do not reject the idea that

these model assumptions are probably tenable in some

cases as, for example, relatively simple plant communities

inhabiting harsh environments. Nevertheless, given the

usual complexity of ecosystems, we believe that these

assumptions would be untenable in many other cases. In

our case, for example, two ecological processes have been

found to explain only about half of the variation in spe-

cies co-occurrence. Clearly, one or perhaps more

(unknown) biotic or abiotic factors might also exert an

extra influence in the assembly of the hydrophytes

community.

Conclusion

We have suggested that two environmentally constrained

processes of species segregation and aggregation might

co-generate the random pattern of hydrophyte co-occur-

rence found in an Iberian ecosystem of soft water lakes.

This apparently paradoxical suggestion has been sup-

ported by means of a simulation study. On the other

hand, we have also suggested that the null model

approach assumes that a single ecological factor prevails

or that if several factors decisively influence the commu-

nity, then they all exert their influence in the same direc-

tion, generating either aggregation or segregation. If we

are right, these assumptions are unlikely to hold in many

cases, and, in consequence, we would like to propose

plant ecologists to investigate specifically the ecological

processes responsible for observed random patterns,

instead of trying to infer processes from patterns.
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