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Abstract

Persistent destruction of pancreatic β-cells in type 1 diabetes (T1D) results from multiface-

ted pancreatic cellular interactions in various phase progressions. Owing to the inherent het-

erogeneity of coupled nonlinear systems, computational modeling based on T1D etiology

help achieve a systematic understanding of biological processes and T1D health outcomes.

The main challenge is to design such a reliable framework to analyze the highly orchestrated

biology of T1D based on the knowledge of cellular networks and biological parameters. We

constructed a novel hybrid in-silico computational model to unravel T1D onset, progression,

and prevention in a non-obese-diabetic mouse model. The computational approach that

integrates mathematical modeling, agent-based modeling, and advanced statistical meth-

ods allows for modeling key biological parameters and time-dependent spatial networks of

cell behaviors. By integrating interactions between multiple cell types, model results cap-

tured the individual-specific dynamics of T1D progression and were validated against exper-

imental data for the number of infiltrating CD8+T-cells. Our simulation results uncovered the

correlation between five auto-destructive mechanisms identifying a combination of potential

therapeutic strategies: the average lifespan of cytotoxic CD8+T-cells in islets; the initial num-

ber of apoptotic β-cells; recruitment rate of dendritic-cells (DCs); binding sites on DCs for

naïve CD8+T-cells; and time required for DCs movement. Results from therapy-directed

simulations further suggest the efficacy of proposed therapeutic strategies depends upon

the type and time of administering therapy interventions and the administered amount of

therapeutic dose. Our findings show modeling immunogenicity that underlies autoimmune

T1D and identifying autoantigens that serve as potential biomarkers are two pressing

parameters to predict disease onset and progression.

Author summary

Pancreatic β-cells secreting insulin upon metabolic demand are the core to regulate glu-

cose concentration for healthy states. Type 1 diabetes (T1D) is a group of metabolic
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disorders in which β-cells are targeted by biased decisions of the immune system. The bar-

rier in sampling experimental data from pancreatic tissues in high-risk T1D subjects and

the complexity of the mechanisms regulating T1D makes the use of quantitative modeling

approaches an intriguing opportunity to analyze this disease. To decipher complex system

behaviors resulting from inter- and intra-cellular and signaling networks linking the

immune system and metabolism during T1D progression, we developed a hybrid compu-

tational framework to unravel high computational complexity levels for individual-spe-

cific T1D development in non-obese diabetic mice. We also discovered non-intuitive

biological parameters, the potential for therapeutic strategies. These effective strategies

associated with hybrid agent-based modeling can serve as a prototype for in- silico experi-

ments of therapy-directed trials potentially regulating T1D progression. We expect that

the proposed methods will play an important role in the quest for standardized applica-

tions of agent-based modeling to simulating complex disease progression.

Introduction

Various autoimmune disorders influence human health; type 1 diabetes (T1D), a form of dia-

betes mellitus in humans and animal research, is a group of metabolic disorders in which insu-

lin-secreting β-cells are targeted by biased decisions of the immune system. T1D progression

after initiation follows multiple phase transitions in complex pancreatic cellular networks. As

the primary infiltration of the immune response against self-antigens proceeds, numerous

interactions including cell differentiation and competition between different types of cells

accelerate the induction of autoimmune responses, which eventually leads to T1D onset and

progression.

The barrier in sampling experimental data from pancreatic tissues or lymph nodes in high-

risk T1D subjects makes the use of mathematical/computational modeling of pancreatic β-cell

destruction an intriguing opportunity to analyze this disease. Various questions and problems

typically arise from researchers and the disease on a daily basis that require long and tedious

experimental work to possibly find an answer. Since the model has been trained on multiple

datasets, having such a practical and flexible platform can widen the horizon with reasonable

accuracy and provide preliminary insight into the appeal of such questions as the ABM model

can be quickly adjusted to address such inquires and issues before conducting any experi-

ments. In addition, we can all acknowledge designing an experiment requires lengthy paper-

work and follows with associated costs assuming all the tools, materials, patients are available

for lab work. Moreover, experiments alone cannot often explain the behavior of very rich and

complex developmental dynamics of pancreatic islets and β-cells with feedback across different

levels of biological organization as pointed out in Anmar and Santiago’s review [1]. Such a

quantitative approach emerging from modeling the detailed biology of immune responses

could provide novel insights into the mechanisms underlying the regulation of T1D when the

safety, reproducibility, and efficiency of the present experimental techniques are challenging.

Now the challenge is to design and construct such a quantitative framework for analyzing

highly orchestrated biology, immunology, and the pathogenesis of T1D based on the current

knowledge and modular organization of cellular networks and biological parameters. To

unravel complex system behaviors resulting from the inter- and intra-cellular and signaling

networks linking the immune system and metabolism during T1D progression, it is crucial to

first integrate essential information from inherent biological processes into a systematic

framework.
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Mathematical models have been widely employed to study systematic behaviors in disease

progression [2–8]. Our previous studies focused on the mathematical modeling of T1D pro-

gression using novel object-oriented approaches such as integro-differential equation model-

ing with reasonably defined sets of criteria that determined susceptibility to T1D [9–12].

Compared to mathematical models, agent-based modeling (ABM) has been used to model cell

heterogeneity from single-cell variations to mixed cells by simulating the behaviors of individ-

ual agents [13–17]. Depending on the behaviors of individual agents in a biological system,

agents interact with each other and move over a simulation environment following a set of

pre-defined rules [18].

Linderman et al. applied an agent-based approach to examine the relationships between

parameters related to dendritic cell-T cell interactions and the output of primed T cells [19].

There are also a number of agent-based models focusing on different aspects of T1D progres-

sion. Wedgwood et al. developed an agent-based model to investigate the progression of insuli-

tis in human T1D by simulating interactions among B cells, T cells, and beta cells [20].

Additionally, Ozturk et al. proposed an agent-based model focusing on modeling interaction

between beta cells and different types of CD8+ T cells [21]. Later, Xu et al. proposed another

agent-based model to simulate the effect of regulatory T cells on T1D progression [22]. Com-

pared to the previous studies, we focus on modeling the detailed biology of dendritic cells and

their interactions with CD8+ T cells, beta cells, and antigens. Moreover, thorough and expen-

sive statistical methods were utilized to analyze the outputs of the model and provided a solid

foundation for therapy-directed simulations. This model was also designed to investigate indi-

vidual-specific dynamics of CD8+ T cells which were observed in NOD mouse experiments.

The non-obese diabetic (NOD) mouse is a well-established animal model that exhibits strik-

ing similarities to the disease in humans. NOD mouse models sharing a number of genetic and

immunologic traits with human T1D [23–25] serve as testing arenas for potential treatments

and reliable and prominent tools for studying the pathogenesis of T1D in humans [26]. Since

identifying safe methods for sampling and visualizing the human endocrine pancreas remains

incompletely understood [27], autoimmunity during T1D progression has been investigated

extensively in NOD mouse models [23,24]. Therefore, an abundance of data is accessible for

accurate incorporation of relationships among agents to support the establishment of ABM.

Based on the above facts, we proposed a novel hybrid agent-based model by integrating

phase progressions in complex pancreatic cellular networks, mathematical modeling, biologi-

cal parameters, and ABM into a computational framework to simulate T1D progression using

experimental data and clinical evidence from NOD mouse models. Through exploiting ABM,

the aim of this study includes the following four aspects: (1) to develop a hybrid model based

upon the underlying mechanisms summarized from the NOD mouse model and then cross-

validate the model with experimental data; (2) to predict pancreatic β cell destruction targeted

by the immune system during T1D progression; (3) to identify key parameters in driving auto-

immunity and estimate effects of these parameters on determining how sensitive (or uncer-

tain) different mechanisms of the model are to perturbations and thus identifying potential

targets for therapeutic purposes; and (4) to conduct therapy-directed simulations and explore

immune-intervention strategies for predicting the onset and progression of the disease and

potentially treating T1D.

Materials and methods

Abstraction of modeling performance

This hybrid computational modeling is designed to simulate a T1D progression, i.e., starting

with the detection of antigens in pancreatic islets to possible outcomes of overt T1D. We focus

PLOS COMPUTATIONAL BIOLOGY Hybrid computational modeling of type 1 diabetes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009413 September 27, 2021 3 / 31

https://doi.org/10.1371/journal.pcbi.1009413


on modeling interactions between a class of agents including antigen, pancreatic β cell, den-

dritic cell, naive CD8+ T cell, activated CD8+ T cell, and cytotoxic CD8+ T cell. The rules that

govern interactions between these agent classes were summarized based on existing literature

(which is described in detail in the Agent behaviors section). The selection of an agent class

was based on expert knowledge and available experimental data of infiltrating CD8+ T cells.

Under different biological conditions, the model can predict the individual-specific trajectory

of infiltrating CD8+ T cells. The model can also predict the time interval between antigen

detection to the possible development of overt diabetes to mimic the differentiation in T1D

progression. Moreover, the model provides a computational platform to test the efficacy of dif-

ferent therapeutic strategies.

Simulation software packages

The data-driven agent-based model was implemented in the NetLogo environment, which is a

multi-agent programmable language and integrated modeling platform [14,28–30]. The pri-

mary user interface of NetLogo comprises two-dimensional (2D) grids, in which two types of

agents are used to construct an agent-based model (as shown in Fig 1). A patch is an immobile

agent type that comprises the background grids in the simulation space. Turtles usually

referred to as mobile agents can interact with other turtles and maneuver over patches in the

simulation space. Turtles can be classified into various types of agents for modeling different

cell motility, interaction, migration, etc. and their associated attributes can be defined as state

variables in the simulation. These state variables help differentiate the behaviors of individual

agents and allow computational modelers to simulate the functions and/or actions of these

agents regulated by the system. The user-friendly interface of NetLogo also allows modelers to

define model parameters and observe simulation results.

Simulation initial setting

We generated a 201 × 201 2D grid in NetLogo as the simulation interface, designed to reflect a

2D projection of the pancreas in NOD mice. The 2D projection of the pancreas comprises

Fig 1. Schematic illustrating pancreatic islets, circulation, and PLNs in the NOD mouse model. Patches are shown

by the background grids in NetLogo, turtles are mobile agents moving over the background grids (e.g. Naïve CD8+ T

cell). DCs and CD8+ T cells migrate from circulation and/or PLNs to pancreatic islets, which contribute to T1D

progression. One pancreatic islet is shown (the area restricted by the dashed curve in the pancreas). Pancreatic islets

may overlap and form clusters of islets in the pancreas.

https://doi.org/10.1371/journal.pcbi.1009413.g001
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three areas including pancreatic islets, circulation, and PLNs, storing the three main locations

of immune responses in T1D progression (as shown in Fig 1). A pancreatic islet is a complex

zone where pancreatic β cells, pancreatic α cells, and pancreatic δ cells are located [31]. In pan-

creatic islets, β cells are targets of infiltrating CD8+ T cells, and a persistent assault to β cells

results in T1D [32,33]. Approximately 900,000 pancreatic β cells reside in the pancreas of the

NOD mouse [26,27]. To further improve the performance of computational complexity, we

simulated approximately one percent of the total number of β cells in the agent-based model.

The number of other cell types was also proportionally reduced to accurately imitate the num-

ber of interacting cells. We used multiple patches (i.e. grids in the 2D NetLogo simulation

interface) to represent pancreatic β cells because β cells are immobile during T1D progression.

To initialize the pancreatic β cells, 25 patches were selected as the centers of islets, and pan-

creatic β cells were then formed by an automated random process to furnish the area in a cir-

cular fashion with a radius of 38 grid units away from the selected center patches. The

averaged diameter of a pancreatic islet is equivalent to 100 μm [27], and thus we set the length

of each grid to 1.32 μm in pancreatic islets. For the simulation size presented in this paper, the

number of pancreatic β cells was fixed to 8080 counts. PLNs are distributed in the surrounding

area of the pancreas where APCs interact with naïve CD8+ T cells [34–36]. We divided the

entire interface of NetLogo into three regions to mimic pancreatic islets, nearby circulations,

and PLNs, as illustrated in Fig 1. For the in-silico modeling environment, the random process

for which different agents (cells) interact is more important than the actual physical morphol-

ogy, which in vivo determines how these agents will interact. The choice of agents is directly

comparable to the cell types and tissue organization formed in the pancreas [14]. Therefore,

the NetLogo setup is appropriate for this model.

Agent behaviors

Autoantigens, a trigger to initiate the onset of T1D, are the first agents released by apoptotic β
cells [33]. Apoptotic β cells in this manuscript refer to those β cells that are in the process of

programmed cell death. In accordance with the autoantigen stimuli, the number of apoptotic β
cells is initialized in the agent-based platform, and then infiltrating CD8+ T cells in the simulat-

ing experiment engage in autoimmunity. If the immune tolerance is unable to restore homeo-

stasis for infiltrating CD8+ T cells, beta cells eventually succumb to damage and apoptosis.

Resident DCs in the neighborhood engulf the released autoantigens and become APCs [33].

These islet-resident APCs migrate to PLNs at 15–18 days of T1D onset [33] where they present

autoantigens and activate naïve CD8+ T cells [35]. The activation process has three stages. Dur-

ing the first stage, APCs have a random short-span interaction with naïve CD8+ T cells; this

process lasts 6–8 hours after PLNs hosting APCs [37]. Following the first stage, APCs establish

prolonged and stable interactions (2–24 hours) with naïve CD8+ T cells, leading to activation

of naïve CD8+ T cells [38]. Activated CD8+ T cells experienced multiple rounds of differentia-

tion with a time interval of 4–8 hours before they eventually egress PLNs after 3–5 days and

approach pancreatic islets [38,39]. As naïve CD8+ T cells become activated, APCs unbind from

activated CD8+ T cells, and then randomly advance to stimulate the next available naïve CD8+

T cell. The lifespan of APCs ranges from 48 hours to 72 hours in PLN [40,41]. For this purpose,

each APC was assigned state variables to indicate the time that they have already lived and fol-

low a stochastic process within their lifespan range, a uniform distribution unif(48, 72). The

value of the state variable was updated by 1 unit per simulation step, where each simulation

step represents 1 hour in T1D progression. If the value of the assigned state variable for an

APC agent in PLNs exceed 72 hours, the agent is then forced to die. “Die” in NetLogo leads to

disappearance and removal of an agent in the simulation. During the lifespan of APCs, APCs
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could activate multiple naïve CD8+ T cells based upon the time required for triggering naïve

CD8+ T cells. Each binding activated CD8+ T cell is then able to proliferate 4 to 7 new CD8+ T

cell every 5 days based upon experimental data presented in [42].

Activated CD8+ T cells enter efferent lymph vessels [43] and then migrate to islets through

circulation [44]. In pancreatic islets, activated CD8+ T cells can be further stimulated by anti-

gens released by pancreatic beta cells and become cytotoxic CD8+ T cells [35]. Cytotoxic CD8+

T cells move within/between islets following a random pattern, Brownian motion, and their

velocities are in the range of 10–15 μm/min [44]. The speed of cytotoxic CD8+ T cells was

accordingly adjusted in the simulating experiment because the space between each islet was

designed for a 2D grid simulation interface. Cytotoxic CD8+ T cells destroy pancreatic beta

cells via a direct interaction [32], and T1D progression proceeds as a result of the random

movement of cytotoxic CD8+ T cells. Pancreatic β cells undergo an apoptotic process after

they are in conjunction with cytotoxic CD8+ T cells [32,45]. As more pancreatic β cells endure

the process of programmed cell death, the recruitment of DCs from circulation to islets is

enhanced [46,47]. To this end, the number of recruiting DCs was correspondingly calibrated

using mass-action kinetics, which will be discussed in detail in the Mathematical Model Sec-

tion. Recruited DCs move within islets and engulf autoantigens through the phagocytosis pro-

cess at sites of insulitis, and then migrate from islets to PLNs. Within PLNs, following these

cycles of migration, the recruited APCs further activate naïve CD8+ T cells and promote the

prognosis in pancreatic T1D.

Pancreatic β cells may proliferate their offspring during T1D progression [48–50]. A recent

study also found out that regenerating and glucose-stimulated β cells can re-enter cell division

cycles in a shorter period, compared to β cells recovering through cell division cycles under

normal conditions [51]. To mimic these characteristics of β cells in NetLogo, each β cell is

assigned to a state variable with the purpose to identify a quiescence period. During the quies-

cence period, β cells are not able to divide and proliferate. Based upon the study [51], pancre-

atic β cells can remain in a quiescence period for approximately 7 days (168 hours). At the

beginning of a simulation, we assume the quiescence period of β cells follows a uniform distri-

bution (unif(0, 168)). If the state variable (associated with the quiescence period) of a specific β
cell is equal to 72, it means that this β cell has stayed in a quiescence period for 72 simulation

steps (note 1 simulation step represents 1 hour in T1D progression). During the simulation,

the quiescence period of each β cell was checked every simulation step. Once the quiescence

period of β cells exceeds the maximum quiescence period (e.g. 168 hours), β cells can re-enter

the cell division and start to proliferate new β cells at the next simulation step. The quiescence

period of β cells was shortened as the simulation proceeds since regenerating and glucose-

stimulated β cells re-enter the cell division cycles in a shorter period during a T1D progression.

A change in the quiescence period of β cells was formulated using a power function, as demon-

strated in the Mathematical Model Section. Fig 2 shows the behavior of different types

of agents within islets, circulation, and PLNs during T1D progression. Fig 3 demonstrates

all the interactions between agents and the level of intelligence in the ABM. For a detailed

description of agents’ setup and cellular interactions in NetLogo, one can refer to S1, S2 and

S3 Tables.

Mathematical model

To calibrate quantitative changes in agent number during T1D, we used mathematical expres-

sions and mathematical models to measure the recruiting process of circulating DCs and the

pancreatic β cell replication. For example, we calibrated the mass-action kinetics to measure

the number of recruiting DCs from circulation, which depends upon apoptotic β cells,
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expressed as follows:

DCrjt¼jþ1 � DCrjt¼j ¼ krbAPjt¼jDCc

where DCr|t = j+1 represents the number of recruiting DCs at the simulation step j+1, and DCr|t

= j represents the number of recruiting DCs at the simulation step j. βAP|t = j represents counts

of apoptotic β cells at the simulation step j, kr 2 Nðmr; srÞ represents the recruiting rate for

DCs in circulation for a given (μr, σr), and DCc is defined as counts of DCs in circulation. The

number of circulating DCs during T1D progression was observed to remain unchanged [52].

DCc was then assumed to stay stable in the simulation.

Experimental studies reported that β cells had an increased rate of proliferation, functional

recovery, and resistance to autoimmune destruction during T1D progression in a NOD mouse

model [48,50,53,54]. A recent study also suggested that replicated β cells were able to re-enter

cell division after a certain quiescence period [51]. This study also found out the quiescence

period was shortened by an increased rate of glucose metabolism [51]. In addition, recent

studies suggested that the glucose level was enhanced as the percentage of apoptotic β cells

increased [55]. Based upon the experimental evidence, we assume that the quiescence period

of viable β cells (the apoptotic β cells and dead β cells lose the ability to replicate) is associated

Fig 2. Schematic diagram of T1D progression in circulation, islets, and PLN. The legend shows the cell types and

autoantigens used as agents in the ABM structure.

https://doi.org/10.1371/journal.pcbi.1009413.g002
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with the percentage of apoptotic beta cells in a time-dependent manner. To model β cell repli-

cation, functional recovery, and resistance to autoimmune destruction, we propose the follow-

ing mathematical expression:

Tbi jt¼j ¼ 1 �
bAPjt¼j

binit

� �g

� Tbi jt¼0

where Tbi jt¼j represents a quiescence period (the quiescence period represents a combined

effect of replication of β cells, functional recovery of β cells, and β cells’ resistance to autoim-

mune destruction) of the ith β cell at the simulation step j, and the power γ describes the

degree of glucose metabolism in the system. The degree of glucose metabolism was esti-

mated by counts of apoptotic β cells, βAP, the higher the apoptotic β cells in the system, the

shorter the quiescence period of surviving β cells. βinit represents counts of healthy β cells at

the onset of T1D autoimmunity, simulation step = 0. The value of γ was estimated and set to

1 because when the quiescence period of β cells becomes 2 days there are 70% of apoptotic β
cells in the islets (0.3γ×7 = 2)) [51]. Tbi jt¼0

represents the quiescence period of β cells under

normal condition (simulation step = 0). A state variable that calculated how long each β cell

survived in islets was assigned to each β cell at the beginning of the simulation. A β cell

started to undergo the replication process if the value of this state variable exceeded the

value of Tbi jt¼j.

Fig 3. Components of the agent-based model. The diagram demonstrates all the interactions between agents in

circulation, islets, and PLN and illustrates the level of intelligence in the ABM.

https://doi.org/10.1371/journal.pcbi.1009413.g003
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Experimental data collection

In addition to mathematical models, we collected experimental data such as the percentage of

cytotoxic CD8+ T cells proliferating within islets, the time required for DCs migrating from

islets to PLNs, and the lifespan of naïve CD8+ T cells in PLNs from existing experimental stud-

ies. These data were incorporated into data-driven agent-based modeling as system parame-

ters. Most of the data we collected were time-related experimental data, each of which helped

to simulate kinetic analysis of the model. We collected experimental data from studies that

were most similar to our simulation setting (e.g. in a NOD mouse model). We also investigated

other parameters used in simulations if data were not available from experimental studies,

which is explicitly described in the next section. A summary of the collected experimental data

is provided in Table 1.

Parameter estimation

The Latin hypercube sampling (LHS) method is applied to estimate the default values of

unknown parameters. The ranges of unknown parameters were summarized from literature

and obtained from the field experts’ suggestions, which are included in S4 Table (i.e. Ranges

used for LHS). Based on the LHS method, the range of each parameter value is divided into

n = 100 intervals and each interval of a parameter is sampled once. A total of 100 combinations

of parameters generated from the LHS Package in R was performed on our local server to

obtain the dynamics of CD8+ T cells and compare them with the experimental data. About 25

simulations were run simultaneously each time on the server (server-specific configuration: 4x

Intel Xeon CPU E5-4650 2.1 GHz 48 cores with 192 GB of RAM). In addition, each set of

parameters was then performed 20 times to obtain the average counts of infiltrating CD8+ T

cells at week 4, week 6, week 8, week 10, week 12, and week 14. A set of parameter values was

selected as the default values that satisfy the condition where the difference between the simu-

lated results and experimental data at weeks 4, 6, 8, 10, 12, and 14 is optimally minimized. The

Table 1. Data from experimental studies in the NOD mouse model.

Experimental data Value Sources

Percentage of CTLs proliferating in islets (15.4–23.8)

%

[42]

Number of islets in the pancreas 2500 counts [61]

Lifespan of naïve CD8+ T cell in PLN (3–5) days [38,39]

Time required for DCs migrating from islets to PLNs (15–18) days [33]

Lifespan of DCs in PLN (48–72) hrs [40,41]

Time required for naïve CD8+ T cell activation in PLN (2–24) hrs [37]

Time required for β cells remaining in a quiescence period under a non-glucose-simulated

environment

168 hrs [51]

Time required for β cells remaining in a quiescence period under a glucose-simulated

environment

48 hrs [51]

Time required for DCs interacting with naïve CD8+ T cells (6–8) hrs [37]

Time required for naïve CD8+ T cell differentiation in one cycle (4–8) hrs [38,39]

Time required for β cell replication 24 hrs [51]

Time required for CTL differentiation 120 hrs [42]

Number of CTL proliferating (4–7) counts [42]

Islet diameter (100–110)

μm

[27]

Time required for activated CD8+ T cell migrating from PLN to islets 120 hrs [62]

https://doi.org/10.1371/journal.pcbi.1009413.t001
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results then showed that kinetics of CD8+ T cells highly follow oscillatory dynamics as

observed and suggested by studies and experts [56–58]. Parameter ranges utilized for local sen-

sitivity analysis are included in S4 Table. The ranges determined by the field experts are

marked using asterisks. For other ranges, appropriate references are provided in S4 Table.

Local sensitivity analysis

An imperative characteristic of modeling studies of physiological systems, such as T1D, is the

potential to discover how sensitive (or uncertain) different mechanisms of the model are to vari-

abilities and thus pinpoint promising targets for therapeutic purposes. One aspect of the sensi-

tivity analysis is used to determine how elevated the change in a given output is generated by

perturbations in model input values [59,60]. The sensitivity analysis provides modelers insights

into the inherent nature of the model by investigating the relationship between input and out-

put variables. Within the sensitivity analysis, local sensitivity analysis quantifies the effect of

small variations of input factors on output variables when only one factor is changed at a time

[59]. A global sensitivity analysis was conducted later to investigate the effect of multiple inter-

actions between the inputs and model output. Compared to the global sensitivity analysis (as

described in the next section), local sensitivity analysis requires less computational costs [60].

For our simulating experiment, we deal with a total of NP = 21 unknown parameters in the

model (as tabulated in S4 Table). Local sensitivity analysis provides initial screening for sensi-

tive parameters, and then helps target the most sensitive parameters for global sensitivity anal-

ysis. To conduct a local sensitivity analysis, one factor was altered at a time while other factors

remained unchanged. For the varying parameter, nine values, M = 9, were selected on either

side of the default (baseline) value, Pd. Default values were estimated to fit the experimental

data (details were presented in the Result section) by numerous simulation replications. Four

values were selected on the left side of the default value, and four values on the right side of the

default value. The interval between the selected values was set equally to 5% of the default

value (in total the values range between [Pd±20%×Pd]). Each selected value, Ps2[Pd±20%×Pd],
was assumed to follow a normal distribution. The mean of the normal distribution was consec-

utively set to each of the nine selected values, and the standard deviation was calculated as 6%

of the default value of the selected parameter (the maximum value of each parameter can be

found in S4 Table), to ensure the parameter values extend to the larger range [Pd±30%×Pd].
Each selected value was performed N = 20 simulation runs to capture the stochastic nature of

the agent-based model. For these simulation runs, the time required for an overt T1D was

recorded as an output variable of interest Xs = Xs(Ps).
For each selected value of tested parameters, a boxplot was generated to measure 25th per-

centiles, median, and 75 percentiles of the output variable, as formulated below:

Xsj
¼ ½X1

sj
;X2

sj
; . . . ;XN

sj
� for j ¼ 1; 2; . . . ;M

Q1 Xsj

� �
¼ Xsj

25

100
N

� �� �

Q2 Xsj

� �
¼

Xsj

N
2

� �

þ Xsj

N
2
þ 1

� �

2
; if N is odd

Xsj

N þ 1

2

� �

; if N is even

8
>>>>><

>>>>>:
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Q3 Xsj

� �
¼ Xsj

75

100
N

� �� �

where Xsj
is a sorted vector, that is Xiþ1

sj
� Xi

sj
; 8i ¼ 1; 2; � � � ;N � 1, representing a series of

data, where Xi
sj

is the ith data in the sorted vector. Q1, Q2, and Q3 denotes the 25th percentile,

the median, and 75th percentile of the sorted vector, respectively. By calculating the quartiles of

a sorted vector, the distribution of data can be easily evaluated.

Furthermore, a one-way ANOVA test [63] was performed to identify if different levels of

unknown parameters have different effects on the model output (e.g. time required for T1D

development). The ANOVA test helped identify the sensitivity of unknown parameters to the

model output, which was conducted in the following procedures:

H0 : m1 ¼ m2 ¼ � � � ¼ mM and Ha : not all mean values are equal

where μj, j = 1,2,. . .,M represent the means of the output variable based upon each selected

value Ps of unknown parameters and the F-values is obtained from [63]

F ¼
SSR
SSE
¼

P
knkð �y�k � �y�� Þ

2nkð �y�k � �y�� Þ
2
=ðM � 1Þ

P
i

P
kðyik � �y�kÞ=ðN � MÞ

� FM� 1;N� M

where yik represents the ith observation in kth group. In ANOVA tests, the total variation in the

data is partitioned into two components: SSR and SSE, representing the sum of squares due to

the between-groups effect, and the sum of squared errors, respectively. ðyik � �y�kÞ is a variation

of observations in each group from their group mean estimates, �y�k , (i.e. variation within the

group), ð �y�k � �y�� Þ denotes variation of group means from the overall mean, �y�� , (i.e. variation

between groups), and nk is the sample size for the kth group. One should reject the null

hypothesis H0 if the p-value of the F test is smaller than the predetermined significance level

(e.g. α = 0.05), which indicates that at least one of the mean values of the output variable (i.e.

time required for T1D development) is significantly different from others.

Global sensitivity analysis

Global sensitivity analysis is a technique applied to simulations of the performance and the

quantitative effect of input variables on output variables when the input variables are varied

over the entire possible ranges [60]. Both the extended Fourier amplitude sensitivity test

(eFast) and Sobol’s method deliver the measures for the decomposition of the total variance of

model output into the main and interaction effect of each parameter. Compared to Sobol’s

method, eFast is more computationally efficient because it requires fewer sampling/simula-

tions [60]. As such, we implemented an eFast, which is an advanced version of the Fourier

amplitude sensitivity test (FAST). As introduced in the 70s, FAST is proposed to implement

sensitivity analysis for both monotonic and nonmonotonic models. Compared to other sensi-

tivity analyses such as partial correlation coefficients, FAST can more efficiently explore the

multidimensional space of input factors by a suitably defined search-curve [64]. The search

curve for the input factor Pi is defined as follows:

qi ¼
1

2
þ

1

p
arcsinðsin oisÞ for i ¼ 1; 2; . . . ;Nl ð1Þ

where qi representing a search curve in the unit interval (qi2[0,1] for i = 1,2,. . .,Nl) was pro-

posed by Saltelli et al. [64], and Nl = 5 representing the number of sensitive parameters based
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on local sensitivity analysis. The search-curve generates normalized sample points more uni-

formly distributed in the unit interval [64]. In Eq (1), ωi for i = 1,2,. . .,Nl�NP = 21 denotes the

corresponding frequency for qi corresponding to the normalized value of ith input factor and s
varies within the interval (0, 2π). The selection of ωi starts from the determination of ωmax for

a series of input factors such as Q = {qi, i = 1,� � �,Nl}. A maximum frequency ωmax for the series

of input factors can be obtained by the equationomax ¼
n� 1

2m , where n is the predetermined sam-

ple size (e.g. n = 200 for our simulation study), m denotes the interference factor (a default

value is 4) [65]. For the remaining frequencies, the maximum allowable frequency is given by:

o0max ¼
omax
2m , where o0max represents the second maximum frequency for the factor set Q. This

strategy for selecting other frequencies is applied to ensure the search curves has distinct fre-

quencies for ωmax and o0max. Thus, the search curve can fill the sampling space as much as pos-

sible. For a detailed description, one can refer to an automated algorithm proposed by Saltelli

et al. [64]. Moreover, since the range of the input factor qi is from 0 to 1, we implemented a

quantile function to transform the unit factor qi to a realistic value of input factors Xi. S2 Fig

illustrates the 2D transformation from the search curve to the sample points using eFast.

In S2A Fig, two search curves were depicted, with a search frequency equal to ω1 = 24 and

ω2 = 1, respectively. Then a scatterplot of sampling points for two factors is shown in S2B Fig.

Each point in the space needs to be transformed to a realistic value using a quantile function,

as shown in S2C Fig in which a cumulative distribution function (CDF) of a normal distribu-

tion with the random variable X � Nð100; 20Þ.

eFast is developed based upon the original FAST, and the advantage of eFast over the origi-

nal FAST is the ability to evaluate not only the first-order sensitivity index (i.e. effect of one

factor) but also the total-order sensitivity index (i.e. the interaction effect between input fac-

tors), and how these interaction effects may affect the model outputs [60,66]. The first-order

sensitivity index and the total-order sensitivity index for i = 1,� � �,Nl can be obtained using the

following equations:

Aj ¼
1

2p

R p
� p
f ðsÞcosðjsÞds ð2Þ

Bj ¼
1

2p

R p
� p
f ðsÞsinðjsÞds ð3Þ

Ʌj ¼ A2

j þ B2

j ð4Þ

D̂i ¼ 2
Xm

p¼1
Ʌpoi

ð5Þ

D̂T ¼ D̂ � 2
Xoi=2

j¼1
Ʌj ð6Þ

D̂ ¼ 2
Xðn� 1Þ=2

j¼1
Ʌj ð7Þ

Si ¼
D̂i

D̂
and ST ¼

D̂T

D̂
ð8Þ

Eqs (2)–(8) define the Fourier coefficients Aj and Bj for i = 1,� � �,Nl in a Fourier series,

where the real-valued function f(s) represents the simulation results that were expanded by a

Fourier series [64]. The reason why the Fourier coefficients were introduced is that
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partitioning of variance in eFast works by varying different parameters at different frequencies

[66]. D̂i for i = 1,� � �,Nl represents a fraction of total variances induced by the uncertainty of ith
input factor. D̂T calculates the variances induced by the input factor and the interactions

between the input factor and other input factors (first + higher-order). D̂T can be calculated by

the difference between the total variance D̂ and the complement term 2
Poi=2

j¼1
Ʌj, as given in

Eq (8). The complement term helps calculate the variance produced by other frequencies than

ωi. The ratio
D̂i
D̂ was applied to estimate the main effect of ith input factor on the output, and the

ratio
D̂T
D was employed to calculate the main and interaction effects of ith input factor on the

output, respectively.

Therapy-directed simulations

Therapy-directed simulations were conducted to verify the effects of hypothetical therapies on

the output variable, the time required for T1D development. The goal of implementing ther-

apy-directed simulations is to identify possible therapeutic strategies that could reduce the

chance of T1D development. For the simulation purpose, T1D was developed if the survival

percentage of healthy β cells falls within the range of 10% - 30% of the initial healthy β cells

(the total number of β cells at the simulation step 0) [45,48]. The hypothetical therapies are

proposed based upon the results from both local and global sensitivity analyses. For the ther-

apy-directed simulations, 50 simulation runs were conducted for each strategy, and the proba-

bility of developing T1D was calculated using the following formulation:

PT1D ¼
Number of T1D cases observed in simulations

Total number of simlations

where PT1D represents the probability of leading to T1D under the proposed strategy.

Results

Validation of model using experimental study

To cross-validate the agent-based model, we compared the number of infiltrating CD8+ T cells

from multiple simulation runs to the number of infiltrating CD8+ T cells collected in the

experimental study [62]. Magnuson et al. [62] studied the population dynamics of infiltrating

CD8+ T cells in a NOD mouse model. They measured the number of infiltrating CD8+ T cells

at week 4, week 6, week 8, week 10, week 12, and week 14, respectively, and provided us the

raw data for model validation (please refer to Acknowledgment Section). Our simulated

results demonstrated that the number of infiltrating CD8+ T cells have an agreement with the

experimental data in a time-dependent manner (R2 = 0.98 calibrated by comparing the mean

values between model fit and experimental data), as shown in Fig 4.

As illustrated in Fig 4, a significant increase in infiltrating CD8+ T cells occurs around week

8 in the simulation, which is consistent with the findings of the previous studies [67,68]. Dur-

ing the time course of T1D progression, activated CD8+ T cells continue to migrate from pan-

creatic lymph nodes (PLNs) to the site of islets, which causes persistent damage to β cells and

eventually leads to overt T1D after week 12 (see S1 Movie). The oscillatory dynamics and

kinetics of CD8+ T cells have been postulated to follow by a series of immunological responses

including the death of CD8+ T cells in islets, the proliferation of CD8+ T cells within islets, and

the recruitment of CD8+ T cells from PLNs to islets due to beta-cell proliferation (see the agent

rules presented in S2 Table), which was also observed and proposed by Trudeau et al., Ven-

drame et al., and von Herrath et al. [56–58]. These immunological responses were
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incorporated in the ABM framework and average counts of infiltrating CD8+ T cells (denoted

by the red line and illustrating cyclic behavior) were calculated based upon 100 simulation

runs (mean ± SEM). Furthermore, regulated patterns with individual variations in model

results concur with experimental data reflecting cell fate and population heterogeneity demon-

strated that T1D progression implies an inherently noise-driven process but a highly orches-

trated and robust physiological mechanism. Besides, considering 21 unknown parameters in

the system, the number of possible combinations is extremely large and, therefore, a Latin

Hypercube Sampling (LHS) [69] was applied to efficiently scan parameter spaces and help esti-

mate accurate values and distributions of unknown parameters. By minimizing the difference

between the simulated results and experimental data (R2), the default values of unknown

parameters were estimated and listed in S4 Table.

To understand the effect of infiltrating CD8+ T cells on pancreatic β cells, time-dependent

counts of pancreatic β cells were replicated. As depicted in Fig 5A, counts of healthy β cells

start to significantly decrease at around week 8 (when the simulation in ABM interface shows

1344 steps equivalent to 1344 hours; note that 1 simulation step represents 1 hour in T1D pro-

gression). The survival analysis of β cells in pancreatic islets persistently decreases, accompa-

nying a continuous increase of infiltrating CD8+ T cells in islets (as shown in Fig 4). In the

meanwhile, discernible increases in β cell counts occurring after week 12 were also detected

following repeated decreases. This phenomenon is referred to as the “Honeymoon Period”

that may be induced by β cell regeneration, resistance to autoimmune destruction, and func-

tional recovery during T1D progression [9,10,12,49,50,53,54] in congruence with experimental

studies which was observed in [56,70–72].

Fig 4. Individual-specific kinetics of infiltrating CD8+ T cells in T1D progression. This figure shows a comparison of infiltrating CD8+ T cells

between one hundred simulation runs and the experiment at week 4, week 6, week 8, week 10, week 12, and week 14, respectively. In this

experiment, average counts of infiltrating CD8+ T cells (denoted by the red line) were calculated based upon 100 simulation runs (mean ± SEM

and the shaded area represents variations in the simulation runs). Four representative trajectories of infiltrating CD8+ T cells (shown by dashed

lines in blue, green, yellow, and cyan) reflect individual-specific patterns in the inherently noise-driven T1D progression. In addition, infiltrating

CD8+ T cell counts (shown by the green square for mean values and black error bars for variations in the experiments) were illustrated using the

raw data (7 replications at week 4 and week 12, 6 replications at week 6 and week 10, 5 replications at week 8, and 12 replications at week 14).

https://doi.org/10.1371/journal.pcbi.1009413.g004
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Although there were no experimental data for the dynamics of β cells in the NOD mouse

model from the same study of T-cell dynamics to directly verify the results in Fig 5, the model

shows that it captures the onset of overt diabetes in good agreement with the distribution of

the time at which NOD mice become diabetic extracted from the existing literature

[45,48,57,73–75]. The time at which NOD mice become diabetic is heterogeneous, and most

diabetes incidences in NOD mouse models occur during week 12 and week 20 [45,73,74]. Sim-

ulated results corroborating the highly regulated heterogeneity in T1D incidences demon-

strate, as shown in Fig 5B, that T1D development takes place most frequently between week

12 and week 20 after the onset of autoimmunity. It is also worthwhile to point out that, based

upon 100 simulation runs, 50% (50 out of 100) of T1D cases occur during week 16 and week

18. Analogous to the NOD mouse model, onset of disease in the ABM model is not an age-

dependent event, and the time at which T1D becomes overt in the simulations is assumed that

the survival percentage of healthy β cells falls randomly within the range of 10% - 30% of the

initial healthy β cells (the total number of β cells at the simulation step 0).

Sensitivity analysis

One of the major challenges of modeling a complex biological system is the lack of sufficient

experimental data. Constructing a standardized and reliable computational procedure from

statistical learning to analyze the current biological knowledge and available experimental data

is therefore essential. For this purpose, we propose to investigate such a lack of information

using ABM to quantitatively simulate the performance of phase progressions in complex pan-

creatic cellular networks during T1D autoimmunity. In addition, numerous essential factors

and parameters are unknown (as demonstrated in S4 Table) during T1D progression. By

implementing the sensitivity analysis, the effects of variations and heterogeneities of unknown

parameters on the output of interest (e.g. the time required for overt T1D occurrence) can be

thoroughly studied.

Fig 5. Validation of the ABM model using experimental findings. (A) Survival of healthy β cells during individual-specific T1D progression. Five solid lines represent

the enduring fraction of healthy β cells in 100 distinct simulation runs with the same initial setting (ni = 20 and meani ± SEMi, for i2{1: Blue, 2: Black, 3: Green, 4:

Magenta, 5: Red}; parameter values can be found in S1 and S5 Tables). The vertical dotted-dashed line represents week 12 after the simulation initialization. The

horizontal dotted-dashed line (y = 0.3) denotes the remaining 30% of healthy β cells, about which overt T1D may occur. (B) Distribution of overt T1D development

occurring during week 12 and week 20 in 100 simulation runs corroborating experimental data [45,73,74]. The horizontal axis represents the time required for developing

overt T1D in-silico, and the vertical axis denotes the relative frequency of T1D incidence. It is important to note that T1D onset occurs in our simulations based on the

assumption that the survival percentage of healthy β cells falls randomly within the range of 10% - 30% of the initial healthy β cells (the total number of β cells at the

simulation step 0).

https://doi.org/10.1371/journal.pcbi.1009413.g005

PLOS COMPUTATIONAL BIOLOGY Hybrid computational modeling of type 1 diabetes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009413 September 27, 2021 15 / 31

https://doi.org/10.1371/journal.pcbi.1009413.g005
https://doi.org/10.1371/journal.pcbi.1009413


We initially investigated the impacts of unknown parameters on the outcome of T1D pro-

gression by implementing local sensitivity analysis to identify the most sensitive parameters

that perturb significantly dynamics of the complex system. As a primary screening method,

local sensitivity analysis provides information on how heterogeneity in each factor changes the

profile and behavior of T1D autoimmunity. Note that the local sensitivity analysis imple-

mented here is employed by fluctuating the magnitude of one parameter but keeping values of

other parameters fixed [76]. The underlying assumption of the local sensitivity analysis is that

the relationship between input parameters and output profiles of the model is undeviating and

almost linear when the change in input parameters is relatively small. In ABM, local sensitivity

analysis is often achieved by varying selected inputs within their confidence intervals based

upon a specific percentage surrounding their default values [60]. To accurately illustrate the

effects of unknown parameters on output profiles of the model, we conducted 20 simulation

replications for each selected parameter value for the local sensitivity analysis (details on value

selection were described in Section Local sensitivity analysis). A summary of results from the

local sensitivity analysis is illustrated in Fig 6. Among all the unknown parameters, five sensi-

tive parameters are presented in Fig 6 and the remaining boxplots for the spectrum of insensi-

tive parameter values can be found in S4 Fig.

Using the local sensitivity analysis, boxplot-and-raw-data distributions of T1D occurrence

were captured and plotted in Fig 6. By means of a one-way analysis of variance (ANOVA) test,

we identified that 1) the average lifespan of cytotoxic CD8+ T cells (CTLs) within the pancre-

atic islets shown in Fig 6A; 2) the initial number of damaged beta cells when the simulation

step equals 0 shown in Fig 6B; 3) time interval of dendritic cells (DCs) movement in islets

shown in Fig 6C; 4) the maximum number of naïve CD8+ T cells binding to DCs shown in Fig

6D; 5) recruitment rate of DCs within the pancreas shown in Fig 6E are the five sensitive

parameters during T1D progression.

We only focused on T1D incidence within 20 weeks after the onset of autoimmunity which

was suggested by experimental studies [45,73,74], and if no overt T1D was observed within

this time interval, we reported the highest possible range for simulation run which is set to 32

weeks. As depicted in Fig 6, we discovered that a delay in the T1D occurrence is virtually inevi-

table, revitalizing survival of healthy β cells if the following conditions meet: 1) recruitment

rate of DCs reduces; 2) the maximum number of naïve CD8+ T cells binding to DCs reduces;

3) time interval of DCs movement increases. Moreover, we observed that T1D progression

may be inhibited if the average lifespan of cytotoxic CD8+ T cells in islets is reduced to five

days or less, or the number of apoptotic β cells is less than a certain threshold estimated at

most 510 damaged beta cells exist when the simulation begins (the range for the initial number

of damaged cells has been scaled up to reflect the actual size of β cells). It is also worthwhile to

point out that acute and progressive onset of diabetes chronicled by different studies through

differentiation of T1D phenotype in the NOD mouse model [10,77,78] were also captured in

our sensitivity analysis as shown in Figs 6 and S4.

The local sensitivity analysis provides interesting modeling insights by changing one

parameter at a time. However, the output profiles of the simulation can be significantly

changed by systematic variations in key model parameters. Thus, it is worthwhile to investigate

how variations in the input parameters change the model output due to their interaction with

other parameters. To further decipher the interaction effects between parameters, we applied

the variance-based extended Fourier amplitude sensitivity test (eFAST) method for global sen-

sitivity analysis. To this end, five sensitive parameters were selected based upon the results

from local sensitivity analysis to perform eFAST. After transforming search curves into physio-

logical ranges (as shown in S2 Fig), sampling points of the five sensitive parameters based

upon various frequencies are drawn from their distributions as illustrated in S3 Fig.
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Fig 6. Discernible fluctuation in time required for developing overt T1D based upon selected values of parameters using local sensitivity analysis. (A-E) The

horizontal axes represent selected values of five input parameters in the spectrum of [Pd ± 30% × Pd], and the vertical axes denote the time required for developing T1D.

Box plots and raw data illustrate heterogeneities occurring during T1D for selected values. The black dashed lines outline the lower and upper whiskers and black solid
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Using Eqs (2)–(8), the first-order index and total-order index were calculated, and the

main effects and interaction effects of the five selected parameters on the model output are

shown in Fig 7. The model output in these simulations, as aforementioned, constitutes the

time required for developing overt T1D in NOD mice. If T1D was not detected within 20

weeks of autoimmunity (i.e. the number of remaining healthy β cells exceeds a threshold

within the range of 10%-30% of initial β cell counts at each simulation), we assume no T1D

occurrence was observed for this experiment concurring with experimental studies [45,73,74].

In this case, as shown in Fig 7A, the full data set comprised all possible outcomes of the

model output in each simulation run, whether T1D occurs within 20 weeks of autoimmunity

or not. As a result, the lifespan of cytotoxic CD8+ T cells plays a key role in the global sensitiv-

ity analysis of the model output since the first-order index of this parameter approaches 70%

(sensitivity of parameter P1 shown in Fig 7A). Corroboration for this hypothesis and conclu-

sion stems from the fact that the elongated lifespan of cytotoxic CD8+ T cells in islets is directly

correlated to an increase in the number of cytotoxic CD8+ T cells during T1D progression.

Less cytotoxic CD8+ T cells survive during T1D disease if the average lifespan of cytotoxic

CD8+ T cells is reduced over time. T1D progression is significantly delayed or even inhibited,

which may lead to a promising therapeutic target if a limited number of cytotoxic CD8+ T cells

circulate in the islets (also observed in Fig 6A). In contrast to the average lifespan of cytotoxic

CD8+ T cells in islets, other input factors such as the maximum number of naïve CD8+ T cells

binding to DCs and the recruitment rate of DCs circulating in the pancreas experience mini-

mal effects on sensitivity analysis of the model output for first-order indexes, while they exhibit

approximately 25% contribution to the model output when the interaction effects were

included.

boxes show Q1, Q2, Q3 for the first quantile, interquartile, and third quantile values for selected points within the spectrum of [Pd ± 30% × Pd]. For these five sensitive

parameters (shown by labels of the horizontal axes), the p-values of F tests were smaller than the predetermined significance level (e.g. α = 0.05).

https://doi.org/10.1371/journal.pcbi.1009413.g006

Fig 7. Change in model output based upon selected parameters. (A) eFAST sensitivity based upon full data set; (B) eFAST sensitivity based upon reduced data set that

includes only cases with T1D occurrence. The horizontal axes represent five sensitive parameters. The parameters P1, P2, P3, P4, P5 represent the average lifespan of

cytotoxic CD8+ T cells in islets, the initial number of damaged β cells (βinit at simulation step 0), the time interval of DCs movement in islets, the maximum number of

naïve CD8+ T cell binding to DCs, and recruitment rate of DCs circulating in the pancreas, respectively. The vertical axes denote the eFAST sensitivity analysis for the

first-order and total-order indexes. The first-order indexes are denoted by pink portions starting from 0, and total-order indexes are illustrated by both grey and pink

portions. The first-order index reflects the variance induced by the uncertainty of a single input factor and the total-order index represents the output variance abiding

by the interaction between this input factor and other input factors.

https://doi.org/10.1371/journal.pcbi.1009413.g007
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In Fig 7B, we observe that first-order and total-order effects of the five parameters changed

drastically when reduced data sets (indicating only T1D incidences were considered for

eFAST analysis) were included in the global sensitivity analysis. The purpose of implementing

reduced data sets for global sensitivity analysis is to investigate how elevated these input factors

perturb T1D progression and the onset of hyperglycemia or honeymoon phase when overt

T1D was developed. Interestingly, we observed that the selected input factors have comparable

main effects on variations of the model output (as shown in Fig 7B). Compared to full data

sets, our findings show that more interaction effects on global sensitivity analysis of the model

output were observed in the reduced data set. This indicates that interaction effects between

the five parameters have more contribution to T1D progression once T1D occurrence is

apparently inevitable.

Incorporation of therapy-directed approaches

In the previous section, we applied sensitivity analysis methods to investigate the main and

interaction effects of unknown parameters on T1D development. Five essential parameters

were found to be highly correlated to overt T1D progression. Moreover, interaction effects

were observed to be more related to the onset of T1D progression when T1D was developed.

Considering the parameters (i) initial number of damaged β cells and (ii) average time interval

of DCs movement in islets may be difficult to be regulated in experimental studies, we focused

on the three parameters including the average lifespan of CTLs in islets, maximum number of

naïve CD8+ T cells binding to DCs, and recruitment rate of DCs for targeted therapeutic strat-

egies. The objective of therapy-directed simulations is to test the following hypothesis: the

occurrence of T1D is significantly delayed or inhibited by therapeutic interventions if: 1) the

lifespan of CTLs in islets was reduced; 2) the capacity of naïve CD8+ T cell binding to DCs was

reduced; 3) the recruitment rate of DCs was reduced; or 4) two of the above strategies (1)-(3)

were applied simultaneously by a combination of these therapeutic interventions.

As depicted in Fig 8A, the heatmap shows the probability of T1D occurrence was signifi-

cantly declined if the average lifespan of CTLs in islets was reduced. Furthermore, the occur-

rence of T1D is dependent on the time administering therapeutic intervention (x-axis) and the

applied amount of therapeutic dose range (y-axis). When the proposed therapy based upon

our simulation findings was administered with a single dosage regiment at week 4, a significant

decline in T1D occurrence was observed. However, when the same amount of therapeutic

dose range was administered at a later stage of T1D progression (e.g. from week 14 to week

Fig 8. Probability of developing T1D based upon different targeted therapeutic strategies. The horizontal axes represent the administered time of a single dosage

during simulation runs. Regions with red color represent a higher incidence of diabetes, and regions with blue color represent a lower incidence of diabetes. (A) Therapy 1

denotes the strategy that reduces the longevity of CTLs in islets. (B) Therapy 2 is described as an intervention that inhibits DC infiltration into islets. (C) Therapy 3 denotes

a strategy that mitigates the binding process of naïve CD8+ T cells on DCs. Therapeutic interventions were implemented based upon single dosage regimens starting at

week 4 to week 16. Two black circles filled white in Panel (A) show the change in T1D occurrence in Therapy 1 when the lifespan of CTLs was reduced from 120 hours to

114 hours at week 8.

https://doi.org/10.1371/journal.pcbi.1009413.g008
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16), T1D occurrence is not significantly delayed or prohibited compared to an early stage of

administering therapeutic intervention. Also, the percentage of T1D occurrence ranging from

60% to 70% is reduced to the range (30% to 40%), respectively, when the lifespan of CTL was

reduced from 120 hours to 114 hours at week 8 (black circles filled white in Fig 8A). However,

higher single-dose regimens or multiple-dose regimens are required to reduce T1D occurrence

to 30% when therapeutic interventions are administered at week 12. Compared to targeted

therapeutic strategies required to weaken the longevity of CTLs in islets, both therapies that

reduce the capacity of naïve CD8+ T cell binding to DCs and the recruitment rate of DCs in

the pancreas are less effective, as illustrated in Fig 5B and 5C.

The effects and efficacies of combinations of therapeutic strategies on T1D development

were then investigated, as shown in Fig 9. Compared to a single therapeutic intervention, com-

binations of therapeutic strategies significantly reduce the likelihood of overt T1D instances at

a late stage of T1D progression (week 12 as shown in Fig 9 and week 14 as shown in S5 Fig).

Specifically, the incidence of overt T1D approximately ranges from 50% to 70% when we

implement a single therapy at week 12 (Therapy 2 or Therapy 3 as shown in Fig 8B and 8C).

However, the occurrence of overt T1D diminished and shifted the range (50% to 70%) to (20%

to 40%) when a combination strategy was applied (as depicted in Fig 9C1–9C3).

These findings from therapy-directed simulations indicate that the effectiveness of the ther-

apeutic strategies on T1D progression is dependent on three main factors: the time administer-

ing therapeutic interventions, the administered amount of therapeutic dose range, and the

type of therapeutic intervention based upon the key parameters.

Fig 9. Probability of developing T1D based upon combinations of proposed therapeutic strategies. Therapeutic interventions were implemented based upon single

dosage regimens starting at week 4 (Panels A1-A3) to week 16 (Panels D1-D3). Therapy 1 represents a certain strategy that reduces the residence of CTLs in islets.

Therapy 2 is described as an intervention that can inhibit DC infiltration into islets. Therapy 3 denotes a strategy that prohibits binding sites on DCs for naïve CD8+ T

cells.

https://doi.org/10.1371/journal.pcbi.1009413.g009
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Discussion

Human diseases frequently involve networks of complex inter- and intra-cellular and signaling

interactions linking the immune system and metabolism during disease progression. Mathe-

matical and computational approaches emerging from modeling the detailed biology of

immune responses have been successfully used to explain non-intuitive behaviors and charac-

terize variations in disease [79,80]. The development of T1D involves a complex network

between pancreatic β cells and cells of both innate and adaptive immune systems [81], which

requires a systematic level of understanding of onset, progression, and prevention of the dis-

ease. Herein, we sought to reconcile how cellular-level insights about the underlying interplay

of immune responses and diabetes affect the ultimate behaviors of type 1 diabetes.

To accomplish this goal, we developed a hybrid modeling structure. Previous studies

including our earlier research papers constructed mechanistic mathematical models to investi-

gate various components in T1D and sepsis [4,9–12]. We have also developed data-driven

ABM to carry out in silico therapy-directed experiments in a mouse model and to investigate

immune responses in human cell lines [14, 82]. With previous experience and established

knowledge in both mathematical modeling, ABM of immune responses, we identified the

most accurate platform, as a promising framework for the physiological and etiological process

to simulate complex cellular interactions in T1D, that integrates data-driven ABM and mathe-

matical modeling with statistical components.

One major advantage of applying an agent-based framework to modeling a biological sys-

tem is that it can capture spatial and noise-driven effects in highly orchestrated movements of

different agents during a biological process that remains incompletely understood and is nor-

mally underestimated by mathematical models [15,42]. However, ABM, in some cases, would

require extensive computational resources because of a detailed representation of the system.

In realistic T1D progression, interactions among 106−107 cells were observed [23,43–45]. In

this case, when an agent-based simulation was implemented at such high computational com-

plexity levels, the computational efficiency was relatively low (one simulation run took more

than 10 hours to conduct a 20-week T1D progression using our validated model). Such high

computational complexities would further hinder the sensitivity analyses because they require

massive repetitions of simulation runs when varying parameter values [16]. To improve the

computational efficiency and underperformance, we proportionally reduced the number of

agents (each agent in-silico represents one cell in vitro, details are presented in the Materials

and Methods section) in the agent-based simulation. The agent-based simulation with a

reduced size can simulate a 20-week T1D progression within one hour using a high-perfor-

mance computer workstation which allowed for further high-throughput computing analysis.

By implementing advanced statistical methods, we designed the hybrid computational

framework to model the complex network which primarily focused on the simulation of inter-

actions between DCs, cytotoxic CD8+ T cells, and pancreatic β cells during T1D progression.

Simulated results recaptured (R2 = 0.98 based upon the comparison between mean values of

model results and mean values of experimental results) individual trajectories of cytotoxic

CD8+ T cells in experiments, as illustrated in Fig 4, suggested that the model can calibrate and

predict successfully the progression of the disease. Our simulations confirmed the occurrence

of the individual-specific “honeymoon phase” by incorporating the combined effect of β-cell

replication, functional recovery, and resistance to autoimmune destruction into the model.

Owing to the hybrid framework, we could explain the complex, highly orchestrated, and

robust physiology of cell fate and population heterogeneity when the underlying mechanisms

are a noise-driven process. Despite the stochastic behavior of regulatory circuits within agents,
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our results validated with experimental data show that cellular networks are precisely regulated

leading to autoimmunity and beta-cells eventually succumb to damage (Figs 4 and 5).

The manifestation of overt T1D was shown to associate with the loss of β-cell mass

[33,48,50]. Thus, we calibrated the kinetics of pancreatic β cells in our simulation runs and

used the number of residual health β cells as a means to quantifying the magnitude of the ini-

tial stimulus for T1D progression. It was also shown that β-cell transplantation or regeneration

is not sufficient for treating T1D disorder [83]. One major concern is that regenerated β cells

may also become the new target of CTLs during T1D progression and β cells eventually suc-

cumb to damage and apoptosis [32] if the factors driving T1D progression fail to control

homeostasis and immunological tolerance in alienating lymphocytes. To identify the driving

factors leading T1D progression to overt T1D, we implemented local and global sensitivity

analyses using in silico data generated in our simulations and suggested the average lifespan of

cytotoxic CD8+T-cells, initial number of apoptotic β-cells, number of binding sites on DCs for

naïve CD8+ T cells, time interval of DCs movement in islets, and recruitment rate of DCs as

five key drivers of T1D progression. The time required for developing T1D was the primary

output of interest in the sensitivity analyses, which was also the target of in silico therapy-

directed experiments. Based upon these therapy-directed simulations, we discovered that the

probability of T1D development could be reduced if appropriate strategies were applied at var-

ious time windows during T1D progression.

Cytotoxic CD8+ T cell has long been recognized as a major driving force for developing

T1D [84]. Several experimental studies discovered that the prevention of diabetes can be

achieved in animal models by down-regulation of cytotoxic CD8+ T cells [85–88]. Pinkse et al.
[84] focused on administering immunodominant peptides derived from major antigens to

down-regulate cytotoxic CD8+ T cells associated with β cell destruction in type 1 diabetes. But

due to a limitation of the peptide therapy (short half-life of peptides in the circulation), our

simulating model results suggest that further studies on other therapeutic options to reduce

the lifespan of cytotoxic CD8+ T cells are needed to improve survival rates of beta cells. Several

studies have provided a thorough discussion about multiple ways of regulating the longevity of

immune cells including the use of agents, telomerase activation, inhibition of apoptosis, and

reversal of energy [89–93]. These studies have demonstrated multiple methods can be

employed to regulate the lifespan of immune cells, which provide additional justification to

implement parameter modification such as the “lifespan of cytotoxic CD8+ T cells” in our

modeling. Besides, the model results demonstrated that the likelihood of T1D occurrence

would significantly decline if the administered amounts of therapy were increased at a late

stage of T1D progression (as shown in Fig 8), which could also be a potential research direc-

tion for future experimental studies.

Our simulations also suggested T1D progression would markedly be delayed if recruitment

rates of DCs were declined (as depicted in Fig 6E and 6B). Previous studies demonstrated a

depletion of DCs helps preventing or reversing T1D in NOD mice [32,81,94]. Interestingly,

our simulation study showed that this can be explained by the fact that, since the primary role

of DCs is to function as APCs both in the periphery and within islets [32], the activation and

the invasion of CTLs to islets decreased if the number of DCs was reduced in islets. As depicted

in Fig 8, a reduction in the recruitment rate of DCs is less effective to improve survival at a late

stage of T1D progression. However, it should be also noted that the computational model was

focused on CD8+ T cells only; thus, it is important to point out herein a certain level of mature

dendritic cells may be also important for the generation of regulatory CD4+ T cells of inhibit-

ing T1D progression [95]. The reasons that CD4+ T cells were not included in the model are

discussed in-depth as follows.
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Our simulations further suggested that the number of binding sites on DCs for naïve CD8+

T cells is another key parameter that could impact T1D progression. Early treatment of NOD

mice was observed to reduce the likelihood of autoimmune diabetes incidence if the value of

this parameter declined (as illustrated in Fig 6D). The binding process between naïve CD8+ T

cells and DCs is a crucial step for the activation of naïve CD8+ T cells in PLNs [32,33,35]. Then

the activated CD8+ T cells in PLNs migrate to islets and become cytotoxic CD8+ T cells. When

the number of binding sites on DCs for naïve CD8+ T cells decreased, the window of opportu-

nity for naïve CD8+ T cells to become activated CD8+ T cells narrowed, and therefore the

number of cytotoxic CD8+ T cells in islets declined. Thus, the model suggests that a reduction

of the capability of naïve CD8+ T cell binding to DCs would provide another opportunity and

experimental direction for resolving T1D development. Fischer et al. [96] reported that naïve

CD4+ T cells deprived of MHC class II molecules showed a decreased ability to interact with a

limited number of cognate antigen-bearing dendritic cells. In their study, Act-mOVA mice

were bred to I-Aβ-deficient (MHC class II-deficient) mice to produce Act-mOVA MHC class

II-deficient mice. This evidence shows that it is highly likely that a similar method could be

applied to a NOD mouse model to deprive receptor molecules on dendritic cells with in vivo
knockout method, which may limit the binding sites on dendritic cells to interact with naïve

CD8+ T cells. As a matter of fact, this study provided the empirical investigation of our pri-

mary intuition for the concept of our simulation.

Moreover, results from therapy-directed simulations suggest that a combination of thera-

peutic strategy on reducing both recruitment rate of DCs and the maximum number of naïve

CD8+ T cells binding to DCs would noticeably reverse the mechanism of destruction of beta

cells, a potential to cure overt T1D, from week 10 to week 12 (as plotted in the heatmaps of Fig

9 and S5 Fig). Thus, unlike single-drug interventions, the effect of combined therapeutic strat-

egies (e.g. a combination of treatment strategy on reducing both recruitment rate of DCs and

number of binding sites on DCs for naïve CD8+ T cells) on T1D treatment may provide valu-

able insight into a prospective cross-sectional as well as longitudinal studies of onset, remis-

sion, and recurrence. Therapy-directed simulations recommend that the combined

therapeutic strategies as an important mediator would contribute to a decreased risk of a range

of short-term and long-term diabetes-related complications. It is most noteworthy that a

recent study [97] also demonstrated combination therapy can reverse hyperglycemia in a

NOD mouse model with established type 1 diabetes.

The present study should be evaluated in the context of several possible limitations. First

and foremost, like all models, the hybrid computational model presented herein is an abstract

of reality, to some extent, similar to an experiment when it is performed for a laboratory inves-

tigation dealing with a controlled environment while it might give a completely different out-

put in reality and the human body. Although the model was designed to describe the major

components based on the current knowledge and available data, excluded multiple mecha-

nisms associated with T1D progression should be mentioned herein. For example, we did not

model CD4+ T cells in this study because the role of CD4+ T cells in autoimmune T1D remains

incompletely understood [35] and thus experimental data on CD4+ T cells are not sufficient. It

is worthwhile to mention that the progression of T1D is associated with the finely tuned

immune balance between effector CD4+ T cells and regulatory CD4+ T cells. The quantitative

relationship between regulatory CD4+ T cells and effector CD4+ T cells is regulated by other

cell types and cytokines [32,35,98–100]. In this case, additional interactions between dendritic

cells, CD4+ T cells, and CD8+ T cells would require extensive efforts in estimating unknown

parameters and their distributions. When the number of unknown parameters is very large, it

is often impossible to identify reliable model results [101]. A second limitation concerns the

discrepancy between the NOD mouse model and the human model. Despite the NOD mouse
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model has been successful in multiple forms for studying T1D in humans [23], the limitation

of the NOD mouse model should be marked. Compared to the NOD mouse model, it seems

that the human pancreas has a lower potential for β-cell regeneration based on recent access to

the pancreas of organ donors with T1D [102]. In addition, the severity of insulitis in human

models has been found to be less pronounced than in the NOD mice model [103], which may

impact the conclusions that parameters associated with CD8+ T cells predominate T1D pro-

gression in human models. Based on these reasons, it is worth mentioning that the strategies

that would be effective in the NOD mouse model are not necessarily effective in clinical trials.

We also considered modeling other treatment parameters such as anti-CD3 because they were

proven to be effective in NOD mice and clinical trials [104]. However, modeling these treat-

ment parameters, again, required the incorporation of numerous unknown parameters at the

current stage.

Despite these limitations, our study enhanced the feasibility of computational modeling for

simulating disease progression by simulating complex cellular networks. Biological research

has been long focused on various aspects of the mystery of biological systems, which advanced

the understanding of mechanistic knowledge of complex systems. Nevertheless, many of the

emergent, integrative behaviors of biological systems result not only from complex interac-

tions within a specific level but also from feedback interactions that comprise complex cellular

networks [80]. This hybrid computational approach can simulate complex T1D progression

associated with higher rates of diabetes-related complications by capturing essential compo-

nents and their interactions during multiple pathways of immune responses. It can also inves-

tigate the effects of parameters on T1D development and suggest future directions for

experimental studies to reduce these complications. With the aid of advanced statistics, our

findings uncovered non-intuitive biological parameters that could be potentially targeted as

therapeutic options. Accordingly, we suggest that this hybrid computational framework can

help improve the systematic understanding of complex diseases and design in silico therapeutic

strategies for other complex diseases such as cancer.
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S1 Fig. A binding process between naïve CD8+ T cells and dendritic cells in the ABM simu-

lations. During the binding process, each APC (i.e. dendritic cell that has engulfed antigens)

checked the surrounding eight patches. If naïve CD8+T cells appear on these eight patches, an

APC checks the number of dendritic cells binding to each naïve CD8+T cell. A dendritic cell

can bind to a naïve CD8+T cell if this naïve CD8+T cell has available binding sites for the den-

dritic cell (e.g. the naïve CD8+ T cell at the bottom of nine grids in S1 Fig). A dendritic cell can

bind to multiple naïve CD8+ T cells until there are no available binding sites on the naïve

CD8+ T cell (e.g. the naïve CD8+ T cell in the top of nine grids in S1 Fig). The number of bind-

ing sites on dendritic cells for naïve CD8+ T cells are determined by a state variable named the

maximum number of naïve CD8+ T cells binding to DCs.
(TIFF)

S2 Fig. Transformation from the search curve to sampling points in a two-dimensional

space. (A): Search curves defined by Eq (8). The solid line denotes a search curve with a fre-

quency equal to 24, and the dashed line represents the search curve with a frequency equal to

1. (B): Scatterplot of the sampling points in a two-dimensional space. Each point in the space

represents a combination of two factors (q1 and q2). (C): CDF of a normal distribution that

transforms the sampling points from a unit space [0,1] to the realistic values (represented by

Xi).

(TIFF)

S3 Fig. Data samples of 5 parameters drawn from normal distributions based upon

eFAST. The horizontal axis represents the total sample size (n = 1000) for five parameters, and

the vertical axis represents parameter values.

(TIFF)

S4 Fig. Non-sensitive parameters based on local sensitivity analysis. Discernible fluctuation

in time required for developing overt T1D based upon selected values of parameters using

local sensitivity analysis. The horizontal axis represents selected values of five input parameters

in the spectrum of [Pd±30%×Pd], and the vertical axis denotes the time required for developing

T1D. Box plots and raw data illustrate heterogeneities occurring during T1D for selected val-

ues. Black dotted lines outline lower and upper whiskers and black solid boxes show Q1, Q2, Q3

for first quartile, interquartile, and third quantile values for selected points within the spectrum

of [Pd±30%×Pd]. For non-sensitive parameters, the p-values of F tests were greater than the

predetermined significance level (e.g. α = 0.05).

(TIFF)

S5 Fig. Therapy-directed simulations Probability of developing T1D based on a combina-

tion of proposed therapeutic strategies. Therapy interventions were implemented based

upon single dosage regimens starting at week 6 to week 14. Regions with red color represent a

higher incidence of diabetes, and regions with blue color represent a lower incidence of diabe-

tes. Therapy 1 represents a certain strategy that reduces the residence of CTLs in islets. Ther-

apy 2 is described as an intervention that can inhibit DC infiltration into islets. Therapy 3

denotes a strategy that prohibits binding sites on DCs for naïve CD8+ T cells.

(TIFF)

S1 Movie. NetLogo interface during T1D progression. The cross-section captures two-

dimensional projection along the largest axis of the pancreas. This window, in fact, simulates

part of the whole picture. For illustrative purposes, we show a few islets and agents during T1D

progression. The window is partitioned into two panels; the top panel shows PLNs with circu-

lation in a large red disk, and the bottom panel illustrates the islets including beta cells in green

PLOS COMPUTATIONAL BIOLOGY Hybrid computational modeling of type 1 diabetes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009413 September 27, 2021 25 / 31

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009413.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009413.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009413.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009413.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009413.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009413.s011
https://doi.org/10.1371/journal.pcbi.1009413


colors. Brown agents represent cytotoxic CD8+T cells, yellow for autoantigens, pink agents for

activated CD8+T cells, and green agents turning black shaded areas show damaged and apo-

ptotic beta-cells. Insulitis in NOD mice proceeds through a stage of peri-insulitis in which T

cells accumulate around the islets. For improving the computational efficiency, the video only

shows insulitis progressing from inside the islets.

(MOV)
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