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Abstract: The presence of chaos in the financial markets has been the subject of a great number of
studies, but the results have been contradictory and inconclusive. This research tests for the existence
of nonlinear patterns and chaotic nature in four major stock market indices: namely Dow Jones
Industrial Average, Ibex 35, Nasdaq-100 and Nikkei 225. To this end, a comprehensive framework
has been adopted encompassing a wide range of techniques and the most suitable methods for the
analysis of noisy time series. By using daily closing values from January 1992 to July 2013, this study
employs twelve techniques and tools of which five are specific to detecting chaos. The findings
show no clear evidence of chaos, suggesting that the behavior of financial markets is nonlinear
and stochastic.

Keywords: nonlinear dynamics; chaos; time series analysis; stock exchange market; Lyapunov;
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1. Introduction

Research on modeling financial time series has traditionally assumed linear patterns. Unfortunately,
these models are incapable of explaining specific phenomena or market events, such as bubbles and
recessions. Therefore, there is interest in and a need to introduce alternative methods, most of which
come from other scientific disciplines such as mathematics, physics and engineering [1], to model
the dynamics of financial series, and to detect a possible nonlinear and determinist chaotic behavior.
This opens up the range of alternatives for analyzing and predicting financial series and particularly
stock market price series, traditionally anchored in methods such as technical and fundamental analysis
or in assumptions like the efficient market, defined by Fama [2] and based on the fact that asset prices
reflect all available information, causing asset returns to be unpredictable [3].

Many scholars have empirically studied the existence of nonlinear dynamics in financial series [4],
meanwhile several theoretical models consistent with the presence of nonlinearity in asset prices have
arisen [5]. The nonlinear approach can capture the characteristics of the financial series and their
sudden fluctuations, and, therefore, plays an important role in economic modeling [6,7]. The initial
interest in the application of nonlinear models has been extended to solve the question of whether the
nonlinear dynamics have a stochastic or deterministic behavior. This issue constitutes a key point in the
process of modeling and forecasting financial time series. The emergence of new models that deal with
the volatility present in financial time series, such as the autoregressive conditional heteroskedasticity
ARCH [8], generalized (GARCH) [9] and exponential GARCH (EGARCH) [10] models, in consonance
with the development of the chaos theory that can explain the effect of shocks on the stock markets as
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part of the endogenous dynamics of the series itself, constitute a fundamental contribution to solving
this issue.

Although the literature on the evidence of chaos in economic and financial time series is extensive,
there are no incontrovertible results [11]. There are two divergent positions concerning the underlying
dynamics of financial markets. Whilst several studies have found evidence of chaotic patterns in
financial markets e.g., [12,13], the most recent studies support a non-chaotic but rather stochastic
behavior. This is due to the use of an incorrect specification and to the approach applied [14,15].
Indeed, the former studies applied a methodology, such as the correlation dimension method, that is
not sensitive to noise, an intrinsic feature of financial series. However, studies that have used new and
more robust methods, such as the test proposed by Matilla-Garcia and Ruiz Marin (MGRM test) [6] and
the Lyapunov test based on BenSaïda and Litimi [14], do not find evidence for chaos. In fact, to ensure
that conclusions are sound and reliable, traditional tests should be applied to time series that consist of
many observations and are noise-free.

The existence of chaos in the stock market remains a relevant issue. Its importance lies in the fact
that finding the chaos of low dimension could allow a reliable forecast in the short term, but not in
the medium and long term, since a chaotic system is unstable [16]. However, there is no standard
methodology for the analysis of the presence of nonlinearity and the existence of a chaotic pattern.
Therefore, it is mandatory to explore the existence of a chaotic deterministic structure considering
different approaches [17].

The main goal of this research is to shed light on the behavior of stock markets by examining
their dynamics and volatility. Through a comprehensive methodological approach, using a wide
range of procedures, this study investigates the existence of deterministic chaos and nonlinearity in a
series of daily stock indexes of four major stock markets: namely the Dow Jones Industrial Average,
the Nasdaq-100, the Ibex 35 and the Nikkei 225. In addition, the paper examines other issues such
as the existence of volatility clustering. By using daily closing values from January 1992 to July 2013,
this study employs twelve techniques and tools of which five are specific to detecting chaos.

Overall, this work contributes to filling the gap in the international literature on nonlinear and
chaotic behavior in stock markets as it uses a variety of tools including the most powerful methods
to uncover the underlying dynamics of these markets. Even more so, a review of the international
literature (see following section) shows that there are numerous works that aim to detect the existence
of nonlinear and chaotic behavior in stock markets, but to the best of our knowledge none of them
apply such a high number of techniques as this research.

The methodology applied consisted of the following steps. First, all linear dependencies were
removed from the data by applying autoregressive integrated moving average (ARIMA) filters. A wide
range of procedures were then applied to the residuals obtained to detect the existence of nonlinearity.
If nonlinear dependence was detected, since linear structures had already been removed using the
best fit ARIMA model, it was indicative of some type of nonlinear dependence in the returns series
resulting from a nonlinear stochastic system or a nonlinear chaotic system. Then it might be caused by
the existence of a volatility cluster. In this case, the appropriate generalized autoregressive conditional
heteroskedasticity (GARCH) and exponential GARCH models (EGARCH) were applied. Afterwards,
the existence of chaotic motion was explored by means of five techniques i.e., 0/1 test, the correlation
dimension, Lyapunov exponent, MGRM test [6] and recurrence plots, including those that are ideally
suitable for noisy time series analysis.

Empirical findings suggested that although there has been found a dominant nonlinear structure
in financial markets, determinism cannot be assumed and hence chaos cannot be inferred.

The rest of the paper is organized as follows: in the second section, a review of the international
literature on stock market modelling is carried out, with special emphasis on those works that contrast
the possible existence of nonlinear and chaotic behavior. The third section describes the methodological
process adopted in this research. In the fourth section, the data sources used as well as the main results
obtained for the four stock market index series considered are presented and commented on, and the
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existing evidence for and against the hypotheses of nonlinearity and a chaotic regime is analyzed
and discussed. Finally, the last section draws a series of conclusions on the research carried out and
indicates possible future lines of research.

2. Literature Review

When studying the existing literature on research aimed at analyzing and contrasting the existence
of nonlinear and chaotic dynamics in the stock markets, a first conclusion is that the results obtained
depend on the data and methods used in each study. As shown in Table 1, most studies, especially since
the appearance of the BDS test [18], suggest the existence of nonlinear dependencies in stock markets.

Table 1. Results of research on nonlinearity and chaos in the stock market.

Authors (Year) Series Considered Tools Used Results

Scheinkman and LeBaron
(1989) [12]

They study several weekly
and daily series of the US

stock market.

BDS statistics.
Correlation Dimension.

Evidence of nonlinearity.
Evidence of chaos.

Hsieh (1991) [19]
He studies the weekly series
of returns for a stock market

portfolio.

BDS test.
Correlation Dimension.

No evidence of IID.
No evidence of chaos.

Blank (1991) [20] He analyzes the behavior of
the S&P 500 stock index

Correlation Dimension.
Lyapunov exponents test.

Evidence of chaos (presence of
deterministic nonlinearity).
This is a necessary but not

sufficient condition for chaos,
as there are no tests of

statistical significance of
the estimates.

Mayfield and Mizrach (1992) [21]
They analyze the time series
of the high frequency returns

in the S&P 500 index.

Correlation Dimension.
Lyapunov test. Evidence of chaos.

Yang and Brorsen (1993) [22]
They study several futures
markets, including the S&P

500 stock index.

BDS.
Brock’s residual test.

Evidence of nonlinearity.
Evidence of chaos in about
half of the cases studied.

Abhyankar et al. (1995) [23]
They study the presence of

nonlinearity and chaos in the
FTSE-100 index yield series.

Hinich test.
BDS test. Lyapunov

exponent test.

Evidence of nonlinearity.
No evidence of chaos.

Sewell et al. (1996) [24]

They investigate the weekly
changes in six major stock

indices (the US, Korea,
Taiwan, Japan, Singapore
and Hong Kong) and the

World Index.

Spectral analysis.
Nonlinear dynamics

techniques.

Evidence of nonlinearity in
some of the time series.
No evidence of chaos.

Abhyankar et al. (1997) [25]

They examine nonlinear
dependence and chaos in the
returns of the stock market
indices: FTSE 100, S&P 500,

NIKKE 225 and DAX.

BDS.
Lee, White and Granger

neural-network-based tests.
Lyapunov exponent.

Evidence of nonlinearity.
No evidence of chaos.

Barkoulas and Travlos (1998) [3]
They study the presence of a

chaotic behavior in the
Athens stock market.

BDS test.
Correlation Dimension.
Kolmogorov Entropy.

Evidence of nonlinearity.
No evidence of chaos.

Pandey et al. (1998) [26]

They investigate the
presence of chaos in five

major European stock
markets and the
United States.

BDS.
Rescaled Range
(R/S) analysis.

Evidence of nonlinearity.
No IID.

No evidence of chaos.

Gao and Wang (1999) [27]
They study among others
the daily futures series of

the S&P 500.

BDS statistic.
TAR-F Statistic.

Q2 Test.

Evidence of nonlinearity.
No evidence of chaos.

McKenzie (2001) [15]
He tests for the presence of
chaos in 12 national stock

market indices.

BDS test.
Close returns test.

Evidence of nonlinearity.
No evidence of chaos.

Kyrtsou and Terraza (2002) [28]
They examine the dynamics
of the French stock market

(CAC 40 Index).

Fractional integration test.
Correlation dimension.
Lyapunov exponents.

Evidence of nonlinearity.
Evidence of chaos.
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Table 1. Cont.

Authors (Year) Series Considered Tools Used Results

Antoniou and Vorlow (2005) [29]
They examine the noise-free
versions of a set of FTSE 100

stock returns time series.

BDS statistic.
Surrogate data analysis.

Evidence of nonlinearity.
Inconclusive evidence

of chaos.

Yousefpoor et al. (2008) [30]

They study the possible
chaotic behavior of some
selective stocks from the

Tehran stock market.

BDS test.
Lyapunov exponent test.

Close returns test.

Evidence of nonlinearity.
No evidence of chaos.

Matilla-Garcia and
Ruiz Marin (2010) [6]

They study the chaotic
behavior of the daily series
of the Dow Jones Industrial
Average stock market index.

0–1 test based on
permutation entropy. No evidence of chaos.

Mishra et al. (2011) [31]

This study tests for the
presence of nonlinear

dependence and
deterministic chaos in the

rate of returns series for six
Indian stock market indices.

Test of independence.
Variance ratio test.

Hurst exponent.
BDS test.

Lyapunov exponent test.

Evidence of nonlinearity.
Evidence of chaos in two out

of six cases.

BenSaïda (2012) [32]

He investigates the existence
of chaotic dynamics in the
S&P 500, Nikkei 225 and

CAC 40 stock index during
the period 1999–2008.

A new methodology to
apply Lyapunov’s
exponent method.

No evidence of chaos.

Webel (2012) [33]
He analyzes chaotic behavior

daily log returns of the
30 DAX members.

0–1 test. Evidence of chaos.

BenSaïda and Litimi (2013) [14]

They examine nonlinearity
and chaotic behavior in the
following indices S&P 500,

NASDAQ composite,
Nikkei 225, CAC 40,
FTSE 100 and DAX.

Lyapunov exponent
(Neural network architecture

is used in this test).

Evidence of nonlinearity.
No evidence of chaos.

BenSaïda (2014) [34]

He investigates the existence
of chaotic dynamics in the
Standard and Poor’s 500

index returns over 4 different
frequencies: weekly, daily,

30 min and 5 min basis.

Lyapunov exponent test. No evidence of chaos.

Tiwari and Gupta (2019) [35]

They test for chaos in the
historical daily and monthly
datasets spanning over one
century of stock returns for

G7 countries.

0–1 test.
Lyapunov exponent. Evidence of chaos.

IId stands for independent and identically distributed. Source: Own work.

Whether this nonlinear dependence is from chaotic deterministic origin, a sample of the most
representative publications on this issue (Table 1) leads to conclude that it is not possible to give a
single answer to this question, although there is a clear tendency in the most recent research towards
the alternative of no chaotic behavior in the stock market series. Thus, in the first stage, initiated by the
work of Scheinkman and LeBaron [12], who, using daily and weekly data of returns, found evidence
of chaotic dynamics in the US stock markets, works that obtained a chaotic behavior were frequent.
However, more recently, once new methods and more powerful tests on the detection of chaotic
dynamics were incorporated, it can be observed that most research suggests that the data are not
chaotic, that is, they present stochastic behavior.

In this regard, many of the studies carried out do not reach a categorical conclusion on the presence
of chaos in financial markets due to an erroneous specification of the methods and tests used [14,15].
In fact, the traditional tests used should be applied to time series with a high number of observations
and free of noise in order to obtain unambiguous conclusions, but the latter is not usually the case in
financial time series, and in particular in stock markets [14,15].

In relation to the development of new tests to detect chaotic behavior, among others, BenSaïda and
Litimi [14] incorporated a new test that has been shown to be more powerful in detecting chaos
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than the method based on the Lyapunov exponent sign, very frequently used in previous studies.
Using this test, they analyzed the behavior of ten financial series of returns and concluded that there is
nonlinearity in the examined series but in none of them is there a chaotic behavior, suggesting that
the chosen financial series are stochastic. Matilla-Garcia and Ruiz Marin [6] proposed a new test to
determine whether the dynamics of a series is deterministic (including low dimensional chaos) rather
than stochastic and applied it to the daily series of the Dow Jones index.

3. Methodology

3.1. Methodological Framework

For the study of the existence of nonlinearity and chaotic behavior, a comprehensive methodological
framework has been adopted. Table 2 presents all the techniques used in this research. Their main
characteristics are described below, with special emphasis on the tools for detecting chaotic dynamics
in a time series.

Table 2. Tools used.

Tool Reference Feature Tested

Augmented Dickey Fuller (ADF) [36] Stationarity (unit roots)
Phillips–Perron (PP) [37] Stationarity (unit roots)

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) [38] Stationarity (unit roots)
Runs [39] Randomness

Keenan [40] Nonlinearity
Tsay [41] Nonlinearity

Teräsvirta [42] Nonlinearity
White [43] Nonlinearity

BDS
[18] Independence; Randomness
[44] IID; Nonlinearity

Kaplan [45] Nonlinearity
0/1 [46] Chaos

Correlation Dimension [47] Chaos
Lyapunov Exponent [14] Chaos

MGRM [6] Chaos
Recurrence Plots [48] Chaos

Before proceeding with the description of the methodological process, it is appropriate to define
the concepts of linear and nonlinear series. A stochastic process (Xt, t ∈ Z) is said to be a linear
process if for every t ∈ Z Xt =

∑
∞

j=0 β jεt− j where a0 = 1, εt, t ∈ Z is a process of independent

and identically-distributed random variables (iid) with E[Xt] = 0, E
[
X2

t

]
= σ2 and

∑
∞

j=0

∣∣∣β j
∣∣∣ < ∞.

Any process that does not satisfy this condition is said to be nonlinear. Nonlinear models display
features that cannot be modelled by linear processes: e.g., higher-moment structures, time-changing
variance, volatility clustering, breaks, thresholds, and asymmetric cycles. These traits are very often
present in the study of financial time series.

MGRM stands for the test proposed by Matilla-Garcia and Ruiz Marin ([6] Source: Own work)

The methodological framework includes the following steps.
(i) Stationarity testing
Stationarity was studied by means of the following tests:

• Augmented Dickey Fuller Test (ADF)
• Phillips–Perron Test (PP)
• Kwiatkowski–Phillips–Schmidt–Shin Test (KPSS)
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After testing that each series under study was not stationary, the log-returns (from now on returns)
from each series were obtained by means of the expression: Ln(Rt−1) = ln(Pt) − ln(Pt−1) such that Pt

is the time series data at time t.
This new series called “return” has important properties such as stationarity. This property is

essential, since it is a prerequisite in a large percentage of both the modelling techniques and the
analysis of nonlinearity or chaotic behavior that will be used in this research.

(ii) Linearity modelling
Subsequently, all linear dependence is removed from the return series by applying autoregressive

moving average (ARMA) filters. The choice of the model was made as previously described [10],
which basically consists of choosing the ARMA (p,q) model which presents the lowest value according
to the Schwarz Information Criterion [49].

Following the process described by Barkoulas et al. [50], the residuals have been studied. In the
case that the residuals were correlated, the order of the ARMA model has been increased, increasing
the magnitude of p and q. Once the optimal linear model has been determined, the residuals are
extracted from it. The new residuals are called the ARMA series.

(iii) Nonlinearity testing
The presence of nonlinearity is a necessary but not sufficient condition for the existence of a

chaotic deterministic component in the system. Moreover, it is an inherent characteristic of complex
systems. To test the existence of nonlinearity and randomness, a wide range of methods has been used,
thus managing to supplement the possible limitations of each of them. The following techniques were
applied (Table 2).

• The Runs test [39] to evaluate the randomness of the series.
• Keenan’s test [40], a Portmanteau’s test that contrasts the hypothesis of a linear model versus a

nonlinear one.
• Tsay’s test [41], which assumes a generalization of the previous test.
• The test of Teräsvirta [42], which is based on the methodology of neural networks.
• White’s test [43], which is also based on the neural network methodology.
• BDS [18,44], one of the most powerful tests for nonlinearity and other types of data dependence.
• Kaplan’s test [5] that has also demonstrated statistical power in determining whether data

are linear.

The properties of the tests used in this research are well known in the literature so only the main
differences between them are described below.

Keenan’s test [40] examines the hypothesis of a linear model versus a nonlinear one. It is a
particular case of the RESET test. The starting hypothesis for the RESET test is that data correspond to
a linear model versus the alternative hypothesis that the model is nonlinear. It is based on the idea
that if the residuals from the linear model are independent, they should not be correlated with the
regressors used in the estimated equation or with the adjusted values and therefore, the regression in
the residuals of these values should not be statistically significant. The null hypothesis of linearity
is rejected if the value of the F-statistic for the chosen sample exceeds the theoretical value of the
F-standard. The RESET test is easy to implement and does not require fitting many parameters and
also has a reasonable power to detect some types of nonlinearity.

Keenan [40] proposes a nonlinearity test changing the RESET test to avoid multi-collinearity.
Specifically, Keenan assumes that every stationary time series {Yt} can be approximated (Volterra
expansion) as follows:

Yt = µ+
∑
∞

u=−∞
θuεt−u +

∑
∞

u=−∞

∑
∞

v=−∞
θuvεt−uεt−v (1)

such that µ is the mean of Yt and {εt} is a stationary, independent and identically distributed
sequence with a mean of zero. The process is linear, if the term containing the double sum
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∑
∞

u=−∞
∑
∞

v=−∞ θuvεt−uεt−v is null, that is if all the coefficients θ are zero. The method consists
of testing whether the coefficient of the double-sum term is zero, to affirm whether the process is linear
or not. The test statistic has as a null hypothesis that the time series is linear, and is asymptotically
distributed as F(1, n− 2p− 2) distribution, where n is the sample size, and p is the order of linear
AR(p) model, that is the number of lags involved in the regression.

The Tsay’s test [41] is a generalization of the previous test. Tsay’s test improved on the power of
the Keenan’s test by allowing for disaggregated nonlinear variables, thus generalizing Keenan’s test by
explicitly looking for quadratic serial dependence in the data. Tsay [41] showed that corresponding
test statistic is asymptotically distributed as Snedecor’s F distribution with the following degrees of
freedom: F(m, n− p−m− 1) where n is the sample size, m = p(p − 1)/2, and p is the order of AR fitted
model, that is the number of lags involved in the regression.

The Teräsvirta test [42] is constructed using neural network models. This test models the original
series by means of a Taylor series. It assumes a model of the shape:

yt = ytβ+
∑q

j=1

∑q

j=1
δ jyt−iyt− j +

∑q

j=1

∑q

j=1

∑q

j=1
δi, j,kyt−iyt− jyt−k + εt (2)

The null hypothesis is the following: H0 = δ j = δi jk = 0.
The contrast, and therefore the choice of the optimal model, is made by means of a statistic similar

to that used in the previous tests and which attends to an F(p2 − p1, n− p2) distribution, where p1,
p2 and n are the number of parameters of the first model, the number of parameters of the second
model and the sum of both, respectively.

White’s test [43] also uses neural net methods to test for nonlinearity. In this test, the time series
is fitted by a single hidden-layer feed-forward neural network, which is used to determine whether
any nonlinear structure remains in the residuals of an AR(p) process fitted to the same time series.
White’s test has power to test against various types of nonlinearity in the mean, thus it can be used
to distinguish among those nonlinear processes that are nonlinear in the mean and those that are
not (such as ARCH and GARCH) [51]. The null hypothesis for the test is linearity in the mean.
This methodology has the advantage that a pre-filtering of the conditional variance is unnecessary.
A fitted neural net is used to produce the measurable function of the process’s history and an AR(p)
process as the linear filter. The hypothesis that the fitted function does not correlate with the residuals of
the AR(p) process is then tested. The resulting test statistic has an asymptotic chi squared distribution
under the null of linearity in the mean.

BDS [18,44] is one of the most powerful tests for nonlinearity and other types of data dependence.
The test uses the correlation integral, a measure of the number of times that temporal patterns are
repeated in the data as the test statistic. It was originally formulated to study independence and
nonlinear structure (iid) in a time series. However, the test also has statistical power to detect a large
number of linear and nonlinear processes. In particular, the authors of the method showed that when
applying the test to the residuals of a linear model, if the test rejects the initial hypothesis (i.e., they are
iid) it will indicate the existence of linear dependence in the data. Consider a time series

{
yt
}T
t=1 and

define its m-history as ym
t =

(
yt, yt−1, . . . , yt−(m−1)

)
. The BDS tests the null hypothesis that the variable

of interest is independently and identically distributed (iid). Under the null hypothesis, the BDS
statistic is obtained by

V(T, m, ε) =
√

T
C(T, m, ε) −C(T, 1, ε)m

σ̂(T, m, ε)
(3)

The correlation integral asymptotically follows standard normal distribution. σ̂(T, m, ε) is the
standard sample deviation of C(T, m, ε) −C(T, 1, ε)m. Moving from the hypothesis that a time series
is IID, the BDS tests the null hypothesis that C(T, m, ε) = C(T, 1, ε)m, which is equivalent to the null
hypothesis of iid against an unspecified alternative [11].

Kaplan’s test [51] has demonstrated statistical power in determining whether data are linear. This
test is based on the concept of continuity in deterministic systems, which establishes that after an
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iteration, two points that are initially close will remain close, while if the underlying model is stochastic
two points initially close, they may have images that are very distant from each other. The null
hypothesis of the test is the linearity of the system versus the nonlinearity. Kaplan’s test can be used
to test either for nonlinearity or for more focused special cases of nonlinearity [51]. In a general and
summarized way, given a vector yt ≡

(
yt, yt−τ, . . . , yt−(m−1)τ

)
embedded in an m-dimensional phase

space and obtained from the set of observed data
{
yt
}T
t=1 and be the image of the point yt for an fixed

positive integer named delay τ, yt+τ = f (yt).
Kaplan’s technique examines for an embedding dimension m and a delay τ all the distances

between two pairs of points δi, j =
∣∣∣y j − yk

∣∣∣ and their respective images, εi, j =
∣∣∣y j+τ − yk+τ

∣∣∣ to later
calculate the average of the values of ε j,k, conditioned to the corresponding value of δi, j, that is
E(r) ≡ ε j,k for j and k such that δ j,k < r.

E(r) is therefore an average of all the images, whose initial points are very close. For every
deterministic system it is obvious that lim

r→0
E(r)→ 0 , but for chaotic systems this convergence is not so

clear. It is defined then the so-called Kaplan’s (K) statistic as: K = lim
r→0

E(r).

The value of K is expected to be higher in non-deterministic systems, compared to deterministic
systems. As mentioned, the null hypothesis of the test is that the underlying model of the data is a
linear dynamic system. To perform the test, it needs to work with a K statistic that is calculated for the
original series (K test) and a stochastic linear generating model with the same properties (with the
same histogram and autocorrelation function) as the original system (KS). If the value of the statistic of
the original series exceeds that of the series under the alternative hypothesis of stochastic linearity,
the null hypothesis of linearity is accepted. The distribution of the statistic is not tabulated, but Kaplan
proposes two maximum levels for testing the null hypothesis of linearity. The first is the minimum
KS estimated from the subrogated series, and the second is the mean minus two or three times the
standard deviation of all the estimated KS. The null hypothesis of linearity is rejected when the K
value calculated for the original reconstructed series is greater than at least one of the two dimensions
(called, for simplicity, KS and KSmin respectively).

Despite its simplicity, Kaplan’s test has shown to be able to detect a wide spectrum of nonlinearity
classes and has also demonstrated statistical power in determining whether data are linear [51].

(iv) Volatility modelling
A wide range of procedures are then applied to the residuals of the selected ARMA model obtained

to detect the existence of nonlinearity. If nonlinear dependence is detected, then it might be caused by
the existence of a volatility cluster. This being the case, the conditional variance is modeled by fitting
ARCH family models (GARCH and EGARCH), using the same method as above to select the best
model. After the estimation of both models, the residuals obtained were standardized by means of
their conditional standard deviations (from now on GARCH and EGARCH series).

(v) Study of chaotic behavior
Finally, the existence of the chaotic component in each series was studied. To do this, the following

methods were applied (Table 2).

• The Correlation Dimension, a measure of the complexity of a dynamic system that allows a
deterministic system to be distinguished from a stochastic one [47].

• Lyapunov’s Exponent, which analyzes in the system the property of sensitivity to initial
conditions [14].

• The 0/1 test [46] that provides a value close to zero or one, indicating the latter value existence of
chaos in the series.

• MGRM test [6], which has the main advantage of not needing to build the attractor to assess the
existence of chaos.

• The Recurrence Plots, which is a visual tool that allows to analyze the existence of periodic
patterns, among other aspects of the time series [48].
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3.2. Tools to Detect Chaotic Regime

To carry out many of the techniques used in this research it is necessary to reconstruct the attractor.
Following Barkoulas et al. [50], given a discrete dynamic system of the form

xt = F(xt−1), x ∈ Rn (4)

such that F : U→ Rn is a function and U an open subset of Rn [52], a closed invariant set A ⊂ U is an
attracting limit set of U if there is an open neighborhood V of A, such that the limit set of iterates is A,
∀xεV when t→∞ .

Empirically, it is often observed as a series of scalar observations y, which represent
the multidimensional system in Equation (4). In order to recover the dynamics of the system
(i.e., original trajectory) by analyzing the observed time series yt, the Takens [53] embedding theorem
is used, which is presented below.

An m-dimensional vector is defined and constructed from the observed time series.

ym
t = (yt, . . . , yt+m−1) =

(
g(xt), . . . , g

(
Fm−1(xt)

))
≡ Im (5)

where Fm−1 is the composition of F with itself m−1 times. The idea is to reconstruct the state dimension
space by expanding the one dimensional signal yt into an m-dimensional phase space, where each
observation in the signal yt is replaced by the vector ym

t in Equation (5).
Takens’ embedding theorem states that for each pair (F, g) the map Im : Rn

→ Rm will be an
embedding for m ≥ 2n + 1. This guarantees the existence of difeomorphisms between the original and
the reconstructed attractor as long as the embedding dimension m is sufficiently large with respect to
the dimension of the attractor. In short, Takens’ theorem assures that both attractors can be considered
to represent the same dynamical system in different coordinate systems when m ≥ 2n + 1.

The main characteristics of the tools for detecting a chaotic regime used in this research are
described below.

3.2.1. Correlation Dimension

The Correlation Dimension arises as a response to the problem of estimating the dimensions
to characterize a chaotic phenomenon. When reconstructing, it is necessary to know the number of
dimensions, m, or the embedding dimension, both to make its representation in the phase diagram
and to estimate a simple model of the phenomenon. An important characteristic of chaotic attractors
is their dimension, which is defined as the lower limit of the number of state variables (degrees of
freedom) needed to describe steady-state behavior. The correlation dimension test is a topologic one
which measures a quantity called correlation dimension. It distinguishes chaotic series from random
series by investigating the correlation dimension behavior of the data [30].

Let us consider the series
{
yt
}n
t=1 and, from this, the sequence of N = n−m + 1 m-dimensional

vectors, ym
t = (yt, . . . , yt+m−1) that gives the reconstructed series.

To estimate the dimension of the reconstructed attractor, the algorithm of Grassberger and
Procaccia [47] is used, which is based on the correlation integral given by the following expression:

C(ε) =
2

N(N − 1)

∑
t<s

H
{
ε−

∣∣∣∣∣∣Xm
t −Xm

s

∣∣∣∣∣∣} (6)

where ||.||, m and H represent respectively a norm operator, the embedding dimension and the Heaviside
function. There are several norms that can be used to measure the distance between two different state
vectors, such as the Euclidean norm or the maximum norm.

To determine the correlation dimension, it is needed to determine how C (ε) changes as ε
changes. As ε grows, the value of C (ε) grows because the number of near points to be included
increases. Grassberger and Procaccia [47] showed that for sufficiently small ε, C (ε) can be well
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approximated by C (ε) ∼ εv
). In other words, when ε→0, C (ε) grows at rate v where v is the value of

the correlation dimension (CD). The estimate of v when m→∞ , provides the correlation dimension
(CD). The dimension of a dynamic system is determined by estimating the slope of the regression of
ln C (ε) versus log ε and an intercept for small values of ε and depends on the chosen embedding
dimension. If the data are purely stochastic, the correlation dimension will equal m for all m. If the
data are deterministic, the estimated slope will stabilize at one point, not increasing as m increases.
This “saturation” of the slope is the estimated correlation dimension for the unobserved process,
which underlies the process that generated the data. That is, if the dynamic system is chaotic, C (ε) will
stabilize at some point D, as m grows.

3.2.2. Lyapunov

Lyapunov’s exponents measure the average rate of divergence or convergence between two
adjacent orbits, i.e., they quantify the sensitivity to initial conditions in the phase space, identifying
the basic attribute of deterministic chaos. It is approached through an exponential function, in which
the exponent determines the rate of divergence of adjacent orbits that start from close points in
an infinitesimal way. Chaotic systems exhibit a positive coefficient λ and systems that are stable,
a negative coefficient.

The Lyapunov exponent is one of the most employed techniques to assess the presence of chaotic
behavior in time series [16]. Specifically, the largest Lyapunov exponent can be used to measure the rate
of separation of closed trajectories and estimate the overall degree of chaos of a nonlinear dynamical
system [54].

There are many algorithms in the literature for the estimation of this coefficient. The algorithm
proposed by BenSaïda and Litimi [14] is followed in this research. Specifically, it has been empirically
proven that the methodology adopted in this article to determine the Lyapunov exponent (λ) is the one
that behaves best for noisy series [55]. Indeed, to estimate λ from experimental or observational data,
there are two main classes of methods, both of which are based on reconstructing the space state by
the delay coordinates methods. The direct methods are based on the calculation of the growth rate of
the difference between two trajectories with an infinitesimal difference in their initial conditions [56].
Among the limitations of this method is that it cannot accept measurement errors or noise [57]. On the
contrary, the Jacobian-based approach can give consistent estimates of the Lyapunov exponents even in
the presence of noise [58,59]. The Jacobian method is based on nonparametric regression to estimate the
Jacobians and λ. It consists of computing the Jacobian matrix of the chaotic map. However, for a scalar
time series, the map generating the process is usually unknown; as a result, the Jacobian matrix could
not be estimated, and the Lyapunov exponent cannot be computed. For that purpose, it is needed to
approximate the unknown chaotic map with a known function. McCaffrey et al. [58] compared several
alternatives: thin-plate splines, neural nets, radial basis functions and projection pursuit. Based on the
simulations performed by them, neural net was the best regression method for chaotic systems with
noise. In this line, Bailey et al. [59] proposed a regression method which involves the use of neural
networks. Simulation results for a noisy Henon system suggest that the neural net regression method
yields accurate estimates values of the Lyapunov exponent.

In order to shrink the noise in a dynamical system, a wavelet-based denoising method to filter the
data has been employed by several researchers. In particular, the theory of signal denoising using
wavelets has been developed by Donoho and Johnstone [60]. Garcin and Guégan [61] adapted the
theory for signals in which the noise influence is nonlinear and the wavelet transform-based detection
of chaos has been proposed by Rubežić et al. [62]. While this approach could be appropriate for
physical systems where noise is an intruder of the real pure signal, for financial data, where noise
is an inherent property to markets, denoising the data could modify some of the stylized financial
facts that have been discussed earlier in the paper and alter the true dynamics that underlie the time
series to be tested [63]. Hence, following this reasoning, a neural network approach has been chosen in
this research.
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Briefly, the methodology consists in the following steps: let us consider a time series
{
yt
}T
t=1

represented as follows:
yt = f (yt−L, yt−2L, . . . , yt−mL) + εt (7)

where L, m, ε and f stand for the time delay, the embedding dimension, noise added to the series and an
unknown chaotic map, respectively and t is the time script. The Lyapunov exponent (LE) is defined as:

λ̂ =
1

2M
ln(v1) (8)

where the “block length” M is the number of evaluation points used for estimating the Lyapunov
exponent which stands for an arbitrarily selected number of observations and v1 is the largest eigenvalue
of the matrix (TMU0)

′(TMU0), with TM =
∏M−1

t=1 JM−t Jt, the Jacobian matrix of the chaotic map and
U0 = (1, 0, . . . , 0)′.

Because f is usually unknown, it is needed to approximate the Jacobian matrix. The authors
employ a single-layer feed-forward neural network using nonlinear least squares for different values
of m = 1 . . . 8 and later calculate the LE spectrum. Hence, the chaotic system is estimated by the
following equation:

yt ≈ α0 +

q∑
j=1

α j tan h

βo, j +
m∑

i=1

βi, jyt−iL

+ εt (9)

(L, m q) are selected as the triplet that provides the highest value for λ and are associated with the
complexity of the system. The test for chaos is then constructed based on the asymptotic distribution
of λ [56].

3.2.3. 0/1 Method

The 0/1 method for chaos was developed to distinguish between regular and chaotic dynamics in
deterministic dynamical systems. This tool for chaos was proposed by Gottwald and Melbourne [46]
and has a series of advantages over other tests, such as the fact that it is not necessary to reconstruct
the phase space or that the result, which is 0–1, is very easy to interpret. Also, rather than requiring
phase space reconstruction which is necessary to apply standard Lyapunov exponent methods to the
analysis of discretely sampled data, the technique works directly with the time series and does not
involve any preprocessing of the data.

The input of the test is a one-dimensional time series y(t) for t = 1, 2, 3, . . . The data y(t) is used
to drive the following two-dimensional system:

p(t) =
∑t

j=1
y( j) cos(y( j)) t = 1, 2, 3, . . . (10)

q(t) =
∑nt

j=1
y( j) sin(y( j)) t = 1, 2, 3, . . . (11)

Define the (time-averaged) mean square displacement (MSD)

M(t) = lim
1
N
[p( j + t) − p( j)]2 t = 1, 2, 3, . . . (12)

If the system is chaotic, then M(t) will grow linearly over time. If the system is not chaotic,
M(t) will be bounded. The asymptotic growth rate of MSD is defined as:

K = lim
t→∞

log M(t)
log (t)

(13)
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K can be determined numerically by a linear regression of log (M(t)) versus log (t). Under general
conditions, the limits M(t) and K can be shown to exist, and K takes either the value K = 0 signifying
regular dynamic or the value K = 1 signifying chaotic dynamic.

3.2.4. MGRM Test

The MGRM Test is explained in detail in [6]. As the authors of the method argue, it is a test
for the deterministic process as opposed to the stochastic one which is based on symbolic dynamics
and entropy. The MGRM test is based on the concept of permutation entropy, which has its roots in
symbolic dynamics. The basic idea behind symbolic dynamics consists of dividing the phase space into
a finite number of regions and labeling each region with an alphabetical symbol. A relevant property
of symbolic dynamics is that essential features of the underlying dynamics, such as its deterministic or
stochastic nature or its complexity, are preserved. Likewise, entropy accounts for the unpredictability
of the system under study, which is a crucial feature of complex systems.

In the first instance the notation is introduced: let
{
yt
}
t∈T be a stationary time series,

{
yt
}
t∈I an

observation with I = {1, . . . , T} and m the embedding dimension with m ≥ 2. Ordinal patterns
will be defined for “m”. To that end, the scalar time series is embedded to an m-dimensional space:
Ym(t) =

(
yt, yt+1, . . . , yt+(m−1)

)
f or t ∈ T. The ordinal pattern of embedding dimension m, at a given

time t is defined as the unique permutation πm(t) ≡ (r0 r1 . . . rm−1) of the set {0, 1, . . . , m− 1}
satisfying:

yt+r0 ≤ yt+r1 ≤ · · · ≤ yt+rm−1 (14)

rs−1 < rs if yt+rs−1 = yt+rs (15)

By means of (15) it is guaranteed the uniqueness of the permutation defined by (14). So, the vector
or m-history Ym(t) is converted into a unique symbol πm(t). In fact, πm(t) describes how the order of
the dates: t+ 0 < t+ 1 < . . . < t+ (m− 1) is turned into the order of the corresponding analyzed values.
The basic idea is to divide naturally the state space in which the dynamics takes place into a finite
number of partitions using the time-dependent information contained in the m-history Ym(t) ∈ Rm.
According to the previous definition, partitions depend on the ordinal structure of the m-history.
In particular, πm(t) = πm(s), s , t, if and only if for all k, I ε {0, 1, . . . , m− 1} with k , I it holds that
yt+1 ≤ yt+k ↔ ys+1 ≤ ys+k.

In general, given a time series
{
yt
}
t∈T, all m! permutations of order m are considered here as

possible order types of m different numbers. Then the relative frequency or unconditional success
probability p(π) of each symbol or permutation π for a given time series and an embedding dimension
parameter m exists and it can be defined as:

p(π) =
card

{
t
∣∣∣ 0 ≤ t ≤ T − (m− 1), Ym(t) has type π

}
T −m + 1

(16)

Given an embedding dimension m ≥ 2, modified Shannon entropy that stands for the m! distinct
symbols is defined as follows:

h(m) = −
∑m!

i=1
p(πi) log p(πi) (17)

The test is constructed as follows: Let m be embedding dimension and T be the number of
observations and fix w, k ∈ N such that w = m!

k . Next, the subsets W j that must verify W1 ⊆ W2 ⊆

· · · ⊆Wn in the following way W j = W j−1 ∪
{

w symbols chosen at random in Sm \W j−1
}

for j = 2, . . . ,k.
are constructed.

Subsequently the next modified permutation entropy’s function is calculated as:

hW j(m) = −
∑
π j∈w j

p(π) log p(π) (18)
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The authors of the method showed that by analyzing the modified permutation entropy’s
function values it is possible to distinguish and identify deterministic systems. In this process no
more information is gained by increasing the number of symbols under consideration. In contrast,
in non-deterministic process, this information or complexity is increased.

This latter property is tested in the following way: Let dhW j(m) be the hW j(m) slope:

dhW j(m) =
hW j+1(m) − hW j(m)

log
( j+1

j

) (19)

When considering random process, the numerical slope of permutation entropy will increase with
(log(jw)), while this will not hold for chaotic or regular processes.

The property described above that identifies deterministic systems hW j(m) is checked by carrying
out the following regression:

dhW j(m) = α0 + α1 j + ε j f or j = 1, 2, . . . , k− 1 (20)

where ε j is white noise. As a result, the estimated parameter α̂1 can be used to evaluate dhW j(m)

increases with j. In mathematic notation, the test is the following one:

H0 ≡ α1 = 0
H1 ≡ α1 > 0

(21)

Indeed, regression (20) can be considered as a simple symbol-trend model. As in the simple
time-trend model, the ordinary least squares (OLS) estimate α̂1 is so that asymptotically the usual t-test
of H0: α̂1 = 0 is valid. If the coefficient obtained is null, then the series is deterministic; otherwise
(greater than 0), it is stochastic [6].

3.2.5. Recurrence Plots

In addition to the analytical methods described above, there are other methods for detecting chaos
and other patterns of a more visual nature, the so-called recurrence plot (RP) being one of the most
widely used.

The Recurrence Plot (RP) is an analysis tool that reveals the existence of recurrent and intermittent
patterns in time series. First proposed by Ekmann et al. [64], it has been widely applied in the
characterization of dynamic systems. This topological method shows the hidden structures of time
series from a qualitative point of view. The plots are constructed by assuming mutual distances that
belong to the same path in the reconstructed phase space [17].

The construction is done as follows:
Let m be the embedding dimension and ym

t the vector m-dimensional in the reconstructed phase
space in time t = 1, 2, . . . , k

The recurrence matrix is generated by comparing each embedded vector ym
i with the other ym

j .
A point is drawn if this comparison is less than a value ε for a specific distance. That is, if the condition

is met:
∣∣∣∣∣∣∣∣ym

i − ym
j

∣∣∣∣∣∣∣∣< ε .
Recurrence of a moment of state i at a different time j occurs when ym

j is close enough to ym
i .

The RP can therefore show which vectors are close together and which are far apart.
The diagonal structures of the RP identify the range in which a fraction of the path is relatively

close to another at a different time. For a deterministic chaos system, small lines are observed parallel
to the main diagonal. However, in random systems, small line segments are absent, and evenly
distributed points are shown.

This technique is independent of some constraints such as sample size, noise and stationarity [11].
It also provides additional information about the structure of the attractor, since the plot preserves the
temporal order of the series, allowing the place and periodicity of the periodic orbits to be known.
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4. Empirical Results

Applying the methodological framework described above, the main results obtained are
shown below.

4.1. Data

Four different daily time series are analyzed, using the closing prices of the following major
stock market indices: the Dow Jones Industrial Average (Dow Jones), the Ibex 35 (Ibex), the Nasdaq
100 (Nasdaq) and the Nikkei 225 (Nikkei). All the data were obtained from Yahoo Finance and covers
the period from 1 January 1992 until 31 July 2013. Figure 1 shows the evolution of the series over the
sample period.
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Source: Yahoo finance.

Table 3 presents the main descriptive statistics of the series studied. Both the series of the main
stock market index of the U.S. Stock Exchange and that of the Spanish Stock Exchange show a negative
asymmetry coefficient (−0.51 and −0.05, respectively), unlike the other financial series considered
in the study. Moreover, it can be concluded that the data do not come from a normal distribution,
as reflected by the Jarque–Bera test (p-value < 0.05).
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Table 3. Descriptive statistics.

Original Series Returns ARMA GARCH EGARCH

DOW JONES

Mean 9108.07 0.0003 −5.8 × 10−7 −0.0356 0.0028
Standard Deviation 3147.61 0.0112 0.0112 0.9994 0.9999

Median 10,080.3 0.0005 0.0004 0.0017 0.0350
Minimum 3136.58 −0.0821 −0.0790 −6.5989 −6.0801
Maximum 15,567.7 0.1051 0.0993 3.4852 3.7538

Skewness Coefficient −0.5103 −0.1364 −0.2810 −0.4213 −0.3715
Kurtosis Coefficient 2.2721 11.4338 10.7387 4.4806 4.2585

Jarque–Bera Test 354.59 * 16,062.4 * 13,575.8 * 654.4 * 481.64 *
N 5415 5414 5412 5412 5412

IBEX

Mean 8124.38 0.0002 4.86 × 10−8 −0.0407 −0.0063
Standard Deviation 3354.74 0.0146 0.0145 0.9989 1.0001

Median 8362.9 0.0007 0.0005 −0.0158 0.0166
Minimum 1873.58 −0.0959 −0.0965 −6.5618 −7.7301
Maximum 15,945.7 −0.1348 0.1335 5.9752 5.2568

Skewness Coefficient −0.0526 −0.0054 −0.0428 −0.2057 −0.1960
Kurtosis Coefficient 2.3074 7.8791 7.7376 4.4174 4.4775

Jarque–Bera Test 110.96 * 5382.03 * 5076.16 * 492.48 * 528.23 *
N 5427 5426 5426 5426 5426

NASDAQ

Mean 1950.235 −7.1910−5
−2.30 × 10−7 −0.0316 0.0043

Standard Deviation 842.569 0.0149 0.0156 0.0351 0.9999
Median 1989.22 −9.3410-5 0.0009 −6.1386 0.0706

Minimum 547.84 −0.1195 −0.1018 4.1826 −6.1143
Maximum 5048.62 0.1366 0.1265 0.9994 3.5622

Skewness Coefficient 0.3527 −0.0584 −0.0979 −0.3825 −0.4038
Kurtosis Coefficient 3.0323 12.7954 8.4806 4.0381 4.0070

Jarque–Bera Test 112.519 * 22,759.76 * 6782.03 * 374.96 * 375.74 *
N 5415 5414 5412 5412 5412

NIKKEI

Mean 14,304.3 −9.122 × 10−5
−5.22 × 10−8 −0.0357 −0.0045

Standard Deviation 4073.77 0.0154 0.0154 0.9997 1.0001
Median 14,416.6 6.3110-5 0.0002 −0.0160 0.0129

Minimum 7054.98 −0.1211 −0.1204 −6.4953 −6.7925
Maximum 22,667 −0.1323 0.1282 5.6944 5.7235

Skewness Coefficient 0.1026 −0.2147 −0.2397 −0.1943 −0.1597
Kurtosis Coefficient 1.7032 8.2470 8.2517 4.4910 4.5000

Jarque–Bera Test 379.75 * 6104.3 * 6125.1 * 522.85 * 518.01 *
N 5287 5286 5286 5286 5286

Notes: Statistics for the time series considered in this study: original series, return series, and residuals of
autoregressive moving average (ARMA), generalized autoregressive conditional heteroskedasticity (GARCH) and
exponential GARCH (EGARCH) models. Skewness and kurtosis coefficient corresponds to the Fisher asymmetry
coefficient and the kurtosis coefficient, respectively. *: The asterisk denotes significance at 5% level. Source:
Own work.

4.2. Returns

After testing that the series are not stationary (see Table 4), the returns from each series were
obtained, by considering the logarithms of the ratio of two consecutives prices. Figure 2 shows the time
development of the returns. They show an excess of kurtosis, a negative skewness coefficient (Table 3)
and more fat-tails in comparison with those from a normal distribution. These characteristics are typical
of financial returns [2]. Excessive kurtosis means that returns far from the average are more common
than in a normal distribution and therefore the investor is subject to greater risk. The Jarque–Bera test



Entropy 2020, 22, 1435 16 of 26

indicates departure from the normal distributions for all the cases. According to the results from the
Augmented Dickey–Fuller, Philips–Perron and KPSS tests, all the returns series are stationary (Table 4).

Table 4. Stationarity analysis.

Index Returns

DOW JONES

1. Augmented Dickey Fuller Test
Constant −1.0288 (0.7451) −56.0490 (0.0001)

Constant and Linear Trend −2.2115 (0.4825) −56.0525 (0.0000)
2. Phillips–Perron Test

Constant −0.9623 (0.7685) −78.6723 (0.0001)
Constant and Linear Trend −2.1111 (0.5389) −78.6832 (0.0001)

3. Kwiatkowski–Phillips–Schmidt–Shin Test
Constant 7.1098 0.1793

Constant and Linear Trend 1.1008 0.0832

IBEX

1. Augmented Dickey Fuller Test
Constant −1.8643 (0.3496) −53.5682 (0.0001)

Constant and Linear Trend −1.6676 (0.7655) −53.5897 (0.0000)
2. Phillips–Perron Test

Constant −1.8167 (0.3727) −71.1395 (0.0001)
Constant and Linear Trend −1.5767 (0.8023) −71.1609 (0.0000)

3. Kwiatkowski–Phillips–Schmidt–Shin Test
Constant 5.1229 0.2791

Constant and Linear Trend 1.0088 0.0543

NASDAQ

1. Augmented Dickey Fuller Test
Constant −1.3869 (0.5904) −54.9507 (0.0001)

Constant and Linear Trend −2.0781 (0.5574) −54.9485 (0.0000)
2. Phillips–Perron Test

Constant −1.3869 (0.5904) −74.6870 (0.0001)
Constant and Linear Trend −2.0781 (0.5574) −74.6836 (0.0001)

3. Kwiatkowski–Phillips–Schmidt–Shin Test
Constant 0.0860 0.1198

Constant and Linear Trend 0.6694 0.0861

NIKKEI

1. Augmented Dickey Fuller Test
Constant −2.3032 (0.1710) −75.6134 (0.0001)

Constant and Linear Trend −2.5121 (0.3222) −75.6142 (0.0001)
2. Phillips–Perron Test

Constant −2.3485 (0.1568) −75.7549 (0.0001)
Constant and Linear Trend −2.5440 (0.3066) −75.7590 (0.0001)

3. Kwiatkowski–Phillips–Schmidt–Shin Test
Constant 5.5059 0.0950

Constant and Linear Trend 0.4156 0.0491

Augmented Dickey–Fuller p-values correspond to MacKinnon [65] one-sided p-values. For the Phillips–Perron test,
lags were based on bandwidth Newey–West using Bartlett kernel. Critical values for the Kwiatkowski, Phillips,
Schmidt and Shin test are 0.463 and 0.146 respectively for the constant and linear plus linear trend model. Significant
values at the 95% confidence level are in bold.
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Constant −1.3869 (0.5904) −54.9507 (0.0001) 
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Figure 2. Plot of stock indices returns series. Time points (year) are on x-axis and observations are on
y-axis. Source: Own work.

4.3. Linear Dependence

As some methodology (for example the BDS test) is not robust to the presence of linear relationships,
the linear dependence was removed using ARMA models. Following the criterion described by
Barkoulas et al. [51], the best ARMA model was selected for each series (Table 5). The selected fitted
models for each of the series (ARMA (2,5); ARMA (0,3); ARMA (2,2) and ARMA (0,1), for the series
Dow Jones, Ibex, Nasdaq and Nikkei respectively) are shown in Table 5 that shows all the models
fitted in this research. Details of each model are presented in Supplementary Materials A (Tables SA1,
SA4, SA7 and SA10). According to the results from the Augmented Dickey–Fuller, Philips–Perron and
KPSS tests, applied on the residuals of the selected model and shown in Table 4, all the residuals series
(ARMA) are stationary.

Table 5. Models.

Index
Linear Model Nonlinear Model

[ARMA] [GARCH] [EGARCH]

Dow Jones ARMA (2,5) GARCH (2,1) EGARCH (2,1)
Ibex ARMA (0,3) GARCH (2,1) EGARCH (2,1)

Nasdaq ARMA (2,2) GARCH (2,1) EGARCH (2,3)
Nikkei ARMA (0,1) GARCH (1,1) EGARCH (1,1)

4.4. Nonlinear Dependence

Next, Keenan, Tsay, Teräsvirta, White, BDS and Kaplan methods were used to study nonlinearity.
The principal advantage of using a broad set of instruments is to obtain the most information possible
about the nature of the series, since to date none of the methods has proved successful in detecting all
types of dependence. Nevertheless, some tests, such as the BDS, White or Kaplan, are more efficient in
detecting dependency [51].

The BDS test was applied once the linear dependence was eliminated, as previously suggested by
Brock et al. [51]. In this way the BDS test served as an indirect method of analyzing nonlinearity: if it
rejected the null hypothesis, then the series was proven to be nonlinear. This procedure is theoretically
feasible, since the calculations on the residuals of an autoregressive model do not lose the relevant
information derived from the original series if the latter comes from a nonlinear chaotic system [51].
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The BDS test is applied taking into account the different embedding dimensions (range: 2–9). The results
are presented in Supplementary Materials B (Tables SB3–SB14).

Kaplan’s method is applied to a series in which the functional form that generated the series is
unknown. The method’s aim is to determine whether there is evidence of an underlying deterministic
mechanism, i.e., that the hypothesis that is tested is the stochastic linearity of the process. It is considered
that the null hypothesis is verified if the value of the statistic K, calculated for the original series (K test),
is smaller than the values obtained for the surrogates of each series, defined as the smallest value
(Kmin) between the minimum and the mean, minus two standard deviations (KS). Several different
values for both the delay and the embedding dimension parameters were taken into account, and the
conclusions did not differ (see Supplementary Materials B).

Table 6 presents a summary of results for the nonlinear analysis. All the procedures used, except for
Kaplan, suggest the existence of nonlinearity in the Dow Jones Index ARMA series. A similar pattern
is observed for the Nasdaq Index. Further, as all the tests indicate some nonlinear dependence in the
Ibex and Nikkei indexes, the data seems to present some type of dependence, since the BDS test shows
significant results for the different embedding dimensions and the epsilons considered. For the latter,
the White and Teräsvirta tests confirm the existence of dependence.

Table 6. Summary of results for the nonlinear analysis.

Dow Jones

Test Ho Returns ARMA (2,5) GARCH (2,1) EGARCH (2,1)

Runs Randomness R NR R R
Keenan La NR R NR NR

Tsay La R R NR NR
White La R R NR NR

Teräsvirta La R R R R
BDS Lb - R NR Mixture

Kaplan L NR Mixture Mixture NR

Ibex

Test Ho Returns ARMA (0,3) GARCH (2,1) EGARCH (2,1)

Runs Randomness NR NR NR NR
Keenan La NR NR NR NR

Tsay La R NR R NR
White La NR NR NR NR

Teräsvirta La R R NR NR
BDS Lb - R NR Mixture

Kaplan L Mixture Mixture NR Mixture

Nasdaq

Test Ho Returns ARMA (2,2) GARCH (2,1) EGARCH (2,3)

Runs Randomness R R R R
Keenan La R NR NR NR

Tsay La R R R R
White La R R R R

Teräsvirta La R R R R
BDS Lb R R Mixture Mixture

Kaplan L R Mixture NR NR

Nikkei

Test Ho Returns ARMA (0,1) GARCH (1,1) EGARCH (1,1)

Runs Randomness R NR R R
Keenan La NR NR R NR

Tsay La R R NR NR
White La R R NR NR

Teräsvirta La R R NR NR
BDS Lb - R Mixture Mixture

Kaplan L NR NR Mixture Mixture

Ho: Null hypothesis. La: Linear in mean. Lb: This test can be applied as a linear test once the linear dependence
has been eliminated. R represents that the null hypothesis is rejected; NR represents that the null hypothesis is not
rejected. Mixture represents that the test reported no clear results. For the Kaplan method a total of 30 surrogates
were generated from the original series, considering the same embedding dimensions and delay parameters.
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4.5. Volatility Clustering

The next step consists of modelling the conditional variance by fitting ARCH family models
(GARCH and EGARCH). In first instance, the best GARCH (p,q) model was selected so as to adhere to
the previously described criterion [51]. The selected models were GARCH (2,1) for the Dow Jones,
Ibex and Nasdaq indexes and the GARCH (1,1) for the Nikkei Index (Table 5). After fitting each model,
standardized residuals were obtained (from now on GARCH and EGARCH series). Unlike GARCH
models, EGARCH models can be used to estimate the conditional variance, taking into consideration
the sign of the innovation of the previous period. These types of models successfully capture the
asymmetric response in the conditional variance and, hence, are suitable candidates for modeling
financial processes. The chosen models were EGARCH (2,1), EGARCH (2,3), and EGARCH (1,1) for
the Dow Jones and Ibex indexes, the Nasdaq Index and the Nikkei series, respectively (Table 5 and
Supplementary Materials A). The standardized residuals of all the series are less leptokurtic (with an
average value of 4) than those obtained from the ARMA models (Table 3).

Since nonlinearity is a necessary, but not sufficient, condition for chaotic behavior, its existence was
first analyzed in residuals of the volatility models (Table 6 and Supplementary Materials B). In general,
linear hypothesis is not rejected, but nonlinearity was found in some cases. Indeed, the BDS test shows
some remaining dependence in the Dow Jones Index, which is compatible with the existence of chaos in
the EGARCH model residuals. The Tsay and BDS tests reject linearity for the Ibex Index in the GARCH
and EGARCH models, respectively. Likewise, some procedures show evidence of nonlinearity in the
case of the GARCH and EGARCH models for the Nasdaq series. Finally, for the Nikkei Index, the BDS
rejects the hypothesis of independence for all the cases considered.

4.6. Chaotic Behavior Analysis

The following methods were used to test the existence of chaotic dynamics. Results are presented
in Supplementary Materials C.

Correlation Dimension
The correlation dimension (CD) [48] quantifies the degree of complexity of a system and

distinguishes a deterministic system from a stochastic one. The results suggest that, in all cases
except for the EGARCH model in the Dow Jones Index, the CD increases as the embedding dimension
increases, however, the CD is below the expected value for a random process (Supplementary Materials
Table SC1). Moreover, except in the latter series, the saturation of the slope as the embedding dimension
increases is not observed. Thus, it is not possible to assure that the series are chaotic. Overall, there is
sufficient evidence against the existence of a strange attractor; and if this is the case, it might be of a
high dimension.
Lyapunov Test

The Lyapunov exponent reflects the average rate of convergence or divergence of two paths that
are, initially, points that are very close in the phase space. Positive values indicate the existence of
chaotic dynamics. Here, the algorithm described by BenSaïda and Litimi [14] was used. Negative
significant Lyapunov exponents were obtained in all cases (Supplementary Materials C, Table SC2).
Thus, the assumption of chaotic behavior was rejected in all cases.

0/1 method
Following the procedure described by the authors of the method, which consists of using several

frequencies to increase the degree of robustness of the test, the test was carried out a total of 6000
times and the median of all realizations was taken [46]. The results of the 0/1 method are shown
in Supplementary Materials Table SC3. The test provides a value close to 0 or 1. If the value is 0 it
is concluded that the series is clearly stochastic, however if the result is 1, it cannot be stated with
certainty that the series has a chaotic component, since the result may be due to noise. All the results
obtained are close to value 1 (Supplementary Materials Table SC3), so it is concluded that the series
may have a lot of noise or may have a significant chaotic component.
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MGRM Test
This test is constructed as follows. First the Shannon modified entropy values are calculated.

Then, the information or complexity is estimated by a linear regression that used the entropies as the
explanatory variable. The coefficient of the entropies is then analyzed as in deterministic series the
complexity derived from the entropy of permutation does not increase when the number of symbols
increases, once the saturation point is reached. To conduct the test, the parameters were fixed such that
m = 4, k = 2, and w = 12. The results were positive in all the cases (Supplementary Materials Table
SC4). Thus, the hypothesis of determinism is rejected.

Recurrence plots
Visual Recurrence Analysis is based on Eckmann’s [48] definition of a recurrence graph. The degree

of complexity and the existence of chaos is analyzed by generating the recurrence plots. This kind
of analysis can capture the recurrence property of states, one of the essential properties observed in
chaotic systems. The points above the main diagonal, representing the distance between the same
vector and each embedded vector in the phase space and therefore segments parallel to the diagonal,
would indicate a chaotic behavior [50].

Figures 3–6 show the recurrence plots for the four series considered. For their elaboration,
the optimal values of the two parameters, m—the embedding dimension and τ—the considered delay,
as previously described, have been considered. Likewise, the Euclidean distance has been chosen and
the radius cut-off point (ε) is defined as 10% of the maximum distance between all the points of the
reconstructed phase space. This value is adopted in several works, for example in Barkoulas et al. [50].

The recurrence plots can present different patterns, among them the presence of short segments
parallel to the main diagonal are related with the existence of chaos. Except the one corresponding to
the EGARCH model of the Nikkei stock, none of these patterns is observed in the series evaluated,
concluding that the underlying system that generated the series apparently does not have a significant
chaotic component.
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5. Conclusions

This study examines the underlying dynamics of four of the principal stock exchange indexes and
the asset markets that they represent. To determine the existence of a nonlinear and chaotic regime in
the analyzed time series, a comprehensive methodological framework has been adopted that integrates
a great number of tools. Thus, seven techniques have been used for nonlinear analysis and five for the
analysis of chaotic behavior, including those most suitable for noisy time series. Results support the
existence of nonlinearity, which is not consistent with chaos. In addition, GARCH/EGARCH models
explain a significant part of the nonlinear structure that is found in the four stock markets analyzed.

The findings are in concordance with the conclusions of other researchers who use suitable
procedures for noisy series to detect chaos in stock markets (e.g., [14]). On the other hand, our conclusion
contradicts the findings of previous studies that found evidence of low dimensional chaos but used
several techniques that do not account for noise (e.g., [66]).

The analysis of the stock exchange indexes carried out in this research is of great interest because
the markets they represent are currently a faithful barometer of the evolution of activity in the
most developed economies. Likewise, the modelling and study of the existence of nonlinearity and
the chaotic dynamics of stock markets is particularly useful for agents involved in capital markets:
investors, financial intermediaries, credit institutions, regulators, etc. Knowledge of their dynamics
is essential for making accurate predictions of their future evolution and of crucial importance for
properly managing the level of risk in the capital market and correctly and efficiently applying prices
in the derivatives and futures markets.

Further research is needed to examine other types of both parametric and nonparametric nonlinear
models, as well the relationships between the different stock market indices, using a multivariate
GARCH model (MGARCH). Also, a new research would consist of the study of the effects of the
collapse of stock prices caused by the COVID-19 outbreak on the dynamics of the series analyzed and
see how this phenomenon would have affected the results obtained. Other further work could be to
carry out the study dividing the total sample into several periods.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/22/12/1435/s1,
A: Details of the Models Applied to the Series; B: Results of the Randomness and NonLinearity tests and C: Chaotic
Component Study.
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