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Abstract

Structural information related to protein–peptide complexes can be very useful for novel drug discovery and design. The
computational docking of protein and peptide can supplement the structural information available on protein–peptide
interactions explored by experimental ways. Protein–peptide docking of this paper can be described as three processes that
occur in parallel: ab-initio peptide folding, peptide docking with its receptor, and refinement of some flexible areas of the
receptor as the peptide is approaching. Several existing methods have been used to sample the degrees of freedom in the
three processes, which are usually triggered in an organized sequential scheme. In this paper, we proposed a parallel
approach that combines all the three processes during the docking of a folding peptide with a flexible receptor. This
approach mimics the actual protein–peptide docking process in parallel way, and is expected to deliver better performance
than sequential approaches. We used 22 unbound protein–peptide docking examples to evaluate our method. Our analysis
of the results showed that the explicit refinement of the flexible areas of the receptor facilitated more accurate modeling of
the interfaces of the complexes, while combining all of the moves in parallel helped the constructing of energy funnels for
predictions.
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Introduction

Peptide-mediated interactions with proteins are important to

the physiological functions of living cells [1]. Thus, structural

information related to protein-peptide complexes is a rich resource

for drug discovery and design [2]. There is an increasing capacity

for obtaining experimental-determined structural information

about protein-peptide complexes, but there is still a large gap

between the requirements of pharmaceutical applications and the

solved experimental structures.

Recently many papers based on physical or physical-chemical

computational protein-peptide docking methods have been

published. Moreover, the scoring problems and search problems

are two basic and important considerations for understanding

protein-peptide docking [3]. From the modeling perspective, the

problem of flexibility is an un-solved problem for conventional

protein docking algorithms [4].

Many studies have been conducted on computational protein

docking, but most docking studies are classified into protein-

protein docking and protein-ligand docking. The direct applica-

tion of these methods to protein-peptide docking is not expected to

provide good prediction accuracy due to the following two

reasons. First, the peptide is smaller and more flexible than the

docking protein. Second, the peptide is more like protein

compared with a regular small molecule (ligand). Therefore,

computational approach to docking proteins is an appealing

alternative solution for meeting the needs. Given that about 40%

of protein-protein interactions involve peptides [1], protein-

peptide docking merits more specific research.

The FlexPepDock protocol was developed for refinement of

coarse models of peptide-protein complex structures [5] based on

the Rosetta platform [6]. This protocol only works on cases where

the peptide backbone conformation within the receptor-binding

site is already known. The same authors recently developed an

enhanced protocol, FlexPepDock ab-initio (abFlexPepDock for

short), to support ab-initio peptide folding [7]. HADDOCK was

originally developed for protein-protein docking [8,9] and was

recently modified to flexible protein-peptide docking [10].

HADDOCK only treats the interface residues as possible flexible

areas when docking the peptide with the receptor. Dealing with

backbone flexibility in protein docking and the prediction of

binding site are still an open challenge. There are many useful way

to predict the binding site, like Lo et al. presented a new approach

named PLB-SAVE that uses only geometrical features of proteins

to predict protein-ligand binding regions [11]. Receptor flexibility

and binding site prediction are also different problem. An MC-

based flexible approach was reported that explicitly samples

protein side chain and ligand backbone and side chain rotations

was very important during protein peptide docking [12]. A

molecular dynamics simulation approach, Dynadock [13], was

developed for the refinement of protein-peptide complexes.
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However, it lacks the ability to model peptides from scratch. The

PDZ-DocScheme [14] only used the peptide and protein side

chains within 6 Å of the bound complex as flexible areas, whereas

the rest of the protein was treated as a rigid body. A rapid

sampling method based on mutually orthogonal Latin squares

(MOLS) was developed to sample docking poses simultaneously

during protein-peptide docking [15]. This method was also

focused on the flexible peptide and ignored the flexibility of the

receptor. Also there are many other methods restricted to support

docking very short peptides [16,17].

In this study, we propose a novel parallel protein-peptide

docking approach that considers both ab-initio peptide folding and

modeling of the flexible areas of the receptor. A parallel computing

technique is a natural choice because of the increasing popularity

of parallel computing facilities. More importantly, the parallel

design proposed in this study supports our understanding of the

micro behaviors when a protein docks to a peptide. During the

actual docking process, there are three major behaviors: peptide

folding, the docking of the receptor and the peptide, and

fluctuations in the flexible areas of the receptor caused by the

introduction of the folding peptide. These three movements are

assumed to occur in parallel. However, existing docking

approaches simulate the docking process in a serial manner.

Given the simultaneous occurrence of folding and docking [7], we

developed a docking method which is running in a real parallel

manner.

The new method is based mainly on abFlexPepDock, but we

enhanced it by using parallel computing and with flexible docking,

so we refer to our method as PaFlexPepDock. We consider that

PaFlexPepDock contributes significantly to the modeling of

protein docking in two aspects. First, we use parallel movements

to mimic the natural docking process, which suggests that the

dynamical adjustments between the protein and peptide are

occurring concurrently. Second, we explicitly model the flexible

areas of the receptor when the protein is docking to the peptide.

Results and Discussion

Dataset and evaluation criteria
In this study, we developed a parallel peptide docking method

based on abFlexPepDock [7] for ab-initio docking with a receptor

that contains flexible areas. The four main procedures used for

low-resolution docking (peptide folding, peptide refinement,

perturbation of flexible regions in the receptor, and receptor

docking with the peptide) were combined in parallel (see section

Methods for details). We chose 22 unbound docking cases for our

evaluation in this study.

All of the cases used in this study were chosen from the peptiDB

dataset [18]. To illustrate the major differences between the

unbound and bound receptor, the interface residues of unbound

receptors were superimposed onto their bound counterparts using

the method described in ref. [18]. These differences were

measured as the Ca RMSD (root mean square deviation) and

pair (Q,y) deviation, respectively. As the classifying method

described in ref. [10], we divided our test instances into three

classes (Easy/Medium/Difficult) (see Figure 1).

It was based on the backbone RMSD between the conformation

of the peptide in the crystal structure and its ideal extended

conformation. The first eight cases (1B9K, 1JBE, 1OOT, 1R6J,

1RWZ, 2AA2, 2AM9, and 2J2I) were also considered in ref. [7]

where the results were not satisfied. The two cases (1BFE and

1GFD) were taken from ref. [13] where the flexible areas of

receptors were not treated explicitly. More details about these

complexes can be found (see Table S1 in File S1) to assess our

method.

To evaluate the accuracy of our method, we used four main

general criteria: pp_bb for the peptide backbone RMSD, pep_if

for the peptide backbone interface RMSD, com_if for the complex

backbone interface RMSD, and com_bb for the complex

backbone RMSD. All of these RMSDs were calculated after their

counterparts were superimposed using the method described in

ref. [18]. Like previous studies, we refered to the predictions with

pep_if (#2 Å) as near-native predictions [7] and those with pep_if

(#1 Å) as sub-angstrom predictions [5]. The prediction is said to

have a successful sampling when a near-native model was

generated in the final decoys.

We conducted the evaluation experiments to compare the

performance of PaFlexPepDock with that of abFlexPepDock. The

compared results of the first eight cases were directly adopted from

ref. [7]. abFlexPepDock [7] suggested that more than 50000

decoys should be generated as the primary prediction output, and

then using clustering method to identify the final predictions with

good quality from the decoys. In this study, we performed

PaFlexPepDock to obtain 10000 decoys as the first primary

prediction results, and then followed the same clustering strategy

as abFlexPepDock did to identify the final predictions. Since

PaFlexPepDock used four parallel threads to explore the degrees

of freedom of four various movements, these 10000 decoys could

be roughly thought of as the filtered results of 40000 decoys. We

think that this size of decoys is enough to get the safe conclusion

not biased towards our method. In fact, we tested several cases to

generate 50000 decoys (see Table S2 in File S1). The final results

were not much better than those coming from 10000 decoys, but

with CPU cost of almost 5 times. Thus, we decide to generate

10000 decoys for PaFlexPepDock to do the evaluation.

Parallel performance evaluation
First, we want to confirm that the performance of our parallel

method was not worse than its own serial counterparts. We

serialized the four major procedures of our parallel version of

PaFlexPepDock. In order to compare with abFlexPepDock, we

put the procedure of the receptor flexibility refine at the end of the

main framework. So the order of the four procedures were

docking, peptide abinitio, peptide refine and receptor flexibility

refine. Figure 2 shows the typical results of the comparison

between the parallel and serial running of PaFlexPepDock.

Figure 1. Protein-peptide test instances summary. Distribution of
positional backbone RMSD between the bound form of the peptide and
the ideal extended conformation.The 22 cases were divided into five
levels, and classified into three categories(Easy,Medium,and Difficult).
doi:10.1371/journal.pone.0094769.g001
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The box-and-whisker plot shows clearly that there is a positive

improvement for the parallel processing compared with the serial

approach. There were eight successful samplings (the only

exception, 1B9K, was very close to the successful sampling, i.e.

2.086 Å vs 2.000 Å) using our parallel protocol and six using the

serial protocol. A comprehensive comparison of the decoys showed

that in six (1B9K, 1OOT, 1RWZ, 1BFE, 1DDV, and 1D1Z) of

nine cases the parallel approach was better than the serial method,

particularly on 1OOT, 1DDV, and 1BFE. Therefore, it was safe

to conclude that the parallel protocol improved the predictive

accuracy over its serial counterpart.

Next in this study, we used the results of the parallel running of

PaFlexPepDock as the representative results to evaluate its

performance compared with results from the control experiments.

Comparative analysis of results
The performance on modeling interface, ab-initio folding peptide

backbone, modeling flexible areas and energetic ranking ability is

our main concerns.

The clustering results of the docking benchmark in terms of

modeling accuracy of peptide interface with PaFlexPepDock and

abFlexPepDock were summarized in Table 1.

For protocol PaFlexPepDock, we can sample near native

conformation in almost all cases, where half of the cases the near

native model was ranked within the top-10 ranking clusters.

Table 1 shows that our PaFlexPepDock got an obviously better

result than abFlexPepDock when selecting the best prediction in

terms of modeling peptide interface.

Table 1 ensured us that our protocol PaFlexPepDock was able

to identify the best models from decoys. We now moved to

evaluate modeling interface combined with the consideration of

the complex interface (com_if). Table 2 shows the results in all the

four criteria, including com_if.

For all of the test cases, PaFlexPepDock achieved successful

samplings except for 2AM9, and 11 of the successful samplings

had sub-angstrom accuracy. abFlexPepDock failed 4 cases to

generate successful samplings, and obtained only 9 sub-angstrom

predictions. Thus, PaFlexPepDock performed slightly better than

abFlexPepDock when sampling the docking interface. The peptide

interface was predicted accurately for 2AM9 (see Figure 3)

although its com_if was not better. The unsuccessful sampling of

com_if was due to the failure of receptor modeling (see the

Discussion section for details).

Next, we considered the statistical properties of the decoys

obtained by PaFlexPepDock and abFlexPepDock to evaluate

predictive accuracy of the peptide interface. Figure 3 shows the

distributions of the decoys on the peptide interface backbone

RMSD using abFlexPepDock and PaFlexPepDock by a box-and-

whisker plot.

The figure shows that the only one case with no successful

pep_if sampling was 1B9K. PaFlexPepDock failed to obtain a

successful sampling for 1B9K, which was illustrated in Figure 4
and explained in the Discussion section.

After studying Figure 3, we found that for most cases

PaFlexPepDock had statistical advantages over abFlexPepDock

on mean value,median value,upper quartiles and lower quartiles.

The figure illustrated that PaFlexPepDock generally behaved

better than abFlexPepDock on pep_if (see also in Table 2).

Figure 2. Comparison of serial and parallel running with PaFlexPepDock. Comparison of the protocol in serial and parallel mode which
running with measurement pp_if. ‘+’ stands for mean value, ‘x’ stands for median value. The minimum, lower quartile, upper quartile and maximum
are obviously shown without ambiguity. The green horizonal line indicates successful sampling threshold, the blue horizonal line indicates sub-
angstrom sampling threshold.
doi:10.1371/journal.pone.0094769.g002
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Combined analysis of the predictive accuracy for the peptide

interface and the complex interface showed that PaFlexPepDock

performed better than abFlexPepDock.

Our second part of results is focused on the accuracy of

modeling peptide. PaFlexPepDock folds peptides in ab-initio

manner, so we evaluated how well it worked for free modeling a

peptide. Column" in Table 3 showed the lowest pp_bb values

with PaFlexPepDock and abFlexPepDock (see also in Table 2).

For 18 out of 22 complexes, PaFlexPepDock produced good

models of the peptide (pp_bb less than 2 Å), six of which had a

sub-angstrom accuracy. The protocol abFlexPepDock performed

worse than PaFlexPepDock. Two particularly successful cases of

PaFlexPepDock were 1R6J and 1RWZ, where the peptides

contained b sheets. The receptor also had a b sheet close to the

peptide, which formed b strands with the peptide. PaFlexDepDock

had its lowest pp_bb with 1R6J, which ranged from 1.015 Å

(abFlexPepDock) to 0.71 Å (PaFlexPepDock), while for 1RWZ

ranged from 2.339 Å (abFlexPepDock) to 0.847 Å (PaFlexPep-

Dock). It is worth mentioning that both cases got sub-angstrom

models and the rank of them was relative to the front of the decoys

after sorted by energy score. According to the column of difficulty,

among the 22 cases only four were classified into easy level, it

means that most of the peptides had large difference between its

start and native structure.

It is not hard to understand that abFlexPepDock was not likely

to generate high quality conformation if it treated the receptor as a

rigid body. Figure 5 shows a typical example where the flexible

area of receptor is critical to modeling the peptide interface

correctly. Thus our protocol with receptor flexibility helps to

obtain the accurate peptide and better docking result. After

superimposing the starting and native conformation, we can see

that the interface of the starting receptor and the peptide is much

looser than the native one (carton representation in Figure 5).

Full investigation showed that the flexible area of the starting

receptor collided with the peptide of native (right top in Figure 5).

That is to say, without backbone movements on receptor, just as

what abFlexPepDock did, it is impossible to model correctly the

peptide interface. PaFlexDepDock provided a good solution. The

modeling peptide and docking peptide to receptor are along with

the refining of the receptor flexible areas which enables backbone

movements to help peptide folding (left bottom in Figure 5). This

brought us better chance to obtain near-native conformation.

We also compared PaFlexPepDock with another docking

method DynaDock. For these two cases (1BFE and 1GFD),

DynaDock obtained best pp_bb values of 1.19 Å and 1.98 Å,

respectively, during the first broad sampling stage. The results

were improved to 0.66 Å and 1.03 Å after the final refinement

stage. PaFlexPepDock produced good result when comparable to

those using DynaDock with values 0.588 Å and 1.476 Å,

respectively. To obtain insights into the relative success of the

sampling and scoring methodologies on peptide backbone RMSD,

we used another criteria that was constrained by the best sampled

Table 1. The discriminative ability comparison between PaFlexPepDock and abFlexPepDock.

pdb_id best pep_if{ top-10 pep_if1 first near native cluster"

1B9K 2.086 1.2 5.642 1.4 .500 8

1JBE 0.598 0.4 0.96 5 2 29

1OOT 0.933 1.1 1.258 3.2 3 22

1R6J 0.71 0.7 1.9 1.9 1 1

1RWZ 0.847 1.9 4.281 4.3 136 .500

2AA2 0.646 0.7 1.6 1.5 4 10

2AM9 0.362 0.7 0.794 2.6 1 28

2J2I 1.454 1.8 2.759 3.7 4 299

1I2H 1.179 1.363 2.393 1.98 1 1

1FMG 1.495 1.299 5.903 2.025 18 8

1SPR 1.732 2.79 3.887 3.054 205 .500

1Y0M 0.67 1.178 0.869 1.226 1 19

2G6F 0.724 1.459 1.372 3.774 1 25

2DS8 1.375 1.533 1.892 2.471 8 8

1BFE 0.588 0.621 1.314 1.353 1 1

1GFD 1.476 1.944 2.036 2.513 2 150

1EG3 1.789 2.219 3.922 3.603 42 .500

1GO5 1.109 1.496 2.314 3.977 1 28

1Z9L 1.096 2.735 2.984 3.331 12 .500

2YQL 0.914 0.964 1.403 1.46 1 1

1V49 1.247 1.674 3.79 4.917 191 146

1D1Z 1.658 3.18 4.086 4.208 155 .500

Cluster performance of peptide modeling onto unbound protein receptor structures. For each pair, left and right column are generated by PaFlexPepDock and
abFlexPepDock respectively.
{The best pep_if among all sampled decoys.
1The best pep_if of the representing prediction among top-10 clusters.
"The rank of the first cluster with near native structure.
doi:10.1371/journal.pone.0094769.t001
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(BS) pose and lowest energy(LE) between PaFlexPepDock and

abFlexPepDock.

For those best sampled poses, PaFlexPepDock improved the

Ave_rmsd(BS,Å) from 1.447 Å to 1.122 Å and the Ave_rms-

d(LE,Å) from 1.929 Å to 1.919 Å(see in Table 4). The counts of

the BS and LE poses within 2.5 Å pp_bb distance from the bound

structure were 22 and five, which were slightly better than

abFlexPepDock. A comparison of the results shown in Table 2 (a

summary of results using recently developed protein-peptide

docking methods) from ref. [19] showed that PaFlexPepDock

was better than some of other docking protocols in terms of the

Ave_rmsd. But it was worse than some methods on P(LE), it is our

future working to improve it.

As the third part of our results, we evaluate the performance

when modeling the receptor. In most of the examples, the

predictive accuracy of the receptor was improved as expected

because we explicitly refined the flexible areas of the receptors.

Figure 6 showed two successful examples. The flexible areas are

correctly modeled by applying right loop refinement protocol.

Figure 6 clearly illustrates the flexible regions between the start

and the native conformation. The peptides in these two examples

were short, so both PaFlexPepDock and abFlexPepDock could

fold the peptides to obtain near-native results. However,

PaFlexPepDock modeled the receptor more accurately because

the appropriate refinement protocol was employed.

Next, we investigated the accuracy of the flexible areas and their

relationships to pep_if, which are shown in Table 5.

It was not surprising that for all the 22 examples, PaFlexPep-

Dock predicted the flexible areas more accurately than abFlex-

PepDock (see column1 in Table 5). For cases such like 1SPR, and

1D1Z, where there were big difference between starting and native

structure on the receptor, PaFlexPepDock reduced much of the

backbone RMSD in the flexible areas.

During docking procedure the flexility of receptor connected

with peptide interface, so the ability from receptor flexibility to

choose peptide interface is very important. In order to find the

correlation between these, we gave the lowest value of pep_if

among top 100 decoys,after sorting the accuracy of receptor

flexible areas in Table 5. From Table 5 we found that there

were 18 cases with near-native conformation, even eight get

Figure 3. Comparison of PaFlexPepDock and abFlexPepDock on pep_if. Comparison of abFlexPepDock(left) and PaFlexPepDock(right)
running with measurement pp_if. ‘+’ stands for mean value, ‘x’ stands for median value. The minimum, lower quartile, upper quartile and maximum
are obviously shown without ambiguity. The green horizonal line indicates successful sampling threshold, the blue horizonal line indicates sub-
angstrom sampling threshold.
doi:10.1371/journal.pone.0094769.g003

Figure 4. Two failure cases where modeling the flexible regions
accurately is hard. For each complex, the start and native pdb were
shown in blue and green cartoon,respectively. The decoys generated by
PaFlexPepDock protocol were shown in other colors.
doi:10.1371/journal.pone.0094769.g004
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sub-angstrom. For cases like 1I2H and 2YQL, there were even

more than half of decoys got near-native peptide interface.

For the last part of our results, we investigated how our

sampling policy was related to the energy functions we used. When

modeling flexible areas, PaFlexPepDock used the Rosetta full-

atom energy function score12(Table S3 in File S1 shows each

energy item) and the coarse grained energy function, which

employs a unified spheres side chains model (Rosetta centroid

score4) [20]. However, during the post-processing of decoys,

abFlexPepDock used the re-weighted energy function include total

energy, interface energy, and peptide energy proposed in ref. [7],

which showed that 64% of the unbound docking cases in the top-

100 models might have a near-native conformation. This was very

effective as an energy function for identifying good prediction from

the decoys. For PaFlexPepDock, 82% of the top-100 models

contained near-native conformations based on this benchmark.

For 19 of 22 cases, PaFlexPepDock produced an excellent

energy funnel (e.g.1Y0M,1EG3, and 2YQL). Figure 7 shows how

the peptide interface RMSD was related to the energy function for

the test examples. For both of PaFlexPepDock and abFlexPep-

Dock, we chose the models with the lowest 1000 re-weight score

values to plot the figure. The blue and red points show the

correlation between energy function and peptide interface RMSD

created by protocol PaFlexPepDock and abFlexPepDock respec-

tively. For only three cases(1B9K, 1D1Z, and 1FMG), PaFlex-

PepDock failed to show the energy funnel. We consider that this

might have been attributable to the parallel sampling approach

that guided energy into the funnels.

Discussion
PaFlexPepDock combines four samplers in parallel and

achieved good performance compared with its predecessor,

abFlexPepDock. However, there are two failure cases to be worth

discussing here. Figure 4 shows the two failure cases where

PaFlexPepDock had no satisfied performance.

For 1FMG in Figure 4, both ends of the flexible regions are

connected to b-sheets. Both of our loop samplers, backrub and

KIC, failed to rotate the unbound flexible segment to the bound

position, unlike the successful models shown in Figure 6. We

think that there might be due to two possible reasons why we could

not model these flexible areas accurately. Either the loop sampling

was not sufficient or efficient, or the energy function we used

rejected good models. Thus, there is a new challenge of modeling

Figure 5. Modeling receptor flexibility contributes to folding peptide. On the left panel,the starting,native and decoy generated by
PaFlexPepDock protocol were shown in blue, green and purple cartoon respectively. On the right top panel, the structure conflicts between staring
receptor and native peptide were shown in full atom model. The right bottom panel showed the critical contacts between receptor and peptide in
full atom model. The green one represents native pose, purple one represents the decoy generated by PaFlexPepDock protocol.
doi:10.1371/journal.pone.0094769.g005

Table 4. Comparison of the pep_if prediction accuracy constrained by BS and LE.

protocol P(BS){ Ave_rmsd(BS)1 P(LE)` Ave_rmsd(LE)1

PaFlexPepDock 1 1.122 0.227 1.919

abFlexPepDock 0.727 1.447 0.09 1.929

{P(BS,2.5 Å) the probability of best sampled poses of a docking method being within 2.5 Å pp_bb RMSD of the corresponding native poses.
`P(LE,2.5 Å) the probability of lowest energy poses of a docking method being within 2.5 Å pp_bb RMSD of the corresponding native poses.
1Ave_rmsd(BS,Å) and Ave_rmsd(LE,Å) are the mean value of pp_bb constrained by BS and LE respectively.
doi:10.1371/journal.pone.0094769.t004
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flexible loops accurately and efficiently, which will also benefit

other modeling applications.

For case 1B9K in Figure 4, this is the only one exceptional

worse prediction for PaFlexPepDock compared with the target

result for abFlexPepDock shown in ref. [7]. In fact, even we rerun

abFlexPepDock on that case locally in our computer, we could not

obtain the similar results published in ref. [7], while locally redoing

of other seven cases would reproduce the similar results in ref. [7].

We believe that was due to using different starting pdb data for this

case in this study and in ref. [7]. We tend to think that this only

exceptional case did not hurt our conclusion much.

Figure 6. Two successful examples where the receptors had flexible regions. For each complex, the start and native pdb were shown in
blue and green cartoon,respectively. The decoys generated by PaFlexPepDock protocol were shown in other colors.
doi:10.1371/journal.pone.0094769.g006

Table 5. Comparison of the accuracy of modeling the flexible areas and their relationship to pep_if.

pdb_id number{ top100# abFlexPepDock1 PaFlexPepDock1

1B9K 0 4.187 0.80/0.76/0.78 0.38/0.30/0.45

1JBE 4 1.072 0.73 0.57

1OOT 27 0.933 1.12/0.66 0.67/0.5

1R6J 2 1.54 0.80 0.61

1RWZ 28 0.975 0.97 0.97

2AA2 7 0.942 1.86 0.96

2AM9 38 0.766 3.52 2.97

2J2I 0 2.641 1.05 1

1I2H 59 1.307 3.94/1.31 3.58/0.6

1FMG 1 1.495 1.19/0.38 0.52/0.25

1SPR 1 1.732 1.04 0.52

1Y0M 15 0.67 1 0.78

2G6F 1 0.814 0.54/0.80 0.31/0.45

2DS8 2 1.735 0.88 0.69

1BFE 57 0.765 2 1.01

1GFD 48 2.766 0.88 0.69

1EG3 9 1.789 0.17 0.13

1GO5 0 2.531 1.58/2.56 1.38/1.69

1Z9L 2 1.096 3.71 0.47

2YQL 69 0.914 1.48/1.77 0.98/1.15

1V49 1 1.777 2.69/2 1.88/1.33

1D1Z 0 3.74 2.67 0.89

{number: The total number of near-native conformation generated by protocol PaFlexPepDock among top 100 decoys which sorted by flexible regions.
#top100: The lowest value of pep_if among top 100 decoys sorted by flexible regions.
1The lowest backbone RMSD of flexible regions (each flexible area is evaluated separately).
doi:10.1371/journal.pone.0094769.t005
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Figure 8 shows the ideal parallel design of PaFlexPepDock

required to fully share the pose across the four threads. We expect

that every single move made by any thread will be sensed by other

threads via the shared pose (fine-grained parallelization). Unfor-

tunately, this synchronization will disrupt the consistent data

contained in the pose because of the complex design and

Figure 7. Correlations between the energy value and RMSD. The x-axis and y-axis represent for peptide interface backbone RMSD and re-
weight energy score respectively. The points in red color are for abFlexPepDock, the points in blue color are for PaFlexPepDock.
doi:10.1371/journal.pone.0094769.g007
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implementation of Rosetta poses [21]. Thus, we have to make the

parallel thread and lock the shared pose while updating occurs.

Therefore, from a design level, all four movements of the docking

process occur simultaneously, whereas at the implementation level,

they occur semi-simultaneously. However, they will behave totally

different from that use sequential ‘‘simultaneous’’ movements [7].

PaFlexPepDock assumes that the protein-peptide binding site is

known approximately, in the same way as abFlexPepDock.

Indeed, binding site prediction can be treated in the same way

as other computational problems [22] that involves vast amounts

of information from cross-linking experiments, mutational analy-

sis, NMR shifts, or any other experimental evidence [23,24]. Thus,

the identification of flexible areas in this study is also relied on the

binding site of the bound structure. Applying an automatic

approach [25] alone is not sufficient for locating these flexible

areas.

In order to investigate how much contributions each parallel

move makes, we conducted a pilot experiment for the prediction

procedure of testing case 1D1Z. We collected how frequent each

parallel move updates the shared pose (see Table S4 in File S1).

The ab-initial peptide folding protocol contributed most to the

shared pose 99% out of its moves are updated to the shared pose.

Peptide refinement protocol contributed 16% out of its moves to

the shared pose. It is not surprising that these protocols made most

significant changes on the complex, because the peptide is folded

from an extended segment. The modeling flexible protocol offered

13.12% out of its moves to the shared pose, which was much

higher than the docking protocol. Notice that all the four protocols

are running in parallel. So the updates to the shared pose are

broadcast to all of the protocols. So they are helping each other to

improve the shared pose towards the direction of lower energy.

Methods

PaFlexPepDock was constructed from the previous successful

docking protocols in an incremental manner. The first building

block was Rosetta platform [6,26], which is a powerful tool for

modeling protein structures [27–30]. RosettaLigand [31] and

RosettaDock [32] were then built on Rosetta to provide docking

services for the protein-ligand and protein-protein complexes,

respectively. Next, FlexPepDock [5] was developed based on these

docking services to facilitate the modeling of protein-peptide

interactions with a limited flexibility receptor and peptide.

Furthermore, abFlexPepDock [7] was proposed to enhance

FlexPepDock by docking with an initial extended peptide. Finally

in this study, we extended abFlexPepDock by not only including

an extra refinement step for the flexible areas of the receptor, but

also parallelizing all the movements during the docking process.

Similar to the way that abFlexPepDock prepares the input data

before docking, PaFlexPepDock randomly selected a residue of the

peptide as the anchor. PaFlexPepDock also needs to build a

fragment library of the peptide, and to determine the binding site

manually. As the new enhancement, PaFlexPepDock must address

three more issues: 1) identifying the flexible areas of the receptor,

2) applying perturbations to the flexible areas and 3) parallelizing

all of the major activities during docking. Next we explain how

these three issues are implemented.

The first issue was how to identify the flexible areas of the

receptors. There are some computational approaches to identify-

ing the flexible areas for protein-protein docking [25]. But most

previous models usually predefine flexible regions by visually

comparing the bound and unbound structures. We used the same

strategy to identify the possible flexible areas on the receptor for

those protein-peptide docking test instances. First, we collected

these residues according to a predefined b-factor cutoff value ($

10) in the bound structure. Next, we located the residues around

the peptide within a distance of 5 Å. We then obtained the

intersection of these two sets of residues, as described in [25].

Finally, for each candidate residue, we calculated the distance

between the residue in the bound structure and that in the

unbound one. If the distance exceeded a predefined cutoff value

($6 Å), the residue was judged to belong to a flexible area. In

terms of real ab-initio protein-peptide docking approaches, the

Figure 8. General parallel combination flowchart of PaFlexPepDock.
doi:10.1371/journal.pone.0094769.g008
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method we proposed here for identifying flexible areas of the

receptor is not actually automatic because we need to know the

binding site of the bound structure. As discussed earlier,

identifying binding site is another challenge that requires more

combination of the computational methods and experimental

data, which is beyond the focus of this paper.

The second issue of designing PaFlexPepDock was to find a

refinement protocol that could be applied to the flexible areas we

identified. We used either the Backrub [33] or Kinematic closure

(KIC) protocols [34]. Thanks to Rosetta developers [21], these

protocols have already been implemented as the backrub mover

and the KIC mover within the Rosetta platform. So PaFlexPep-

Dock can apply them easily to the flexible areas. Backrub rotates a

backbone segment after adjusting the positions of all the atoms

within this segment, thus can provide realistic, small perturbations

to rigid backbones. KIC perturbs several degrees of freedom in a

backbone segment and tunes the positions of various critical points

to make this segment a valid peptide segment. These movers have

different performances on different kinds of areas. Basically in this

study, we selected the move for each case according to the motion

of the flexible area between the starting and native pose. We

applied Backrub mover to cases like 1BFE and 1V49 in Figure 6
where had obvious and regular flexibility between the native and

starting conformation. For other cases where tiny movements were

identified, we used KIC mover.

The final issue of implementing PaFlexPepDock was the

combination of all the movements into a parallel computing

framework. The complete PaFlexPepDock pipeline was divided

into two stages: low resolution docking and high resolution

docking. We think the refinement of the flexible areas of the

receptor might cause larger movements of backbone which will

consequently affect docking a folding peptide onto the receptor, so

we applied the refinement mover in the low resolution docking

stage. Three other movers were also employed in this stage: ab-

initio peptide folding, refinement of the peptide, and the receptor

docking with the peptide.

Using OpenMP [35], a parallel computing environment that

runs at the thread level, PaFlexPepDock forked four parallel

threads with each binding one of the four movers: folding, peptide

refinement, docking and refinement of flexible areas of the

receptor. The four movers sampled corresponding degrees of

freedom on their private working conformations (poses in Rosetta’s

terminology). The working pose was copied from a shared pose

which was updated after an iteration of each mover running within

a thread. In this way, the best-so-far predicted pose of each mover

was made available to all the movers by the shared pose. The

general flowchart of how to implement PaFlexPepDock is shown

in Figure 8.

The four parallel movers are running asynchronously in

Figure 8, which means that the update to the shared pose from

each iteration will occur at different time. In fact, some movers

might require more CPU time for one iteration, while others need

less. We would like to point out that the four movers update the

shared pose only using their own working results, depicted in

update arrows with different colors in Figure 8. The refinement

of the flexible areas of the receptor updated the shared pose using

only the new coordination of the sampled areas. The docking

mover also updated the shared pose using only the relative

positional coordinates (the JUMP properties in RosettaDock’s

terminology [21]) of the protein and peptide. The ab-initio peptide

folding and refinement movers updated the peptide part of the

shared pose using the gradually optimized peptide structure. Thus,

the optimized results of each individual mover could be sensed by

other movers in the next iteration. When the four parallel threads

terminate, the shared pose is the final prediction of PaFlexPep-

Dock.

To maintain the consistency of the data in the shared pose, each

modification from the parallel thread to the shared pose will be

exclusively updated. This was achieved easily by using the lock

mechanism provided by OpenMP. To make CPU more efficient,

we only allocated two CPU cores for the four parallel threads.

After PaFlexPepDock generated decoys, we use the same

clustering approach as abFlexPepDock to find the best predictions

from the decoys. How to select the correct model from all the

computer generated models is another challenge. We first

clustered our computational models using the Rosetta Cluster

application, as described in ref. [32], with a cluster radius cutoff of

2 Å. Then we selected a representative model according to the

lowest energy score from each cluster. At the same time, the

clusters were ranked according to the energy of their representa-

tive models.

Supporting Information

File S1 Supporting Information. Table S1:The dataset we

used in this study includes 22 Unbound protein peptide complex

structures. Table S2: Statistical comparison to case 1Y0M

between 10000 decoys and 50000 decoys on pp_if. Table S3:
Energy Score. Table S4: The update frequency on each thread.
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