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Abstract: Origanum vulgare ssp. hirtum has been used as medicinal herbs promoting antioxidant,
anti-inflammatory, antimicrobial, and neuroprotective activities. We investigated the protective
effects and the mechanism of O. vulgare ssp. hirtum essential oil (OEO) on cognitive impairment
and brain oxidative stress in a scopolamine (Sco)-induced zebrafish (Danio rerio) model of cognitive
impairment. Our results show that exposure to Sco (100 µM) leads to anxiety, spatial memory,
and response to novelty dysfunctions, whereas the administration of OEO (25, 150, and 300 µL/L,
once daily for 13 days) reduced anxiety-like behavior and improved cognitive ability, which was
confirmed by behavioral tests, such as the novel tank-diving test (NTT), Y-maze test, and novel
object recognition test (NOR) in zebrafish. Additionally, Sco-induced brain oxidative stress and
increasing of acetylcholinesterase (AChE) activity were attenuated by the administration of OEO.
The gas chromatography–mass spectrometry (GC-MS) analyses were used to elucidate the OEO
composition, comprising thymol (38.82%), p-cymene (20.28%), and γ-terpinene (19.58%) as the main
identified components. These findings suggest the ability of OEO to revert the Sco-induced cognitive
deficits by restoring the cholinergic system activity and brain antioxidant status. Thus, OEO could be
used as perspective sources of bioactive compounds, displaying valuable biological activities, with
potential pharmaceutical applications.

Keywords: Origanum vulgare ssp. hirtum; essential oil; scopolamine; anxiety; memory; oxidative
stress

1. Introduction

Alzheimer’s disease (AD) is an irreversible and leading cause of 70% of all dementia
cases, which include noteworthy, persistent, and progressive memory loss. Additionally, it
includes cognitive impairment and personality changes. Drug discovery and development
for AD are challenging because no new drug has been approved since 2003 [1]. There
are few medications available on the market of acetylcholinesterase inhibitors (AChEIs),
such as donepezil (treatment of mild cognitive impairment), rivastigmine, and memantine,
which can instigate adverse effects such as vomiting, diarrhea, fatigue, muscle weakness,
dizziness, headache, constipation, and so on [2]. In the brain of patients with AD, immod-
erate reduction in acetylcholine (ACh) hydrolyzed by acetylcholinesterase (AChE) is one
of the essential elements in the development of dementia, and an approach in this regard
could be through the inactivation of AChE activity, a critical enzyme that cleaves synaptic
ACh and stops neuronal signals [3].

Zebrafish (Danio rerio) is an excellent model for understanding the mechanism of a disease
due to its central nervous system, which is organized similarly to vertebrates—traditionally
separated into rhombencephalon, mesencephalon, forebrain, ascending and descending
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spinal cord, cranial nerves, motor spinal cord, and nerves sensory. This animal model
has important advantages, including the blood–brain barrier (BBB) of zebrafish, which is
structurally and functionally similar and to that of mammals, and many proteins of human
associative neurodegenerative diseases have counterparts in zebrafish, highlighting the
potential conservatory of molecular cellular functions, which can be easily examined [4].
Locomotion is a complex behavior, as evidenced by zebrafish embryos, which have a basic
ability to swim even after hatching. According to behavioral studies, despite the strong
association regarding the functions of the brain regions between zebrafish and humans,
the neocortex is missing in zebrafish, but the systems of neurotransmitters (dopamine,
GABA, glutamate, norepinephrine, serotonin, histamine, and ACh) are present in zebrafish
and are responsible for learning and memory and actively participate in the transmission
process [5].

The role of cholinergic signaling in acquisition and consolidation has been thoroughly
documented [6,7]. Scopolamine (Sco) is a nonselective muscarinic acetylcholine recep-
tor blocker that causes amnesia by impairing learning and short-term memory [8]. Sco
causes cognitive impairment in rodents [9] and inhibits memory formation in the object
recognition test [10]. Zebrafish is also highly sensitive to Sco, which shows amnesic effects
in the Y-maze and novel object recognition (NOR) tests [11,12]. As a result, Sco-induced
amnesia models are frequently employed to assess natural products and related substances’
neuroprotective properties.

The Lamiaceae family includes the Origanum genus, and most of its species are
found in the Mediterranean, Eurasia, and North Africa, where they are used in traditional
medicine to treat colds, coughs, stomach, and respiratory disorders [13,14]. It has been
documented that O. syriacum L. exhibits neuroprotective and beneficial effects in treating
several disorders affecting different systems of the body, including the cardiovascular,
respiratory, and nervous systems [15]. In addition, it improves learning and memory in
AD model mice [16]. The antibacterial, anti-inflammatory, and antioxidant characteris-
tics of Origanum’s phenolic components were primarily responsible for its therapeutic
impact on traditional medicine [17–19]. Several studies have investigated O. vulgare’s
anti-inflammatory properties in both cell and animal models. Avola et al. [20] demon-
strated that O. vulgare L. essential oil displays anti-inflammatory activity and facilitates
wound healing in a human keratinocytes cell model. Additionally, Han and Parker [21]
provided evidence on the anti-inflammatory, tissue remodeling, immunomodulatory, and
anticancer activities of O. vulgare essential oil in a human skin disease model. Furthermore,
Vujicic et al. [22] reported that ethyl acetate extract of O. vulgare L. ssp. hirtum reduced
proinflammatory macrophage/T helper 1/T helper 17 cells response in streptozotocin-
induced diabetes in C57BL/6 mice. Antioxidant properties of O. vulgare have been ex-
tensively investigated, particularly its essential oil derivatives. Kosakowska et al. [23]
mainly attributed the antioxidant activity of the essential oils and hydroethanolic extracts
of O. vulgare L. ssp. hirtum Ietswaart and O. vulgare L. ssp. vulgare to the high amount of
carvacrol. Kakhri et al. [24] demonstrated the highest antioxidant activity of the O. vulgare
essential oil, mainly due to the presence of carvacrol (34.00%) and thymol (35.18%) in its
chemical composition.

The chemical composition of the O. vulgare essential oil has been extensively studied.
Teixeira et al. [25] reported carvacrol (14.50%), thymol (12.60%), β-fenchyl alcohol (12.80%),
and δ-terpineol (7.50%), following γ -terpinene (11.60%), and α-terpinene (3.70%) as the
major compounds detected from the O. vulgare essential oil. Methyleugenol (16.50%),
myristicin (15.60%), carvacrol (15.00%), thymol (9.80%), and apioline (9.40%) were the ma-
jor compounds identified by Zhao et al. [26] from O. vulgare essential oil. Hamada et al. [27]
reported carvacrol (48.38%), thymol (26.55%), γ-terpinene (7.9%), and 1,8-cineol (4.86%) as
major identified compounds from O. vulgare essential oil. Moreover, carvacrol (71.00%),
followed by β-caryophyllene (4.00%), γ-terpinene (4.50%), p-cymene (3,50%), and thymol
(3.00%) was found to be the major component of O. vulgare essential oil [28]. Azizi et al. [29]
demonstrated that thymol and carvacrol alleviated cognitive impairments in two rat models
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of dementia with its anticholinesterase, antioxidant, and anti-inflammatory activities. Addi-
tionally, Sudeep et al. [30] demonstrated that β-caryophyllene improved cognitive function
in Sco-induced amnesia model mice via the regulation of brain-derived neurotrophic factor
and MAPK proteins. To date, no research has shown that O. vulgare ssp. hirtum protects the
memory of zebrafish from Sco-induced cognitive impairment by modulating cholinergic
and antioxidant pathways. This study explored the phytochemical composition of the
O. vulgare ssp. hirtum essential oil to see how it affected anxiety, cognitive performance,
and brain antioxidant capacity in Sco-induced zebrafish model.

2. Results and Discussion
2.1. The Chemical Composition of the Origanum vulgare ssp. hirtum Essential Oil

Within the Origanum genus, O. vulgare is probably more widespread among all species
within the genus. Several works confirm a large variability in terms of yields and chemical
composition due to a great diversity of factors such as species, soil conditions, harvest
season, geographical location, and climatic and growth conditions [31,32]. However,
the most common compositional profiles are those that report thymol and/or carvacrol
as main components. O. vulgare ssp. hirtum is largely diffused and important from a
commercial perspective. Several studies report a prevalent thymol chemotype for Italian
populations [33,34] and a carvacrol chemotype [35]. The chromatographic analyses of the
sample used in this study identified 54 compounds covering more than 98% of the total
composition. The full composition is reported in Table 1, and the relevant chromatogram is
reported in Figure 1. Chemically speaking, the composition of the sample is dominated by
monoterpenes (both hydrocarbons and oxygenated), which cover more than 94% of the
total composition, followed by sesquiterpenes (3.94%). The main component is thymol
(38.82%), and due to the low percentage of carvacrol (0.59%), this essential oil is classified as
a thymol chemotype. The other main compounds are p-cymene (20.28%) and γ-terpinene
(19.58%), the two biosynthetic precursors of thymol. At a much lower percentage, there
were two hydrocarbon monoterpenes, α-terpinene (3.51%) and β-myrcene (2.09%). At a
non-negligible percentage and a percentage higher than 1%, there were α-thujene (1.52%,
monoterpene hydrocarbon), carvacrol methyl ether (3.11%, oxygenated monoterpene), and
β-bisabolene (1.27%, sesquiterpene). The results are in accordance with Pasias et al. [36],
who revealed two main compounds, carvacrol (74.20%) and p-cymene (8.20%), in the case
of O. vulgare essential oil analysis. Qiao et al. [37] reported that the main constituents of
O. vulgare essential oil are phenols carvacrol (75.72%) and thymol (2.44%). Additionally,
Zhao et al. [38] showed methyleugenol (16.50%), myristicin (15.60%), carvacrol (15.00%),
thymol (9.80%), apioline (9.40%), and (Z)-β-farnesene (8.7%), as the major component
from O. vulgare essential oil. Furthermore, Kosakowska et al. [23] reported the presence of
carvacrol (37.21%) as the most abundant, followed by γ-terpinene (17.21%) and p-cymene
(11.13%), in the chemical composition of O. vulgare ssp. hirtum essential oil. Based on these
results, our essential oil shows a chemical composition comparable to those mentioned by
other authors who assume its memory-enhancing and antioxidant function.

2.2. Improvement of Anxiety-Like Behavior, Spatial Memory, and Response to Novelty in the NTT,
Y-Maze and NOR Tests

Novelty-based paradigms are commonly used in behavioral neuroscience to study
affective (fear, anxiety) and cognitive (habituation) phenomena. Fish behavior was assumed
to be instinctively driven, with little cognitive ability, but after the many studies that have
been conducted on this animal model so far, it was concluded that zebrafish are capable of
forming spatial memories and cognitive maps. The NTT test uses vertical distribution in
a novel environment as a validated behavioral test for assessing anxiety-like behavior in
adult zebrafish. This test uses zebrafish’s instinctive behavior of seeking protection in novel
environments, which is conceptually similar to the rodent open field [39]. Additionally,
studies showed that the NTT test exploited the natural tendency of zebrafish, diving
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initially to the bottom of the new experimental tank, with a gradual increase in vertical
activity over time [40].

Table 1. Chemical composition of commercial Origanum vulgare ssp. hirtum essential oil.

# a KI b KI c Class/Compound % d

Monoterpene Hydrocarbons 49.68

1 925 930 α-Thujene 1.52 (± 0.00)
2 933 939 α-Pinene 0.84 (± 0.00)
3 944 960 Thuja-2,4(10)-diene 0.02 (± 0.00)
4 949 954 Camphene 0.10 (± 0.00)
5 973 968 Verbenene 0.01 (± 0.00)
6 976 979 β-Pinene 0.14 (± 0.03)
9 988 991 β-Myrcene 2.09 (± 0.00)

10 1002 1003 α-Phellandrene 0.34 (± 0.00)
11 1009 1004 p-Menth-1(7),8-diene 0.11 (± 0.00)
12 1016 1017 α-Terpinene 3.51 (± 0.01)
13 1027 1025 p-Cymene 20.28 (± 0.03)
14 1030 1029 Limonene 0.67 (± 0.06)
16 1037 1037 cis-β-Ocimene 0.18 (± 0.00)
17 1048 1050 trans-β-Ocimene 0.09 (± 0.00)
18 1062 1060 γ-Terpinene 19.58 (± 0.08)
20 1088 1089 Terpinolene 0.20 (± 0.00)

Oxygenated Monoterpenes 44.93

15 1033 1031 1,8-Cineol 0.03 (± 0.00)
19 1069 1070 cis-Sabinene hydrate 0.17 (± 0.00)
22 1099 1098 trans-Sabinene hydrate 0.07 (± 0.00)
23 1169 1169 Borneol 0.11 (± 0.01)
24 1179 1177 Terpinen-4-ol 0.80 (± 0.00)
25 1187 1183 p-Cymen-8-ol 0.02 (± 0.00)
26 1196 1189 α-Terpineol 0.09 (± 0.00)
27 1203 1201 trans-Dihydro Carvone 0.01 (± 0.00)
28 1218 1215 cis-Dihydro Carvone 0.03 (± 0.00)
29 1237 1235 Thymol methyl ether 0.92 (± 0.00)
30 1248 1245 Carvacrol methyl ether 3.11 (± 0.00)
31 1260 1243 Carvone 0.03 (± 0.00)
32 1287 1289 Bornyl acetate 0.02 (± 0.00)
33 1292 1291 p-Cymen-7-ol 0.03 (± 0.00)
34 1306 1290 Thymol 38.82 (± 0.05)
35 1311 1299 Carvacrol 0.59 (± 0.00)
36 1358 1252 Thymol acetate 0.08 (± 0.00)

Sesquiterpenes 3.94

37 1377 1375 α-Ylangene 0.03 (± 0.00)
38 1382 1377 α-Copaene 0.07 (± 0.00)
39 1390 1388 β-Bourbonene 0.05 (± 0.00)
40 1426 1419 β-Caryophyllene 0.97 (± 0.00)
41 1435 1432 β-Copaene 0.08 (± 0.00)
42 1440 1435 β-Bergamotene 0.03 (± 0.00)
43 1460 1455 α-Humulene 0.11 (± 0.00)
44 1481 1480 γ-Muurolene 0.27 (± 0.00)
45 1485 1485 α-Amorphene 0.03 (± 0.00)
46 1492 1490 β-Selinene 0.02 (± 0.00)
47 1498 1496 γ-Amorphene 0.10 (± 0.00)
48 1504 1500 α-Muurolene 0.08 (± 0.00)
49 1512 1506 β-Bisabolene 1.27 (± 0.01)
50 1520 1514 γ-Cadinene 0.22 (± 0.00)
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Table 1. Cont.

# a KI b KI c Class/Compound % d

51 1529 1523 δ-Cadinene 0.48 (± 0.00)
52 1544 1539 α-Cadinene 0.02 (± 0.00)
53 1549 1546 α-Calacorene 0.01 (± 0.00)
54 1590 1583 Caryophyllene oxide 0.10 (± 0.00)

Others 0.41

7 978 979 1-Octen-3-ol 0.33 (± 0.03)
8 984 984 3-Octanone 0.07 (± 0.00)

21 1094 1091 Methyl benzoate 0.01 (± 0.00)

Total 98.96

Monoterpene hydrocarbons 49.68
Oxygenated monoterpenes 44.93

Sesquiterpenes 3.94
Others 0.41

a The numbering refers to elution order; b Retention index (KI) relative to standard mixture of n-alkanes on SPB-5
column; c Literature retention index (KI); d Relative peak area percent (averages of three determinations).

Figure 1. Gas chromatography–mass spectrometry (GC-MS) profile of the Origanum vulgare spp. hyrtum essential oil
(numbers refer to Table 1).

Representative locomotion-tracking patterns (Figure 2A) in Sco-induced zebrafish
indicated a high level of anxiety, as evidenced by their increased exploration of the bottom
zone of the tank compared to the control group. Moreover, the improved exploration in the
OEO-treated groups pretreated with Sco was noticed, as opposed to the Sco-treated group.

One-way ANOVA indicated significant overall changes in the time spent in the
top/bottom zone [F (4, 90) = 48.96, p < 0.0001] (Figure 2B). Figure 2B shows the differences
in exploring the two zones of the novel tank, with a significant decrease in the exploration
time of the bottom zone in the OEO-treated groups over the Sco-treated group (p < 0.0001).
The Sco-treated group explored the bottom zone of the tank several times, which indicated
the anxiogenic profile, as evidenced by a significant increase in the exploration time of
the bottom zone compared to the control group (p < 0.0001). The other two parameters
representative for the NTT test that reflect the locomotor activity of zebrafish are the total
distance traveled by zebrafish within the novel tank and average velocity that is magnitude
and direction of zebrafish speed. An increase or decrease in velocity reflects the motor
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aspects of zebrafish swimming, while the total distance travel reflects the general motor
and neurological phenotypes [41].

Figure 2. Origanum vulgare ssp. hirtum essential oil (OEO: 25, 150, and 300 µL/L) improved locomo-
tion pattern and reduced anxiety in the NTT test: (A). Locomotion tracking patterns of the control,
scopolamine (Sco: 100 µM), and OEO (25, 150, and 300 µL/L) treated groups; (B). The time spent
in the top/bottom zone by zebrafish in the tank in different groups; (C). The total distance traveled
(m) by zebrafish in different groups; (D). The average velocity (m/s) of zebrafish in the tank in
different groups; (E). The freezing duration (s) of zebrafish in the tank in different groups. Values are
means ± S.E.M. (n = 10). For Tukey’s post hoc analyses: # p < 0.01, ## p < 0.001, ### p < 0.0001, and
#### p < 0.00001.

One-way ANOVA indicated significant overall changes in the total distance trav-
eled [F (4, 45) = 13.22, p < 0.0001] (Figure 2C) and the average velocity [F (4, 45) = 14.04,
p < 0.0001] (Figure 2D). Sco treatment induced a hypolocomotor effect by decreasing the
total distance traveled (Figure 2C) (p < 0.01) and the average velocity (Figure 2D) (p < 0.001)
compared to the control group. Moreover, OEO treatment dose-dependently prevented
Sco-induced hypolocomotion (p < 0.0001 for 25 µL/L and p < 0.00001 for 150, and 300 µL/L)
compared to the Sco-alone treated zebrafish, implying that it has anxiolytic properties.

Freezing duration is another NTT parameter (Figure 2E), which describes the total
duration of all freezing bouts. One-way ANOVA indicated significant overall changes in
the freezing duration [F (4, 45) = 53.97, p < 0.0001] (Figure 2E). For the Sco-treated group,
the freezing duration had a high activity compared to the control group (p < 0.00001)
(Figure 2E), which indicates immobility and anxiety, while OEO promoted a significant
reduction in the freezing sessions, suggesting anxiolytic properties.

Our results agree with the literature data where the administration of the O. vulgare es-
sential oil reduced depressive-like behavior. Amiresmaeili et al. [42] reported that O. vulgare
essential oil alleviated depressive symptoms in a rat model of chronic unpredictable stress.
Abbasi-Maleki et al. [43] demonstrated that O. majorana essential oil shows antidepressant-
like effects through involvement with dopaminergic (D1 and D2), serotonergic (5HT1A,
5-HT2A receptors) and noradrenergic (α1 and α2 adrenoceptors) systems. Rezaie et al. [44]
demonstrated the anxiolytic effects of the O. majorana extract with diazepam in rats, which
was mainly attributed to the interaction between the flavonoids from the extract and GABA-
A receptors. Mombeini et al. [45] suggested that the aqueous extract of the O. vulgare leaves
and flowers proved anxiolytic-like and sedative effects in rats with no myorelaxant ef-
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fect. Machado et al. [46] demonstrated that β-caryophyllene from the O. vulgare exhibited
anxiolytic effects in the elevated plus maze test when administered to Swiss mice.

GABAergic neuro-inhibition is known to be potentiated by anxiolytic medications.
Flavonoids are phytoconstituents that affect GABAA receptors, the brain’s most important
inhibitory receptors, and hence exert an anxiolytic-like effect by inhibiting neuronal activity
via GABA [47]. The obtained results demonstrate that OEO exhibits a remarkable anxiolytic
behavior. The positively anxiolytic effects of the OEO depend on the activity of its identified
chemical constituents, which might explain the mechanism of action. Bianchini et al. [48]
reported that thymol exhibited GABAergic activity through interaction with GABAA
receptors. Dougnon and Ito [49] demonstrated that the GABAergic system mediated the
sedative activity of p-cymene through interaction with GABAA receptors. Additionally,
Wang and Heinbockel [50] demonstrated that γ-terpinene exhibits anxiolytic-like activity
by targeting the GABAergic system.

On these findings, our results indicate that O. vulgare ssp. hirtum essential oil could
reverse the Sco-induced anxiety in the zebrafish model by modulating of the GABAergic
system activity.

The Y-maze test has been used with great success in rodents for assessing learning
and memory functions [51]. Therefore, for zebrafish, the Y-maze test also assists in the
assessment of learning and memory functions and evaluates the effects of pharmacological
interventions [11].

Representative tracking plots of the zebrafish exposed to Sco indicated deficits in
exploring novel arm of the Y-maze (Figure 3A). Moreover, an increase in the exploration of
the novel arm following administration of OEO was noticed. One-way ANOVA indicated
significant overall changes in the time in the novel arm [F (8, 135) = 13.00, p < 0.0001]
(Figure 3B). OEO (25, 150, and 300 µL/L) benefits are represented by the time spent in each
arm (start, other, and novel arm) in different groups, in which the most major interest is
in the good exploration time of the novel arm (p < 0.001 for 25 µL/L and p < 0.00001 for
150 and 300 µL/L), as compared to Sco-alone treated zebrafish. The reduced percentage of
the time spent in the novel arm suggests a memory impairment effect in the Sco-induced
zebrafish (p < 0.00001) compared to the control group.

Spontaneous alternation behavior (Figure 3C) describes the tendency of animals to
alternate their turn direction in consecutive turns, and unlike other amnestic tasks, this
does not require any prior training or reinforcement. One-way ANOVA revealed significant
overall changes in the percentage of spontaneous alternation [F (4, 45) = 7.32, p < 0.0001]
(Figure 3C). Sco administration caused a significant reduction in spatial memory, as evi-
denced by significant reduction in the spontaneous alternation percentage (p < 0.01) com-
pared to the control group. Additionally, the administration of OEO (25, 150, and 300 µL/L)
in pretreated Sco zebrafish improved cognitive status by increasing the spontaneous alter-
nation percentage compared to Sco zebrafish treated only with Sco (p < 0.001 for 25 and
300 µL/L and p < 0.0001 for 150 µL/L).

One-way ANOVA indicated significant overall changes in locomotion (total distance
traveled) [F (4, 45) = 10.22, p < 0.0001] (Figure 3D). Sco treatment affects locomotion, a fact
proven for total distance traveled (p < 0.01), as compared to the control group. Sco-treated
zebrafish exposed to OEO (25, 150, and 300 µL/L) exhibited improvement in locomotor
activity, as evidenced by a significant increase in the total distance traveled (p < 0.001 for
25 µL/L, p < 0.00001 for 150 µL/L and p < 0.0001 for 300 µL/L).

It has been shown that zebrafish have a remarkable capacity to perform learning
tasks. We used NTT to represent the most used zebrafish anxiety models, which focuses
on zebrafish diving in response to potentially threatening stimuli, whereas the Y-maze is
based on zebrafish spatial memory, as determined by memorized geometric indicators. In
our study, we aimed to demonstrate a good cross-test correlation in vivo with the NTT and
Y-maze behavior, both tests having similar sensitivity to locomotory zebrafish’s anxiety-like
status. Both the NTT and Y-maze, while although different in the workloads set out in
each protocol, still characterize the motor capacity of zebrafish. We selected the common
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parameters to compare the average of the values obtained in the two tests on a common
graph. According to Figure 4, NTT evoked high levels for all locomotor parameters, such as
the turn angle (p < 0.00001) (Figure 4A), number of line crossings (p < 0.00001) (Figure 4B),
total distance traveled (p < 0.00001) (Figure 4C), and average speed (p < 0.00001) (Figure 4D),
comparative with the Y-maze, which evoked significant higher levels for the turn angle
(p < 0.00001) (Figure 4A), number of line crossings (p < 0.00001) (Figure 4B), and average
speed (p < 0.00001) (Figure 4D) in the OEO-exposed groups pretreated with Sco. Finally, we
can affirm that NTT and Y-maze tests affect the locomotory anxiety-like status in zebrafish
and emphasize their developing utility and importance for neurobehavioral research.

Figure 3. Origanum vulgare ssp. hirtum essential oil (OEO: 25, 150, and 300 µL/L) improved spatial
memory and exploratory behavior in the Y-maze test: (A). Locomotion tracking patterns of the
control, scopolamine (Sco: 100 µM), and OEO (25, 150, and 300 µL/L) treated groups. (B). Time
spent in each arm (% of the total time) by zebrafish in the tank in different groups; (C). Spontaneous
alternation (%) in different groups; (D). The total distance traveled (m) by zebrafish in the tank in
different groups. Values are means ± S.E.M. (n = 10). For Tukey’s post hoc analyses: # p < 0.01,
## p < 0.001, ### p < 0.0001, and #### p < 0.00001.

Previous studies demonstrated that the telencephalon (with subdivisions homologous
to the hippocampus and mammalian amygdala) is the area responsible for learning and
memory in teleost fish. The NOR test is useful for studying both short-term and long-term
memory. In this test, avoidance learning is inferred by the amount of time spent outside the
compartment previously associated with an aversive stimulus. Passive avoidance learning
is frequently used to characterize associative learning and short- and long-term memory in
zebrafish used to describe the effects of Sco. By simply manipulating the retention interval,
which is the amount of time between training and test sessions, it is possible to evaluate
either type of memory [52]. Representative locomotion-tracking patterns illustrated the
differences between exploring a familiar object (FO) and the novel object (NO) for each
group in the NOR test (Figure 5). As can be seen in Figure 5A, the great preference for FO
was found mainly in the Sco-induced zebrafish group, whereas the control group and the
groups exposed to OEO have a great preference in exploring the NO.
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Figure 4. Comparative analyses of zebrafish anxiety-like behavior and spatial memory for the control,
Sco (100 µM) and OEO (25, 150, 300 µL/L) group treatment, based on locomotion parameters for the
novel tank diving test (NTT) vs. the Y-maze test. (A). Turn angle (◦); (B). Number of line crossings;
(C). Total distance traveled (m); (D). Average speed (m/s). Values are means ± S.E.M. (n = 10). For
Tukey’s post hoc analyses: # p < 0.01, ## p < 0.001, ### p < 0.0001, and #### p < 0.00001.

Figure 5. Origanum vulgare ssp. hirtum essential oil (OEO: 25, 150, and 300 µL/L)-improved memory
in the novel object recognition (NOR) test. (A): Locomotion tracking patterns of the control, scopo-
lamine (Sco: 100 µM), and OEO (25, 150, and 300 µL/L)-treated groups; (B). The exploratory time (s)
in different groups; (C). The percentages of preference in different groups. Values are means ± S.E.M.
(n = 10). For Tukey’s post hoc analyses: ### p < 0.0001 and #### p < 0.00001.
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For the NOR test, one-way ANOVA revealed significant overall effects on exploratory
time [F (4, 90) = 84.07, p < 0.0001] (Figure 5B) and preference percentage (F (4,45) = 46.14,
p < 0.0001) (Figure 5C). Regarding the exploratory time (Figure 5B), Sco-treated zebrafish
exhibited a high preference to explore FO compared to NO (p < 0.0001), thus suggesting
deficits of the recognition memory. The Sco-induced zebrafish exposed to 25 and 300 µL/L
OEO explored for more time (p < 0.00001) NO than FO, suggesting a cognitive-enhancing
profile. According to Figure 5C, the lowest percentage for the preference of NO is obviously
found in the group treated with Sco (p < 0.00001), while an excellent percentage for the NO
preference in the OEO (25, 150, 300 µL/L) group treatment was identified.

For the Y-maze and NOR tests, spatial memory and response to novelty were eval-
uated, either by exploring the novel arm or exploring the novel object. In our study, we
aimed to demonstrate a good cross-test correlation in vivo, between those mentioned test’s
behavior, both tests having similar sensitivity to novelty response zebrafish memory-like
status (Figure 6).

Figure 6. Comparative analyses of zebrafish preference for novelty behavior for the control, Sco
(100 µM) and OEO (25, 150, 300 µL/L) group treatment, based on spatial memory parameters for
the novel object recognition test (NOR) vs. the Y-maze test. Values are means ± S.E.M. (n = 10). For
Tukey’s post hoc analyses: # p < 0.01 and #### p < 0.00001.

According to Figure 6, the NOR test evoked higher levels for the preference of the novel
object than the control group and OEO (25, 150, and 300 µL/L) -treated groups, as compared
to the Sco-treated group (p < 0.00001). Moreover, the Y-maze test showed significant differ-
ences in the case of the control group and groups exposed to OEO (300 µL/L) (p < 0.00001)
compared to the Sco-induced group. We can conclude that the Y-maze and NOR tests
influenced the spatial memory of zebrafish by responding to novelty through both geo-
metric shapes (square, tringles, and circles) and cubes, emphasizing the usefulness and
importance of these behavioral tests in neurobehavioral research on laboratory animals.

Our findings show that Origanum vulgare ssp. hirtum essential oil has a cognitive-
enhancing profile, which is consistent with previous research showing that this essential
oil greatly reduces memory deterioration. Ghaderi et al. [53] demonstrated that the aque-
ous extract of O. vulgare enhanced learning and memory in rats. Haghpanah et al. [54]
demonstrated that the intra-hippocampal injection of Origanum aqueous extract improved
rat working memory. Maryam et al. [55] showed that that extract of O. vulgare with an-
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tioxidant effect-improved working and reference memory impairment. Sheibani et al. [56]
demonstrated that the effect of the aqueous extract of O. vulgare L. ssp. viridis improved the
discrimination learning and LTP induction in the CA1 region of the rat hippocampus. These
findings show that Origanum oil, which was studied in this study, can increase exploratory
behavior and recognition memory function in the Sco zebrafish model, as demonstrated in
the current study. Additionally, OEO sustained the improvement of spatial memory due to
its potent cognitive-enhancing activities of the major compounds (thymol, p-cymene and
γ-terpinene). Asadbegi et al. [16] demonstrated that thymol attenuated learning and mem-
ory impairment induced by intrahippocampal injection of amyloid beta peptide in high fat
diet-fed rats. Additionally, Seifi-Nahavandi et al. [57] reported that p-cymene improved
memory performance in an Aβ1-42-iduced a rat model of AD. Furthermore, Kim et al. [58]
demonstrated a memory-enhancing effect of the γ-terpinene in amnesic mice, one of the
identified compounds from the Abies koreana essential oil. Our research establishes a solid
basis for the use of the OEO in the amelioration of memory loss and dementia.

2.3. In Vivo Inhibitory Activity against Acetylcholinesterase Activity

The levels of biochemical parameters linked to cholinergic functions, such as acetyl-
cholinesterase (AChE), were examined to clarify the underlying mechanism of OEO’s
memory enhancement behavior in Sco-treated zebrafish.

The results of the on-way ANOVA demonstrated overall significant effects [F (4, 45) = 94.86,
p < 0.0001] on the AChE activity (Figure 7A). AChE activity, which inhibits the synthesis of
acetylcholine (ACh), was highest in the Sco-treated group (p < 0.00001) compared to control
group. Interestingly, AChE activity was significant in all OEO (25, 150, 300 µL/L) groups
(p < 0.00001) compared to the Sco-alone treated group. This means that the administration
of OEO effectively inhibited AChE activity.

Figure 7. Antioxidant effects of Origanum vulgare ssp. hirtum essential oil (OEO: 25, 150, and 300 µL/L)
in scopolamine (Sco, 100 µM)-induced memory impairment zebrafish brains: (A). acetylcholinesterase
(AChE); (B). Superoxide dismutase (SOD); (C). Catalase (CAT); (D). Glutathione peroxidase (GPX); (E).
Reduced glutathione; (F). Protein carbonyl; (G). Malondialdehyde (MDA). Values are means ± S.E.M.
(n = 10). For Tukey’s post hoc analyses: ## p < 0.001, ### p < 0.0001, and #### p < 0.00001.
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Supporting evidence demonstrated the AChE inhibitory activity of the O. vulgare.
Important AChE inhibitory activity of O. vulgare L. grown in Supra Mediterranean region
(IC50 = 73.7 ± 0.5 µL/L) and Meso-Mediterranean region (IC50 = 61.5 ± 0.5 µL/L) was
observed [59,60]. Sarikurcku et al. [61] reported the AChE inhibitory effect of essential oils
derived from two species of O. vulgare L.: O. vulgare subsp. vulgare and O. vulgare subsp.
hirtum, harvested from Turkey. The authors attributed these effects to the high amounts of
thymol, carvacrol, and linalool. According to these findings, our OEO improved memory
processes in Sco-induced zebrafish by restoring cholinergic function, meaning that AChE
activity was inhibited. Thus, OEO decreased the cholinergic deficits generated following
Sco administration, which, as a result, enhanced nootropic action in Y-maze and NOR tests.

2.4. In Vivo Antioxidant Activity

Furthermore, we assessed the effects of OEO on antioxidant factors such as SOD, CAT,
and GPX-specific activities, reduced GSH levels and contents of protein carbonyl and MDA
in Sco-induced memor- impaired zebrafish brain tissue. The results of the one-way ANOVA
revealed overall significant differences in SOD [F (4, 45) = 96.61, p < 0.0001] (Figure 7B), CAT
[F (4, 45) = 78.61, p < 0.0001] (Figure 7C), and GPX [F (4, 45) = 93.36, p < 0.0001] (Figure 7D)
-specific activities and reduced GSH levels [F (4, 45) = 65.25, p < 0.0001] (Figure 7E). Sco
treatment resulted in a significant decrease in the specific activities of antioxidant enzymes,
possibly further increasing the oxidative damage of SOD (p < 0.00001) (Figure 7B), CAT
(p < 0.001) (Figure 7C), and GPX (p < 0.00001) (Figure 7D), and the reduced content of
GSH (p < 0.0001) (Figure 7E) as compared to the control group. The OEO groups had
significantly enhanced antioxidant SOD (p < 0.00001) (Figure 7B), CAT (p < 0.0001 for 25 and
150 µL/L, and p < 0.00001 for 300 µL/L) (Figure 7C), GPX (p < 0.00001) (Figure 7D) -specific
activities and reduced GSH levels (p < 0.00001) (Figure 7E) compared to the Sco-alone
treated zebrafish. Furthermore, one-way ANOVA revealed significant overall differences
in protein carbonyl [F (4, 45) = 70.65, p < 0.0001] (Figure 7F) and MDA [F (4, 45) = 84.59,
p < 0.0001] (Figure 7G) levels. Levels of protein carbonyl (protein carbonyl) (Figure 7F)
and MDA (lipid peroxidation) (Figure 7G) were significantly increased (p < 0.001) in Sco-
treated zebrafish compared to the control groups. Additionally, the Sco-treated zebrafish
co-administered with OEO had significantly lower protein carbonyl (p < 0.0001) (Figure 7F)
and MDA (p < 0.0001) (Figure 7G) compared to the zebrafish treated with Sco alone,
confirming the antioxidant effects of OEO.

The etiology of AD is complicated by oxidative stress [62]. In Sco-induced memory
impairment mice and human patients with AD, levels of SOD and GSH in the antiox-
idant defense system are significantly reduced [63,64]. The literature data supported
that Origanum exhibited antioxidant profile. Sharifi-Rigi et al. [65] reported that it had
inhibitory effects on paraquat-induced liver damage due to its antioxidant properties.
Additionally, Zou et al. [66] demonstrated that oregano essential oil exhibited protection
against H2O2-induced IPEC-J2 cell damage by inducing Nrf2 and related antioxidant en-
zymes. Sun et al. [67] demonstrated that O. vulgare extract ameliorated finasteride-induced
hepatic and renal biochemical and histopathological alterations in mouse liver and kidney
and restored the antioxidant/oxidant balance. Furthermore, the antioxidant activity of
our OEO could be attributed to the high presence of thymol (38.82%), p-cymene (20.28%),
and γ-terpinene (19.58%), each one having the property to form chemical complexes with
metal ions and free radicals [68]. Thymol exhibits a higher antioxidant activity, as reported
by Siddiqui et al. [69]. Additionally, the antioxidant effects of p-cymene were reported
by Formiga [70]. Moreover, the antioxidant capacity of γ-terpinene was presented by
Memari-Tabrizi et al. [71]. The present data demonstrate that OEO showed antioxidant
properties due to phenolic constituents and thus could be an alternative supply of natural
antioxidants for therapeutic purposes.
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2.5. Correlation between Behavioral Scores, Enzymatic Activities, and Lipid Peroxidation

The relation between behavioral scores, enzymatic activity, and lipid peroxidation
was evaluated using Pearson’s correlation coefficient (r), including the time spent in the
top zone, spontaneous alternation, preference, SOD, CAT, GPX, GSH, and AChE (Figure 8).
The time spent in top zone (Figure 8A), spontaneous alternation (Figure 8B), preference
(Figure 8C), SOD (Figure 8D), CAT (Figure 8E), GPX (Figure 8F), and GSH (Figure 8G)
showed a significant negative correlation with MDA with r of −0.787 (Figure 8A), −0.942
(Figure 8B), −0.912 (Figure 8C), −0.933 (Figure 8D), −0.867 (Figure 8E), −0.964 (Figure 8F),
and −0.957 (Figure 8G), respectively. Additionally, a strong positive correlation between
AChE vs. MDA (Figure 8H) was identified with r of 0.918 (Figure 8H).

Figure 8. Correlation analyses between behavioral and biochemical parameters (Pearson’s correla-
tion). (A). Time spent in top zone vs. MDA; (B). Spontaneous alternation vs. MDA; (C). Preference
vs. MDA; (D). SOD vs. MDA; (E). CAT vs. MDA; (F). GPX vs. MDA; (G). GSH vs. MDA; (H). AChE
vs. MDA. Data expressed are time in tope zone (s), spontaneous alternation %, preference %, SOD
(U/mg protein), CAT (µmol H2O2 consumed/min/mg protein), GPX (U/mg protein), GSH (µg
GSH/µg protein), AChE (nmol/min/mg protein), and MDA (nmol/mg protein).

Morshedloo et al. [72] demonstrated a strong correlation between the chemical com-
position and antioxidant activity of essential oils in O. vulgare ssp. gracile. Additionally,
Qneibi et al. [73] reported a positive correlation between the chemical composition of
O. syriacum L. essential oil and its neuroprotective potential through its effects on AMPA
receptors. The data (r values) were used to show that increased memory output in Sco-
treated zebrafish is linked to increased antioxidant enzyme activity and decreased MDA
(lipid peroxidation levels), validating the neuroprotective profile of OEO.

3. Materials and Methods
3.1. Essential Oil and Chemical Material

The O. vulgare ssp. hirtum essential oil used in this study was a commercial sample
produced with organic plant material and kindly supplied by Flora S.R.L. (Lorenzana,
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Pisa, Italy), batch no. 171025. Standard mix of n-alkanes C9-C22 was purchased from
Alltech (Italy).

3.2. Gas Chromatograph–Mass Spectrometry (GC-MS) Analysis

Gas chromatographic (GC) analysis of the O. vulgare ssp. hirtum essential oil was
conducted using a GC-17A gas chromatograph (Shimadzu, Milan, Italy) equipped with
a fused silica ca-pillary column (Supelco SPBTM-5 15m, 0.1mm, 0.1mm, Merck KGaA,
Darmstadt, Germany) and Flame Ionization Detector (FID) as the detector. GC–MS analyses
were performed on GCMS-QP5050A (Shimadzu, Milan, Italy) The operating conditions for
both runs were the following: 60 ◦C for 1 min, 60–280 ◦C at 10 ◦C/min then 280 ◦C for 1 min;
injector temperature 250 ◦C; detector temperature 280 ◦C; carrier gas helium (1 mL/min);
volume of injection 1 µL (4% essential oil/CH2Cl2 v/v). Percentages of compounds were
determined from their peak areas in the GC-FID profiles. Mass spectrometer parameters
were the following: ionization at 70 eV, Ion source temperature of 180 ◦C. Mass spectral
data were acquired in the scan mode in m/z range 40–400. Oil solutions were injected
into the split mode (1:96) [74]. The identity of components was based on their retention
index relative to C9–C22 n-alkanes on the SPB-5 column and computer matching of spectral
MS data with those from NIST MS 107 and NIST 21 libraries [75], the comparison of the
fragmentation patterns with those reported in the literature [76].

3.3. Zebrafish and Treatment

Fifty adult zebrafish (Danio rerio) were obtained from an authorized commercial
supplier (Pet Product S.R.L., Bucharest, Romania). Subjects were animals of the short-fin
phenotype (3–4 months old, 3–4 cm long, 50:50 male:female ratio), which is believed to be
genetically diverse and better mimic natural populations, reducing the impact of arbitrary
genetic drift on inherited features [77]. Under regular conditions, zebrafish were kept in
30 L tanks filled with dechlorinated water at a maximum density of 4 fish per liter (water
temperature set at 26 ± 1 ◦C, pH 7.0–7.2, 7.2 mg O2/L, conductivity 1500–1600 µS cm−1).
Before experiments, zebrafish were acclimatized in the experimental room for at least
14 days and kept under a controlled light–dark photoperiod cycle (14/10 h, lights on
8:00 am). Animals were fed twice a day with Norwin Norvitall flake (Norwin, Gadstrup,
Denmark). The animals were organized into 5 different groups (n = 10) designed for control,
scopolamine (Sco, 100 µM), and three groups treated with O. vulgare ssp. hirtum essential
oil (OEO, 25, 150, and 300 µL/L) in different tanks in a volume of 6 L each. The OEO [78]
and Sco (100 µM) [2] doses were established according to previous studies. OEO (25, 150,
and 300 µL/L) was administered by immersion with 1% Tween-80 solution in the zebrafish
tanks, once daily, for 7 days before experiments started and throughout the 13 days of the
experiment until euthanasia. Furthermore, the study was in compliance with the Ethics
Committee on Animal Research of the Alexandru Ioan Cuza University of Ias, i, Romania,
Faculty of Biology (Protocol number 02/30.06.2020), and the Directive 2010/63/EU of the
European Parliament guidelines were applied to all experiments. During the experiments,
no procedure caused pain or long-term injuries to the zebrafish, and no animal died during
experimental testing. The experimental design is depicted in Figure 9.

3.4. Novel Tank-Diving Test (NTT)

The NTT methodology used in this investigation was previously reported by
Cachat et al. [79] and Rosemberg et al. [80]. Animals (n = 50) were individually placed in a
novel tank (23.9 cm along the bottom × 28.9 cm at the top × 15.1 cm high with 15.9 cm
along the diagonal side, 7.4 cm wide at the top and 6.1 cm wide at the bottom) containing
1.5 L of home tank water. The behavioral activity was recorded and analyzed using ANY-
Maze® video tracking software (Stoelting Co., Wood Dale, IL, USA) for 6 min [78]. For
further analysis, the tank was virtually divided into two areas (top and bottom) and the
time spent in the top/bottom zone (s) was used to measure anxiety-related phenotype. For
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locomotion analysis, total distance traveled (m), the average velocity (m/s), and freezing
duration (s) were calculated.

Figure 9. Experimental design for the O. vulgare ssp. hirtum essential oil administration in relation to
scopolamine (100 µM) treatment for the study of behavioral and biochemical analysis.

3.5. Y-Maze

To explore the spatial memory and the response to novelty because of OEO exposure,
a Y-maze test was used, following a method previously described by Cognato et al. [81].
The Y-maze arms were designed as follows: start arm (always open); a novel arm (blocked
during the first trial but opened during the second trial (test trial); and another arm (always
open). Zebrafish (n = 50) were individually tested in a Y-maze with sides covered in black
plastic self-adhesive film. Each arm included a geometric cue (square in the start arm,
triangle in the novel arm, or circle in the other arm) on the side to help the fish recognize it.
The Y-maze was filled with 3-L water from the home tank. For the analysis, the Y-maze
center was not counted. To test the reaction to novelty, the Y-maze test consisted of two
trials separated by an hour inter-trial (1 h ITI). Fish could only explore two arms (start
and other) during the first trial (training, 5 min), with the third arm (novel) closed. The
fish were placed back in the same starting arm with free access to all three arms for the
second trial (test trial after 1 h ITI). Between groups and trials, the water from the Y-maze
was changed. The behavior parameters were fully analyzed with ANY-Maze® software
(Stoelting Co., Wood Dale, IL, USA) by recording the time spent in each arm (% of total
time), spontaneous alternation (%), and total distance traveled (m).

3.6. Novel Object Recognition Test (NOR)

In zebrafish, NOR is a commonly used behavioral experiment to assess memory
efficiency [52]. Glass tanks (20 L, 30 × 30 x 30 cm) filled with 6 cm water from the home
tank were used. There are three stages in the NOR test. During the habituation phase,
each fish explored the tank without objects for 5 min twice a day (5 h between habituation
sessions) over three days. On the 4th day (training phase), the animals explored the tank
with two similar objects (two familiar identical hard plastic red cubes objects) for 10 min.
Within the test phase (1 h after the training phase), one of the familiar objects (FO, red
cubes) was replaced by a novel object (NO, green cube), and the exploration time of each
object was evaluated for 10 min. The exploration area was established by increasing the
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size of the object area once; thus, we considered exploration to be when the fish were at
least 2.5 cm away from either side of the object. All data were analyzed completely with
ANY-Maze software (Stoelting Co., Wood Dale, IL, USA), following the exploratory time
(s) and preference percentages (time of exploration NO/time of exploration FO + time of
exploration NO × 100) [3].

3.7. Biochemical Assays

For the biochemical assay, all zebrafish were cryoanesthetized and euthanized by
decapitation [82]. The zebrafish brain samples were dissected and gently homogenized in
0.1 M potassium phosphate buffer (pH = 7.4) with 1.15% KCl using a Potter homogenizer
(Heidolph Instruments, Schwabach, Germany) coupled with Cole-Parmer Servodyne Mixer
(Cole-Parmer Instrument Co., Chicago, IL, USA). Homogenates were centrifuged at 906× g
for 15 min, and the supernatant was packed in microtubes was used for the experimental
assays. Protein was quantified according to the Bradford method [83]. The following
parameters were quantified for oxidative stress assessment: superoxide dismutase (SOD),
catalase (CAT), and glutathione peroxidase (GPX) specific activities, reduced glutathione
(GSH) total content, the carbonylated proteins, and malondialdehyde (MDA) levels based
of detailed methods described by Valu et al. [11]. The acetylcholinesterase (AChE) activity
was quantified from the brain samples according to the previously described method by
Ellman et al. [84]. All biochemical measures were performed in triplicate.

3.8. Statistical Analysis

The normality and homogeneity of data were checked using Shapiro–Wilk-Test. Re-
sults are expressed as means ± standard error of the mean (S.E.M). One-way analysis
of variance (ANOVA) for multiple comparisons was performed to determine significant
differences. When p < 0.05, Tukey’s post hoc multiple comparison test was employed to
determine which treatment groups are different from each other. To perform statistical
analyses and to represent the graphics, GraphPad Prism 8.0 (GraphPad Software, Inc., San
Diego, CA, USA) was used. Correlation between behavioral results, enzymatic activities,
and lipid peroxidation was estimated by the Pearson correlation coefficient (r).

4. Conclusions

The data from our study suggest that OEO administration ameliorated anxiety-like
behavior and cognitive deficits measured by performance in specific behavioral tasks. OEO
decreased AChE activity in the Sco-induced zebrafish model. Moreover, OEO exposure
suppressed Sco-induced oxidative damage by increasing antioxidant enzymes activity
and ameliorating the increased levels of protein carbonyl and MDA. The results indicate
that the underlying mechanism of memory improvement involves modulations of the
cholinergic system and the reduction in brain oxidative stress. Thus, these findings prove
the potential of OEO as a natural, alternative treatment for anxiety and amnesia.
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