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Abstract: Poly(L-lactic acid) (PLLA) crystal possesses a complex polymorphism, and the formation
mechanism of various crystal forms has been a hot research topic in the field of polymer condensate
matter. In this research, five kinds of PLLA with different molecular weights were prepared by ring-
opening polymerization with strict dehydration operations and multistep purification treatments.
Then, thin film isothermal crystallization experiments were carried out to obtain crystallized samples.
Previous research has proven that the PLLA α crystal form is usually formed at a temperature above
120 ◦C and the PLLA δ (or α’) crystal form is usually formed at a temperature below 120 ◦C. However,
in this research, the characterization results indicated that the PLLA crystal changed from δ form to
α form with the decrease of molecular weight at a temperature of 80 ◦C. Considering the molecular
weight effect, the paper argued that the transitions of the α/δ crystal form are not only associated
with temperature, but also related to entanglement state before crystallization. The small-angle X-ray
scattering of the PLLA crystal and rheology analysis of the PLLA melt before crystallization further
proved the significant role of entanglement. Finally, we tentatively proposed the entanglement effect
mechanism on the transitions of the α/δ crystal form.

Keywords: Poly(L-lactic acid); crystallization; α form

1. Introduction

Poly(L-lactic acid) (PLLA) is one of the most popular degradable and biocompatible
polymers which can be produced from renewable resources, such as corn starch and sugar
cane [1]. As a typical semicrystalline polymer, the mechanical properties [2] and service
performances [3] of PLLA products strongly depend on the crystal structure of the PLLA.

PLLA possesses a complex polymorphism in its crystalline region. It is well known
that PLLA crystal modifications mainly include the α form [4–6], δ (or α′) form [6–8],
β form [6,9–12], and γ form [13]. Among these crystal forms, α and δ are the two most
common forms of PLLA crystal. The unit cell of the α-form crystal belongs to an orthogonal
system, with a = 10.68 Å, b = 6.17 Å, and c = 28.86 Å [6]. The helical chains of (10/7)
conformation (10/7 for PLLA, 10/3 for PDLA [13,14]) are packed regularly at the corner
and center positions of the unit cell [5,8,14,15]. The δ form also has the orthogonal unit cell
of a = 10.80 Å, b = 6.20 Å, and c = 28.80, which is generated by annealing the melt-quenched
sample at a relatively low temperature, below 120 ◦C [6–8]. The chain-packing mode of the
δ form is similar to that of the regular α form, but the two (10/7) helical chains in δ unit
cells are conformationally disordered [6].

The transition between α and δ crystal forms plays an important role in condensed
matter evolution of PLLA. Zhang et al. [16,17] reported that the X-ray fiber pattern and
polarized IR/Raman spectra were taken successfully for the uniaxially oriented δ form of
PLLA, and they suggested that there are slight differences in both the chain-conformation
and chain-packing mode between the α and δ forms. Zhang et al. [18] further investigated
δ-to-α phase transition by simultaneous measurements of WAXD and DSC, and they found
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that the δ phase transforms discretely to the α phase in the first-order transition mode with
chain packing of the crystal lattice becoming more compacted. Moreover, Pan et al. [19–21]
also systematically studied the influence mechanism of molecular weight and annealing
temperature on the δ-to-α transition mechanism of PLLA crystal. The interesting thing
is that they found the molecular weight significantly affects the crystallization kinetics,
while the polymorphism of PLLA is not significantly influenced by molecular weight. This
conclusion was obtained from the crystallization experiments of PLLA with molecular
weights of 15,000~218,000 g/mol [19,20]. So, for PLLA with a smaller molecular weight
(<15,000 g/mol), does molecular weight still not affect the crystal form?

To study this problem, narrowly dispersed and highly pure PLLA with a small molec-
ular weight should be prepared. In this work, we prepared PLLA with five different
molecular weights by using ring-opening polymerization with strict dehydration operation
and multistep purification treatments. Subsequently, crystals were obtained by film crystal-
lization experiments of the PLLA samples with different crystallization temperatures. The
crystal structures of PLLA δ crystal and α crystal were studied by using wide angle X-ray
diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, and
small-angle X-ray scattering. The effect of molecular weight on the entanglement state of
molecular chains in PLLA melt before crystallization was analyzed by a rheological test.
Combined with the crystal structure and melt state of PLLA, the transition mechanism of
δ/αwas proposed.

2. Materials and Methods
2.1. Materials

The pristine PLLA samples (named as PLLA1, PLLA2, PLLA3, PLLA4, and PLLA5)
were synthesized by ring-opening polymerization, using n-dodecanol and stannous capry-
late as initiators and catalysts, respectively. Please see Section S2 of the Supplemen-
tary Materials for a detailed synthesis method. Before crystallization, the PLLA samples
were purified by reprecipitation to eliminate residual L-lactide monomers or lactic acid
monomers which may have been embedded in the crystal or amorphous phase. The
detailed purification method is given in the Supplementary Materials and our previous
research [22–24].

The number-average molecular weight Mn and polydispersity Mw/Mn of the purified
samples were determined by gel permeation chromatography. The specific rotation value
[α] was measured by using a spectropolarimeter. The glass transition temperature Tg
and melting point Tm were measured by using a differential scanning calorimeter. The
molecular weight, thermal properties, and specific rotation degree of five PLLA samples are
listed in Table 1, and the original data of the material properties is given in Figures S1–S3
of the Supplementary Materials.

Table 1. Material properties of five PLLA samples.

Sample Mn (g/mol) Mw/Mn Tg (◦C) Tm (◦C) [α]purified (◦)

PLLA1 1700 1.18 * 124.9 −151.3
PLLA2 5500 1.22 48.0 152.2 −153.2
PLLA3 10,800 1.14 55.2 166.9 −154.6
PLLA4 30,300 1.23 58.1 173.4 −155.4
PLLA5 65,400 1.26 58.2 174.2 −155.7

* there was no obvious Tg step on the DSC curve of PLLA1, given in Figure S3, which was obtained from the
secondary heating process from −15 ◦C to 195 ◦C.

2.2. Methods

Confocal Laser Scanning Microscopy (CLSM). The altitude and morphology of the
polymer film were measured by CLSM on a Zeiss LSM 700 (Carl Zeiss, Jena, Germany) at
atmospheric condition, which can take the place of AFM when the size of the observed
object is bigger than 50 µm.
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Atomic Force Microscopy (AFM). AFM (Dimension Icon, Veeco, NY, USA) was used to
measure the thickness and morphology of the crystals at atmospheric conditions, operating
with silicon cantilevers in the PeakForce Tapping mode. The peak force error image was
obtained to reflect the phase morphology of polymer samples.

Wide-Angle X-ray Diffraction (WAXD). WAXD measurement was performed by using
a DMAX-2500PC (Rigaku Corporation, Tokyo, Japan) with a Cu Kα source, operating at
40 kV and 150 mA. The scanning range was from 5◦ to 35◦ and the rotate rate was 2◦/min.

Differential Scanning Calorimeter (DSC). The melting processes of the crystallized
PLLA samples were measured by using a NETZSCH STA 4495F5 apparatus (NETZSCH,
Selb, Germany). The crystallized samples with an average weight of 5 mg were reheated to
200 ◦C at a rate of 10 ◦C/min under a nitrogen atmosphere.

Small-Angle X-ray Scattering (SAXS). SAXS (SAXSess mc2, AntonPaar, Graz, Austria)
was used to measure the long periods, thickness of crystal layers, and thickness of amor-
phous layers of the lamellar stacks of PLLA samples with different molecular weights.
The PLLA samples were stripped from the Si wafer after crystallization treatments. The
operation voltage was 40 kV, and the operation current was 50 mA. The wavelength of
X-ray radiation was 0.1542 nm, and the distance from sample to detector was 264.5 mm.
The raw SAXS data were then background corrected according to a standard procedure.

Rotational Rheometer. A rotational rheometer (HAAKE MARS 40, Thermo Fisher
Scientific, Waltham, MA, USA) was used to characterize the rheological properties of the
PLLA samples. The testing samples for rheology characterization had a circle shape with
a diameter of 20 mm and a thickness of 1.2 mm. The frequency sweep tests in a constant
strain mode were performed at a strain of 0.1% over a frequency range of 0.1–10 Hz.

3. Results
3.1. Crystal Morphology of PLLA with Different Molecular Weights

It is well known that molecular weight has significant influence on polymer crys-
tallization. Five kinds of PLLA with different molecular weights were made into thin
films, and then isothermal crystallization experiments were carried out. Please refer to
Sections S3 and S4 of the Supplementary Materials for the methods of film preparation
and crystallization treatment. The film thickness is measured as about 180 nm by AFM
as shown as Figure S4. By using the in situ microscopy system and CLSM, the crystal
morphologies formed at 80 ◦C are recorded and given in Figure 1. In Figure 1, with the
increase of molecular weight, the size of the PLLA crystals decreases, and the nucleation
density of the PLLA crystals (crystal number per unit area) increases, correspondingly. Due
to the high mobility of the molecular chain, PLLA with a lower molecular weight starts to
crystallize at a higher temperature. At this time, the supercooling degree of the system is
low, and there are few crystallization centers induced by the heat fluctuation of the PLLA.
For PLLA with a higher molecular weight, the mobility of its molecular chain segment is
greatly weakened, the temperature range of the crystallization process is shifted to a low
temperature, the system has a higher supercooling degree during crystallization, and the
number of crystallization centers induced by the heat fluctuation of the PLLA is large.

Figure 2 shows the AFM morphology of the crystal surface of the PLLA samples after
crystallization treatment at a temperature of 80 ◦C. From the height images and peak force
error images of the crystal surfaces, the PLLA1 and PLLA2 samples present many lamellar
crystals with a relatively straight crystal boundary. The lamellar crystals are also found
in the PLLA3 and PLLA4 samples. Compared to the boundary of the lamellar crystal in
PLLA1 and PLLA2, the boundary of the lamellar crystal in PLLA3 and PLLA4 is irregular
or curved. In addition, the PLLA5 crystals present a radial fibrous shape. According to
the research of Forrest et al. [25], polymers with a low molecular weight prefer to form an
observable crystallographic structure. In our previous work [23], the experiment results
show that the amorphous chain segments outside the lamellar crystal can curve the crystal
in PLLA with a high molecular weight. Based on Figures 1 and 2, the molecular weight
plays a dominant role in crystal morphology.
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Figure 1. Morphology images of PLLA samples after crystallization treatment at a temperature
of 80 ◦C: (a1–e1) show the microscopy images of PLLA1, PLLA2, PLLA3, PLLA4 and PLLA5,
respectively. The three-dimensional images of (a1–e1) were obtained by CLSM and are shown in
(a2–e2), respectively.
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Figure 2. AFM images of the crystal surface of PLLA samples after crystallization treatment at
a temperature of 80 ◦C: (a1–e1) show the height images of PLLA1, PLLA2, PLLA3, PLLA4 and
PLLA5, respectively; (a2–e2) show the peak force error images of the five PLLA samples, respectively.
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3.2. Form Transformation of PLLA Crystals

This section will further investigate the crystal structure differences of the five PLLA
samples. Figure 3 gives the WAXD diffraction profiles of the five PLLA samples after
crystallization treatment at a temperature of 80 ◦C. In Figure 3, there are two kinds of
curves. The curves of the PLLA3, PLLA4 and PLLA5 samples basically match that of the
PLLA δ form [6–8], and the peaks are mainly found at 2θ ≈ 16.3◦ and 18.6◦. According
to Zhang et al. [7,16] and Pan et al. [19,20], the disordered α form (δ form) of PLLA is
commonly acquired at a crystallization temperature below 120 ◦C. The crystallization
temperature of PLLA5 was 80 ◦C, which conforms to the formation condition of the δ
form. The curves of the PLLA1 and PLLA2 samples basically match that of the PLLA α

form, whose dominant peak (110/200 reflection) is located at 2θ ≈ 16.7◦, and the secondary
peak (203 reflection) is located at 2θ ≈ 18.9◦. Here, α crystals are formed at 80 ◦C from
PLLA samples with molecular weights of 1700 and 5500 g/mol. This result means that
the crystallization temperature condition (<120 ◦C) is not the only necessary condition to
form PLLA δ crystals, and that changing molecular weight can also induce α/δ crystal
form transition.
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Figure 3. WAXD diffraction profiles of five PLLAs after crystallization treatment at a temperature
of 80 ◦C.

Figure 4 shows the WAXD curves of PLLA samples treated at five temperatures of
80 ◦C, 90 ◦C, 100 ◦C, 110 ◦C and 120 ◦C. It can be seen from Figure 4 that the influence
of temperature on the crystal form of PLLA is also obvious. From Figure 4a,b, with the
increase of temperature, the location of dominant peaks representing the 110/200 reflection
remain unchanged, and the peaks representing the 010 reflection become more and more
obvious. As shown in Figure 4c–e, with the increase of temperature, the 2θ of dominant
peaks representing the 110/200 reflection of PLLA3-PLLA5 samples shifts to a higher value.
The higher 2θ value of the WAXD peaks at this location indicates the α/δ crystal form
transition of the PLLA crystal. In this way, increasing crystallization temperature can cause
the crystal form to change from δ to α when the molecular weight is larger than that of
PLLA3 (≈10,800 g/mol). For the PLLA1 and PLLA2 sample, only α crystals are found
in the temperature range of 80–120 ◦C. Furthermore, the FTIR results given by Figure S5
in the Supplementary Materials also support the judgment about α and δ crystals based
on the previous studies [26–29]. Next, we will further study the calorimetric properties of
these two kinds of crystal forms by DSC.
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Figure 4. WAXD curves of five PLLA samples obtained by crystallization at different temperatures:
(a) PLLA1; (b) PLLA2; (c) PLLA3; (d) PLLA4; (e) PLLA5.

In Figure 3, the main peak of WAXD curve obtained by samples PLLA1 and PLLA2
after crystallization at 80 ◦C conforms to the common peak positions of α crystals, but there
is no diffraction peak corresponding to the (010) crystal plane at 14.4◦. In addition, WAXD
curves of α crystals of the PLLA4 and PLLA5 samples at 14.4◦ also did not show the diffrac-
tion peak corresponding to the (010) crystal plane. Hence, combining Figures 3 and 4, it
can be concluded that when the molecular weight of the PLLA is low, or the crystalliza-
tion temperature is high, the WAXD curve will have a diffraction peak at 14.4◦. Similar
results have been obtained by Zhang and Tashiro et al. [17]. Zhang found that when the
crystallization temperature is above 140 ◦C, the diffraction peak corresponding to the (010)
crystal plane will appear at 14.4◦, and with the increase of crystallization temperature, the
diffraction peak at 14.4◦ becomes more and more obvious. In addition, the WAXD data of
Pan and Inoue et al. [20] showed that the diffraction peak at 14.4◦ became more and more
obvious with the increase of annealing time at 150 ◦C. In this way, it can be inferred that
the diffraction peak will appear at 14.4◦ when the PLLA α crystal is highly ordered. In
this study, the PLLA samples in Figure 3 were crystallized at 80 ◦C. Although α crystal
was obtained, the WAXD curve did not show a diffraction peak at 14.4◦, due to the low
crystallization temperature.
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3.3. Calorimetric Properties of α and δ Crystal

Figure 5 gives the DSC melting curves of the PLLA samples after crystallization at
80 ◦C. Combining with the crystal form given by WAXD, the melting peaks of PLLA1 at
128.3 ◦C and of PLLA2 at 158.6 ◦C indicate the melting processes of α crystals, and the
melting peaks of PLLA4 at 173.4 ◦C and of PLLA5 at 178.9 ◦C mainly indicate the melting
processes of δ crystals. Moreover, the peak shapes of PLLA1 and PLLA2 show that the
α crystal is directly melted without other form transition or recrystallization, while in
the DSC curves of PLLA4 and PLLA5, a small exothermal peak around 160 ◦C appears
prior to the melting point. According to Zhang’s research [7], the small exothermal peak
corresponds to the disorder-to-order (δ-to-α) phase transition, in which the chain packing
of the crystal lattice becomes more compact. This phenomenon demonstrates that the δ
crystal is the main crystal form in the PLLA4 and PLLA5 samples.
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The DSC curve of PLLA3 shows two melting peaks at 154.0 ◦C and 161.6 ◦C, respec-
tively. This kind of double melting peak of PLLA was also found in other research [18,19].
According to this research, the left endotherm peak includes two contributions: (i) the
melting of the initial δ crystal and (ii) the recrystallization into the α crystal from the melted
δ crystal, which results in the endotherm and exotherm in the DSC curves, respectively. So,
the peak at 154.0 ◦C may be an overlapping peak of the endotherm and exotherm.

Furthermore, there is significant difference among the peak positions of the same
crystal form, e.g., the melting peaks of PLLA1 and PLLA2. According to the Gibbs–
Thomson equation for melting point, the deviation of melting point temperature Tm from
the thermodynamic equilibrium melting point T0

m can be derived by [30]:

Tm − T0
m = 1− 2σe

dc∆h
(1)

where σe represents the end surface free energy, ∆h is the melting enthalpy and dc is the
lamellar thickness. Because σe and ∆h of a certain crystal form are almost constant, the
melting points obtained from DSC heating processes are mainly influenced by lamellar
thickness. To investigate crystal thickness, SAXS measurement was further carried out.

3.4. SAXS Analysis of PLLA Samples

Figure 6 shows the SAXS measurement results of crystallized PLLA samples with
different molecular weights. The Lorentz-corrected one-dimensional scattering intensity
distributions of the five PLLA samples are shown in Figure 6a. In Figure 6a, the horizontal
axis is labeled by a scattering vector q (q = 4πsinθ/λ, where θ is half of the scattering angle,
λ is the wavelength of the X-ray), and the vertical axis is labeled by Iq2, the scattering
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intensity. The essence of small-angle scattering is caused by the difference of electron cloud
density in the sample. In Figure 6a, the PLLA1 and PLLA2 samples have obvious scattering
peaks qmax at 0.58 nm−1 (Bragg long periods: LB = 2π/qmax = 10.83 nm) and 0.39 nm−1

(Bragg long periods: LB = 16.11 nm), respectively. The PLLA3 sample has a relatively weak
scattering peak at 0.43 nm−1, and the Bragg long periods can be calculated as 14.61 nm.
Different from the PLLA1 and PLLA2 samples, it is hard to find the scattering peak of
the Lorentz-corrected SAXS profiles of the PLLA4 and PLLA5 samples. This may be
caused by the disordered crystal structure of the δ crystal, which does not have enough
difference in electron cloud density between the crystalline and amorphous regions. These
SAXS results were also supported by Pan et al., who found that no discernible peak is
observed on the Lorentz-corrected SAXS profiles of PLLA crystallized at a temperature
lower than 90 ◦C [21].
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Figure 6. SAXS measurement results of crystallized PLLA samples after crystallization treatment at 80 ◦C:
(a) Lorentz-corrected SAXS profiles; (b) one-dimensional correlation function profiles of PLLA1, PLLA2 and PLLA3 samples.
The correlation function long periods (LCF), crystal thicknesses (lc) and transition region thicknesses (lt) are marked on
PLLA1′s curve as an example.

In the lamellar stack model with sharp phase boundary, the long period represents
the sum of the crystal thickness (lc) and the amorphous layer thickness (la). The one-
dimensional correlation function is utilized here to further calculate the lc and la [31,32].
The one-dimensional correlation function is given by [32]:

γ(z) =

∫ ∞
0 I(q)q2cos(qz)dq∫ ∞

0 I(q)q2dq
(2)

where z is the direction normal to the lamellar interface. Figure 6b shows the calculation
results of the one-dimensional correlation function of the PLLA1, PLLA2 and PLLA3
samples. Because PLLA4 and PLLA5 have no obvious scattering peak within 0.2–0.8 nm−1

of the scattering vector q, the corresponding one-dimensional correlation function cannot
be given. The correlation function long period LCF can be obtained by locating the first
maximum in the one-dimensional correlation function [31,32]. The crystal thickness (lc)
is given by the intersection between the straight line extended from the self-correlation
triangle and the baseline in the one-dimensional correlation function [33], as shown as
Figure 6b. The amorphous layer thickness (la) is then given by la = LCF − lc. Moreover,
there is a transition region between the crystalline region and the amorphous region. Based
on Strobl’s theory [34], the transition region thickness (lt) can be given by the horizontal
length of the curved portion of the hypotenuse of the autocorrelation triangle, as shown as
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Figure 6b. According to the above calculation methods, Table 2 lists the SAXS data analysis
results of the PLLA1, PLLA2, and PLLA3 samples.

Table 2. The Bragg long periods (LB), correlation function long periods (LCF), crystal thicknesses (lc),
amorphous layer thicknesses (la) and transition region thicknesses (lt) of the PLLA1, PLLA2 and
PLLA3 samples.

Sample Name LB (nm) LCF (nm) lc (nm) la (nm) lt (nm)

PLLA1 10.83 11.41 5.15 6.26 1.26
PLLA2 16.11 15.61 6.78 8.83 1.96
PLLA3 14.61 15.25 6.98 8.27 2.11

From the data listed in Table 2, for the crystals in the PLLA1, PLLA2, and PLLA3 sam-
ples, the long period and crystal region thickness of the different samples show a similar
size change trend. The thickness of α crystals in PLLA2 is obviously larger than that of
PLLA1. This difference of crystal thickness can explain the difference in melting tempera-
ture of the PLLA1 and PLLA2 samples shown in Figure 5.

It should be noted that some δ crystal form of PLLA still can be detected by SAXS. For
example, the δ crystal formed at a temperature of 100 ◦C reported by previous research [21].
In this research, a weak peak is also observed on the Lorentz-corrected profile of the PLLA3
δ crystal, which is characterized by WAXD (Figure 3). Why can SAXS perceive the δ crystal
in the PLLA3 sample, while not the δ crystal in the PLLA4 and PLLA5 samples? The
following discussion may give an answer.

3.5. Rheology Properties of PLLA

To understand the mechanism of α/δ crystal form transition in PLLA crystals, the melt
state before crystallization should be considered. In the polymer crystallization process, the
melt state can be retained to the growth front of the crystal, thereby affecting crystallization.
Wang et al. characterized the entanglement state of iPP by rheological testing, and then
studied the crystallization behavior of iPP-disentangled melt [35]. R. Kurz et al. also related
the entanglement in the melt to the entanglement in the amorphous zone; their experimental
results suggest that entanglement controls the thickness of the amorphous zone [36].
Recently, Men et al. revealed the decisive role of entanglements in the transition between
the α and tetragonal crystal form of Polybutene-1 [30]. Inspired by these viewpoints, we
further investigated the rheology properties of the PLLA samples to analyze the melt state
of PLLA before crystallization. Figure 7 shows the rheology data of the five PLLA samples.

Based on the melting temperatures listed in Table 1, the sample temperature of rhe-
ology test was 190 ◦C, and the PLLA could be fully melted. As shown as Figure 7a,b,
the storage modulus G′ and loss modulus G′ ′ of these five PLLA samples increases with
the increase of frequency ω. With the increase of molecular weight, the G′ and G′ ′ of
PLLA increases. This means that molecular weight can obviously influence the rheology
properties of PLLA. Furthermore, the high absolute value of the storage modulus means
that the molecular chains tend to form the entanglement structure. [37]

In Figure 7c, PLLA2, PLLA3, PLLA4 and PLLA5 show a typical rheology character
of thermoplastics polymer: with the increase of ω, shear thinning behavior occurs. The
shear thinning behavior of PLLA5 is the most notable, while that of PLLA2 is very weak.
These viscosity data mean that, from PLLA2 to PLLA5, the entanglement concentration
increases with the increase of molecular weight. The viscosity curve of the PLLA1 sample
is almost straight, without shear thinning behavior. The viscosity data means that there
is little entanglement in melt PLLA1, and these results basically match with the results of
Cooper-White et al. [38].

From the curves of PLLA2, PLLA3, PLLA4, and PLLA5 given in Figure 7d, the
elasticity (G′ ′) is significantly larger than the viscosity (G′). With the increase of molecular
weight, the slopes of curve decrease. This is because the increase of molecular weight leads
to the increase of entanglement, and causes a large energy loss in the process of dynamic
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measurement. In contrast, for the PLLA1 curve, G′ is almost equal to G′ ′, which shows
a Newton flow character.
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Figure 7. The dynamic frequency scanning curves of five PLLA samples at 190 ◦C: (a) storage modulus
G′ vs. frequencyω; (b) loss modulus G′′ vs. frequencyω; (c) complex viscosity |η∗| vs. frequencyω;
(d) storage modulus G′ vs. loss modulus G′′.

According to the data published by Dorgan et al., the critical entanglement molecular
weight (i.e., Me, molecular weight between entanglements) of PLLA is near 4000 g/mol.
(The exact value is 3959 g/mol) [37]. In this section, the rheology properties of five PLLA
samples can be explained by Dorgan’s data. The molecular weight of PLLA1 is about
1700 g/mol which is smaller than Me, and there is barely no entanglement in the PLLA1
melt before crystallization. The molecular weight of PLLA2 is about 5500 g/mol, which
is slightly bigger than Me, and the PLLA2 melt has a little entanglement. Under external
force, the entanglements in the PLLA2 melt can be easily untangled. The molecular weights
of PLLA3, PLLA4 and PLLA5 are much bigger than Me, and the entanglement effect is
obvious in their melt.

4. Discussion

Based on intramolecular nucleation theory [39,40] and molecular nucleation
theory [41–44], a polymer molecular chain tends to aggregate by intramolecular folding in
kinetics to reduce the surface of the free energy barrier for nucleation. Miyoshi et al. [45–49]
argued that crystallization had a preordered stage of forming cluster nucleus by self-folding.
For polymers with small molecular weights, the formation of an integer-fold chain topol-
ogy structure [50,51] also directly proves that intramolecular self-folding is the preferred
crystallization path. For polymers with large molecular weights, the crystallization driving
force of arrangement of extended chains or integer-folded chains is needed to extract the
molecular chains from the amorphous region. However, the entanglements prevent the
timely extraction of the molecular chains, and the molecular chain cannot be arranged into
the crystal region by self-folding in a short time. As a result, the molecular chain will form



Polymers 2021, 13, 3280 12 of 16

a cluster nucleus by being arranged in parallel with other surrounding chain segments,
and then stacked onto the crystal interface [45,46].

The molecular weight of PLLA1 is much smaller than Me, and the PLLA1 melt has no
shear thinning phenomenon. So, PLLA1 molecular chains can be assembled into crystals in
the form of extended chains or integral folding chains. The molecular weight of PLLA2 is
slightly larger than Me, and the slight entanglements are easily untied under the driven
force of crystallization kinetics. PLLA2 molecular chains can also be assembled into crystals
by integral folding chains. From this point, the formation process of α crystals in the PLLA1
and PLLA2 sample is almost unaffected by entanglement.

By comparison, the entanglement effect is more remarkable in the PLLA3, PLLA4
and PLLA5 samples. With the driving force of crystallization, it is difficult to extract the
molecular chain from the entangled network in time. The molecular chain cannot form
extended chain and integer-folded chain, but forms non-integer folding chain in the crystal.
According to the WAXD results shown in Figure 1, δ crystal is the dominant crystal form
in PLLA3, PLLA4 and PLLA5. It is speculated that the formation of δ crystals is closely
related to entanglement effect.

As mentioned in Section 3.4, the PLLA3 sample has a character of periodic structure in
the SAXS measurement, while the PLLA4 and PLLA5 samples do not, as shown as Figure 6.
In the crystalline region, the δ crystal in PLLA3 has same chain conformation with that in
PLLA4 and PLLA5. So, the structure or conformation difference of molecular chain in the
amorphous region should be considered. During the crystallization process of the polymer
chain with entanglement restriction, the intermolecular or intramolecular entanglements
are retained in the amorphous region between the lamellae. As a result, tie molecules and
loose folds are formed in the amorphous region [23,52]. According to the rheology results
shown in Figure 7c,d, the entanglement concentration in the PLLA4 and PLLA5 melts
are much larger than that in the PLLA3 melt. In this way, the retained entanglements, tie
molecules and loose folds in the amorphous region of the PLLA4 and PLLA5 crystallized
samples are more than that of the PLLA3 samples.

Based on the research of Fritzsching et al. [52], entanglements and tie molecules in
amorphous regions can cause crowding on the end surface of the lamella. Crowding has
multiple effects on the crystal region. Fritzsching et al. [52] proved that crowding on the
lamellar surface can reduce the lateral size of the lamella and cause a tilt arrangement of
molecular chains in the lamella. In our previous study [23], we also found that loose folds
on the crystal surface can lead to lamellar splaying. During the crystallization process, the
abundant retained entanglements in PLLA4 and PLLA5 causes serious crowding which
can reduce the difference of electron cloud density between the close-packed crystal region
and the amorphous region. Hence, it is difficult for the PLLA4 and PLLA5 samples to
be measured with long-period data by SAXS. In comparison with the PLLA4 and PLLA5
samples, the crowding effect in the PLLA3 sample may be weaker, and the difference of
electron cloud density between the crystal region and the amorphous region is relatively
large. As a result, it is possible that the long-period data of the PLLA3 samples can be
detected by SAXS.

Furthermore, considering the molecular weight dependence of the transition between
δ and α form, the crowded amorphous region may be what hinders the ordering process of
the δmolecular helix chain with low mobility under low temperature. When the molecular
weight is smaller than the critical entanglement molecular weight, there is little or no
crowding on the end surface of the lamella. As a result, the PLLA molecular chains can be
assembled in an ordered α system, even though the temperature is below 120 ◦C. When the
molecular weight is significantly larger than the critical entanglement molecular weight,
the crowding effect will squeeze the helix chain in the crystal region and the helix chain
tends to form disordered δ crystals.

Based on the above results and discussions, Figure 8 shows a diagram of α/δ crystal
forms of PLLA with different molecular weights and different crystallization temperatures.
In the view of this research, the low molecular mobility at low temperature and the
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crowding effect caused by retained entanglements or other amorphous chains are the
formation reasons for δ crystals. When the temperature is relatively high, e.g., 120 ◦C
for PLLA with large molecular weights, the crowding effect will also be serious in the
amorphous region. However, a molecular chain with high mobility can still form ordered
α crystals during the crystallization process. Moreover, when the PLLA sample with
δ crystal is heated to a temperature of 120 ◦C, as shown as Figure 4, δ crystals can be
transformed into α crystal without disentanglement, which is a kind of solid–solid phase
transition [16–18].
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Furthermore, during the crystallization of lactic acid-based copolymers, including
Poly(L-lactide-co-D-lactide) [53,54], Poly(L-lactic acid-co-L-2-hydroxybutanoic acid) [55,56],
Poly(L-lactic acid-alt-glycolic acid) [57] and poly(L-lactic acid-co-L-alanine) [58,59], there
is also the phenomenon of crystal form transition. Tsuji et al. studied the polymor-
phism of poly(L-lactic acid-co-L-alanine) copolymers with wide alanine unit content ranges
for melt-crystallization, and the molecular weight of this copolymer is in the range of
10,000~17,000 g/mol. They found that the transition crystallization temperature of copoly-
mer samples from α form to δ form decreases with an increase of alanine unit content [59].
The increase of alanine unit content corresponds to the decrease of the length of the lactic
acid unit series, which leads to the decrease of the α/δ crystal transition temperature. In
this study, the α/δ crystal transition temperature was decreased by lowering the molecular
weight of PLLA, which was consistent with the conclusion of Tsuji et al. [59].

5. Conclusions

In this research, five kinds of PLLA with different molecular weights were prepared by
ring-opening polymerization with strict dehydration operations and multistep purification
treatments. The high purity of L-lactic acid and small polydispersity of PLLA provided
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us basic conditions to tailor the crystal structure to. The characterization results of WAXD
indicated that the PLLA crystal is changed from the δ form to the α form with the decrease
of molecular weight at a temperature of 80 ◦C. Considering the molecular weight effect
and rheology feature of PLLA melt, this paper argued that the transition of the crystal form
is related to molecular entanglements. The ordering of the δ crystal form may be hindered
by crowding on the end surface of the lamella, which is caused by entanglements and
other amorphous chain segments at low temperatures. Hence, the transition of the α/δ
crystal form is not only associated with temperature, but also related to entanglement state
before crystallization. The findings of this research again enhance the significant role of
entanglement in polymer crystallization. With significant entanglement effect or molecular
weight effect, long-chain molecules of polymer tend to form metastable crystal structures
during the ordering process at low temperatures.
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thickness and surface morphology before crystallization obtained by AFM observation, Figure S4:
FTIR profiles of PLLA samples crystallized at 80 ◦C at wavenumber ranges of 1700–1820 cm−1,
1340–1490 cm−1 and 1100–1250 cm−1, Figure S5: FTIR profiles of PLLA samples crystallized at 80 °C
at wavenumber ranges of (a) 1700–1820 cm−1 and (b) 1340–1490 cm−1, (c) 1100–1250 cm−1.
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