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Characterizing directed functional 
pathways in the visual system by 
multivariate nonlinear coherence of 
fMRI data
Gadi Goelman1, Rotem Dan   1,2 & Tarek Keadan1

A multivariate measure of directed functional connectivity is used with resting-state fMRI data of 
40 healthy subjects to identify directed pathways of signal progression in the human visual system. 
The method utilizes 4-nodes networks of mutual interacted BOLD signals to obtains their temporal 
hierarchy and functional connectivity. Patterns of signal progression were defined at frequency 
windows by appealing to a hierarchy based upon phase differences, and their significance was assessed 
by permutation testing. Assuming consistent phase relationship between neuronal and fMRI signals 
and unidirectional coupling, we were able to characterize directed pathways in the visual system. The 
ventral and dorsal systems were found to have different functional organizations. The dorsal system, 
particularly of the left hemisphere, had numerous feedforward pathways connecting the striate and 
extrastriate cortices with non-visual regions. The ventral system had fewer pathways primarily of two 
types: (1) feedback pathways initiated in the fusiform gyrus that were either confined to the striate 
and the extrastriate cortices or connected to the temporal cortex, (2) feedforward pathways initiated 
in V2, excluded the striate cortex, and connected to non-visual regions. The multivariate measure 
demonstrated higher specificity than bivariate (pairwise) measure. The analysis can be applied to other 
neuroimaging and electrophysiological data.

Understanding the organization of large scale neural networks is essential for the understanding of brain func-
tion1. For this purpose, neuroimaging data of MRI, EEG and MEG can be used to construct structural (anatom-
ical links), functional or effective connectivity macroscopic scale networks2. Directed functional connectivity 
refers to methods that appeal to temporal precedence to infer directed connectivity3. These include Granger cau-
sality4, phase-transfer entropy5 and the multivariate method we have recently introduced that is based upon non-
linear coherences among multiple time-series and systematic phase delays between the regions6. Here, we used 
an elaboration of this method to identify pathways of signal progression within the visual system and compare 
characteristics of the dorsal and ventral streams. For these purposes we extended the method and introduced a 
statistical framework that enables to obtain model-free identification of signal progression patterns. By assuming 
a fixed relationship between neuronal and hemodynamic phases and a constant hemodynamic response (delays) 
across the measured systems, our method infers patterns of neural information flow. In contrast to other func-
tional connectivity methods that are based on temporal similarity and connectivity strength (i.e. amplitudes), our 
method is based on temporal hierarchy between multiple time-series (i.e., the temporal order of signal progres-
sion) and on nonlinear coherence between them (i.e. phases). For the application of the method to functional 
MRI (fMRI) data, there is a need to assume that the hemodynamic lag faithfully reproduces temporal precedence 
at the neuronal level. Based on our7 and others results, we will make this simplifying assumption to demonstrate 
the potential usefulness of our method for fMRI. Previous fMRI studies8–11 showed that time-lag propagates 
within conventionally known resting-state networks and therefore can be used to infer MRI signal progression 
and its directionality10,11.

Cortical visual processing is commonly thought to proceed along two distinct pathways: a fast, highly recur-
rent, dorsal pathway projecting into the parietal cortex and a slower ventral pathway projecting into the inferior 

1Department of Neurology, Hadassah Hebrew University Medical Center, Jerusalem, Israel. 2Edmond and Lily 
Safra Center for Brain Sciences (ELSC), the Hebrew University of Jerusalem, Jerusalem, Israel. Correspondence and 
requests for materials should be addressed to G.G. (email: gadig@hadassah.org.il)

Received: 14 June 2018

Accepted: 19 October 2018

Published: xx xx xxxx

OPEN

http://orcid.org/0000-0003-4341-330X
mailto:gadig@hadassah.org.il


www.nature.com/scientificreports/

2SCIENtIfIC ReporTs |         (2018) 8:16362  | DOI:10.1038/s41598-018-34672-5

temporal cortex. These pathways were identified in monkeys as anatomically and functionally distinct systems of 
multisynaptic connections emerging from the striate cortex12,13. The initial conception of the ventral stream was 
that of a serial hierarchical pathway starting at the striate cortex (area V1), passing through a sequence of pro-
cessing stages in the extrastriate cortex until complex object representations are formed in the anterior part of the 
inferior temporal cortex (area IT)14,15. A more recent view based on electrophysiology measurements in macaques, 
claims that the ventral visual pathway is a recurrent and highly interactive occipitotemporal network linking early 
visual areas and the anterior IT cortex along multiple routes through which visual information is processed13. 
Likewise, the original notion of the serial processing stages in the dorsal stream was challenged by recent findings 
suggesting several distinct pathways that emerge from this stream12. Furthermore, previous studies have shown 
that the dorsal system is even more complex. For example, earlier activations in MT than in V1 have been demon-
strated16. Such findings suggest that the extrastriate cortex in the dorsal but not in the ventral stream is activated 
early enough to be able to influence subsequent processing through feedback connections to V117.

Here, we applied our directed functional connectivity method to resting-state fMRI data of 40 healthy young 
subjects. We aimed to test whether the pathways obtained in the visual system using resting-state data are in line 
with previous studies that mainly were obtained by stimulus driven data. Such findings will suggest common pat-
terns of resting-state and stimulus driven data and on the other hand will validate the application of our method 
to fMRI data. Furthermore, based on the literature described above demonstrating different organizations of the 
ventral and dorsal streams, we aimed to capture these differences correctly, such that it would be possible to detect 
distinct patterns of coupling in normal subjects or, perhaps, aberrant patterns or disconnections in psychiatric 
disorders18.

Mathematical Methodology
Recently we have shown that for a network composed of 4 coupled time-series, the network’s functional con-
nectivity strength (i.e. amplitude) and the relations between the 4 time-series phases (i.e. coherence) can be ana-
lytically described as a function of time and frequency6. Using wavelet analysis we have shown that for each 
time-frequency point there are three distinct forms of interactions between the 4 coupled time-series, each cor-
responding to a different coherence. The full interaction can be obtained (but used here only for comparison with 
bivariate strength, see below) by multiplying the 3 distinct expressions. The validity of the full interaction expres-
sion can be tested, for example, in the case where time-series 1 and 2 are equal and so are time-series 3 and 4. In 
this case, the full interaction converges to pairwise coherence as expected. The three distinct coherences (termed 
in hereafter “functional connectivity”, FC) equal:
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1  is the phase of time-series ‘j1’, 
‘A’ is the coherence amplitude, *denotes the complex conjugate and ‘i’ is the imaginary unit. The nonlinear coher-
ence phases, ϕa, ϕb and ϕc, can be computed according to Equation 1 and were used to obtain the phases of the 
time-series for each frequency and time point6:
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where  is due to the freedom in the phase definition which requires specification of the sign6. Following the logic 
that phases correspond to time-lags at each frequency and time points, Equation 2 can be used to define the hier-
archical temporal order among the 4 time-series. Note that for the definition of directed functional connectivity 
given below, only the phases (Equation 2) were used and not the amplitude of functional connectivity. This is in 
line with the definition of related nonlinear coupling measures that are based on phase relationships, such as 
phase dispersion or phase locking analyses. Note that the phase differences of Equation 2 are different from the 
corresponding pairwise phase-differences since they include the effect of the other time-series as well.

To fully characterize a network of 4 time-series, the network’s temporal order of the time-series needs to be 
identified, namely the order of signal propagation among the time-series which is given by the temporal pathway 
that describes how the signal is propagating throughout the network. Acknowledging that the phases of the 
time-series (at each frequency) are related to time-delays, the phases can be used to outline a unique ordinal or 
hierarchical ranking of signal progression. A network of 4 time-series has 24 ( = 4!) possible pathways (listed in 
Table 1). Using the phases to define ordinal ranking requires to assume that all phases are below 2π.For example, 
consider the signal progression pathway: R1 → R2 → R3 → R4, where R1 to R4 represent the 4 time-series. If we 
use the phase of R1 as a reference, Equation 2 can be used to calculate the three phase-differences between the 
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time-series: ϑ − ϑ ϑ − ϑ ϑ − ϑ(( ); ( ); ( ))2 1 3 1 4 1 . If πϑ − ϑ >( ) 24 1 , the pathway can mistakenly be identified as 
R4 → R1 → R2 → R3. This demonstrates a bias in pathway identification. It also shows that pathway definition 
depends on the reference phase. To overcome these biases, we introduce the concept of “Circular Pattern” (CP). 
A circular pattern defines how signals propagate within the network. For example we note that pathways: 
R1 → R2 → R3 → R4, R2 → R3 → R4 → R1, R3 → R4 → R1 → R2 and R4 → R1 → R2 → R3 have all the same pat-
tern of signal progressing but are differ in their starting point within this pattern. Circular-patterns are invariant 
to the choice of reference phase, and are less sensitive to phase values greater then 2π. We note that a CP does not 
give the temporal order of the time series but only its pattern of signal progression. To obtain a pathway from a 
CP, an assumption for the starting point has to be made. Table 1 show that for a network of 4 time-series there are 
six possible CPs, where each CP includes 4 different pathways. We note that the six CPs can be divided into three 
pairs (CP1 and CP4; CP2 and CP3; CP5 and CP6) where each CP in the pair is of an opposite flow pattern. These 
pairs are the consequence of the intrinsic directional freedom in the definition of phases that mathematically is 
expressed by the  sign in Equation 2. Note that the above CP analysis can be performed for each time-frequency 
point, therefore enabling one to characterize the dynamics of signal progression. In other words, one can in prin-
ciple evaluate circular patterns instantaneously at any desired frequency. This enables to track dynamic changes 
in the hierarchical patterns of coupling. We will address this elsewhere.

To test for the significance of the CPs, we adopted the common approach used in coherence studies. A group 
expectation value was calculated for each CP. This expectation value was named “Circular-Pattern Index” (CPI) 
and is defined on the phases as:

∑= = { }CPI
N

phases in line with circular pattern
phases not in line with circular pattern

1 1
0 (3)

k
i
N

1

where ‘k’ is a specific CP (k = 1, 2, 3, 4, 5 or 6). In Equation 3, it is tested for each subject separately whether the 4 
time-series network’s phases are in line with the CP, i.e. if they are consistent with one of the four pathways which 
characterize the CP (Table 1). The calculations for the 6 CPs (Equation 3) are all done according to the same selec-
tion of phase direction in Equation 2. This selection reduces the degeneracy of the CP pairs. Equation 3 is defined 
similarly to the definition of the Phase Locking Value (PLV)19–21 or the Phase Lag Index (PLI)22,23. Namely, for 
each subject and each CP, a value of 1 is assigned when the network phases are in agreement with this CP, and zero 
is assigned when there isn’t an agreement. Consequently, if the probability to obtain a specific CP ‘k’ among the N 
subjects is low, the CPIk will be close to zero. On the other hand, for a high probability of obtaining this CP, CPIk 
will be high and approach unity. Permutation-based non-parametric tests with uncoupled time-series were used 
to obtain the CPI null distributions for each CP at each frequency and assign a p-value for certain CPIk which is 
defined in terms of pattern-specific indicator functions.

Figure 1 illustrates how the pathways are defined. A 4 time-series network is assigned a CP when its pathway 
is among the four relevant pathways included in the CP, as listed in Table 1.

To infer directionality within the CPs, i.e. whether a signal is progressing in a clockwise or counter-clockwise 
direction and to define its starting point (i.e. the directed pathway), an assumption or prior knowledge must be 
used. Note that in the definition of a CP only the phase-differences are considered and the functional connectivity 
amplitudes are not used. This distinguishes the current analysis of multivariate directed functional connectivity 
from other (bivariate) functional connectivity analyses, since the majority of other analyses focus on the ampli-
tude. In other words, while most functional connectivity analyses are based on temporal similarity between pairs 
of time-series, our analysis is based on temporal hierarchy between multiple time-series. This means that in a 
hypothetical network of 4 identical time series, functional connectivity analyses that are based on temporal sim-
ilarity (i.e. amplitude) will result with maximum functional connectivity, while our analysis that is based on tem-
poral hierarchy will not assign a pathway to such a network since no temporal hierarchy can be defined. In this 
respect, our CPI measure is similar to the pairwise PLI (Phase Lag Index) measure. However, the key difference 
between our new method and the existing PLI method is that our method considers high order mutual informa-
tion (characterized in terms of wavelet coefficients and phases) which makes it a multivariate measure versus the 
bivariate measure used in PLI. In other words, our method is a high order measure of directed functional connec-
tivity versus the second order (pairwise PLI) measure of directed functional connectivity.
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R1-R2-R3-R4 R1-R2-R4-R3 R1-R3-R4-R2 R1-R4-R3-R2 R1-R3-R2-R4 R1-R4-R2-R3

R2-R3-R4-R1 R2-R4-R3-R1 R3-R4-R2-R1 R2-R1-R4-R3 R2-R4-R1-R3 R2-R3-R1-R4

R3-R4-R1-R2 R3-R1-R2-R4 R4-R2-R1-R3 R3-R2-R1-R4 R3-R2-R4-R1 R3-R1-R4-R2

R4-R1-R2-R3 R4-R3-R1-R2 R2-R1-R3-R4 R4-R3-R2-R1 R4-R1-R3-R2 R4-R2-R3-R1

Table 1.  The six Circular Patterns (CPs) presented as squares with lines corresponding to flow organization 
among the four time-series (R1 to R4). In this illustration, flow is possible only along the lines connecting pairs 
of time-series. The four pathways corresponding to the CPs are listed below each CP. These pathways have the 
same flow pattern but they are different in their starting point. Note that CP1 and CP4; CP2 and CP3; and CP5 
and CP6 correspond to pairs of opposite flow.
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To identify significant CPIs in the whole brain, we constructed 3-seed-CPIk-SPMs. A 3-seed-CPIk-SPM is a sta-
tistical parametric map of CPI number k. 3-seed-CPIk-SPMs are seed-like SPMs but instead of using a single seed, 
three seeds are used and a CPI based on 4 time-series networks is calculated. A 3-seed-CPIk-SPM is composed of 
N CPI, where N is the number of voxels that were calculated using Equation 3. For each subject, the phases of 4 
BOLD time-series were used in the CPI calculations. Each of the 4 time-series networks was constructed using 
3 seed time-series and a fourth time-series of a voxel. These networks were calculated for every voxel and every 
subject. The 3 seed time-series were the average BOLD signals from 3 predefined regions, identified by masks 
based on Brodmann areas (see below).

We further used the 3 seed approach to identify a fourth seed that showed coupling with the initial (early 
visual) 3 seeds. This then allowed us to look at different combinations of 3 seeds and identify sets of four 
time-series within which we could identify significant circular patterns. This analysis was repeated for four fre-
quency scales obtained by binning a wavelet decomposition into four cardinal frequency bins.

In summary, we used high order (multivariate) characterization of directed functional connectivity to con-
struct statistical parametric maps (SPM) of nonlinear coupling between every voxel in the brain and a set of 
(three) seeds or reference regions.

Results
Circular patterns of the visual system.  Resting-state fMRI data of 40 heathy young subjects were used 
to calculate 3-seed-CPIk-SPMs of the ventral and the dorsal visual systems for the right and left hemispheres. 
Directed pathways from these networks were then inferred. Due to the interaction of the visual system with many 
other brain systems and our goal to characterize specifically the ventral and dorsal systems, three seeds were 
chosen in the early visual stages (V1, V2 and V3) and were confined to the dorsal or ventral systems. The fourth 
seed was chosen from the 3-seed-CPIk-SPMs that were obtained using the first 3 seeds (for the ventral and dorsal 
systems, separately). All 4 combinations of 3-seed-CPIk-SPMs calculations, each using 3 seeds, were performed. 
The 25 frequency scales of the wavelet analysis were grouped into 4 frequency scales: scale 1 = 0.01–0.03 Hz; scale 
2 = 0.03–0.044 Hz; scale 3 = 0.047–0.067 Hz and scale 4 = 0.074–0.1 Hz.

Figure 1.  An illustration of the process applied to define directed multivariate functional pathways in a 4 
time-series network. (A) A network of 4 time-series (R1, R2, R3 and R4), where the first three are the average 
BOLD signals from predefined seeds and the forth is the BOLD signal of a voxel. (B) 2D representation (mod) 
of the wavelet decomposition into time and frequency. (C) Coherence between the 4 time-series, obtained 
by Equation 1. (D) The three relative phases of the time-series for a certain time-frequency point. (E) These 
phase relations define the hierarchical order of the network. To infer directionality, an additional assumption is 
required, for example: positive ΔI,j means the direction is i→j. (F) The directed pathway.
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The ventral system.  For the ventral system, we used the following four predefined seeds: the primary visual cor-
tex (in hereafter termed ‘V1’), the secondary visual cortex of the ventral system (in hereafter termed ‘V2_ventral’), 
the associative visual cortex of the ventral system (in hereafter termed ‘V3_ventral’) and a region that was found 
significant by 3-seed-CPIk-SPMs of the first three seeds, and was within the fusiform gyrus (in hereafter termed 
‘FG’). The analyses were done separately for seeds of the right and left hemispheres. A 3D plot of the four seeds 
is shown in Supplementary Figure 1. 3-seed-CPIk-SPMs were calculated for the following seed combinations: (1) 
R1 = V1, R2 = V2_ventral, R3 = V3_ventral; (2) R1 = V1, R2 = V2_ventral, R3 = FG; (3) R1 = V1, R2 = V3_ven-
tral, R3 = FG and (4) R1 = V2_ventral, R2 = V3_ventral, R3 = FG.

For the first seed combination, all significant networks obtained by the 3-seed-CPIk-SPMs calculations were 
characterized by CP no. 1 and were found in frequency scales 2 and 3, for both hemispheres. A ‘network’ refers 
hereinafter to the functional connectivity of 4 time-series; the BOLD signals of the three seeds and a voxel, 
defined by Equation 2 that passed the statistical cutoff (see method). In this respect, the number of networks 
equals to the number of significant voxels. These voxels are aggregated in clusters due to the applied cluster-size 
statistical threshold and are shown by 3D plots. Figure 2A show 3D plots of the 3-seed-CPIk-SPMs networks for 
seeds in the left hemisphere (left column) and seeds in the right hemisphere (right column). All significant clus-
ters were located in the fusiform gyrus, known to be part of the ventral stream. Table 2 presents the number of 
significant networks, their CP and frequency scale.

For the second seed combination, significant networks obtained by the 3-seed-CPIk-SPMs calculations for the 
left hemisphere were characterized by CP no. 1 in scale 2 and CP no. 2 in scales 1 and 2. For the right hemisphere, 

Figure 2.  3-seed-CPIk-SPMs of the ventral stream. The figure shows 3D representations of significant clusters 
included in the circular-patterns (CPs). Different CPs are indicated by the color bar. (A) 3-seed-CPIk-SPMs for 
seed combination 1 (R1 = V1, R2 = V2_ventral, R3 = V3_ventral) of the left and right hemispheres. (B) 3-seed-
CPIk-SPMs for seed combination 2 (R1 = V1, R2 = V2_ventral, R3 = FG) of the left and right hemispheres. 
(C) 3-seed-CPIk-SPMs for seed combination 3 (R1 = V1, R2 = V3_ventral, R3 = FG) of the left and right 
hemispheres. (D) 3-seed-CPIk-SPMs for seed combination 4 (R1 = R2_ventral, R2 = V3_ventral, R3 = FG) of the 
left and right hemispheres. ‘FG’ indicates a cluster defined within the fusiform gyrus.
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significant networks were characterized by CP no. 2 in scales 1 and 2 (Table 2). Figure 2B show 3D plots of the 
3-seed-CPIk-SPMs networks for seeds in the left hemisphere (left column) and right hemisphere (right column). 
Significant clusters were found within the ventral system including V2_ventral, V3_ventral and the fusiform 
gyrus. Significant clusters were also found in the dorsal system including V3_dorsal and regions within the tem-
poral gyrus.

For the third seed combination, significant networks obtained by the 3-seed-CPIk-SPMs calculations for the 
left hemisphere were characterized by CP no. 6 in scales 2 and 3. For the right hemisphere, significant networks 
were characterized by CP no. 6 in scales 2 and 3 (Table 2). Fig. 2C show 3D plots of these 3-seed-CPIk-SPMs 
networks for the left and right hemispheres. Significant clusters were found bilaterally in the extrastriate cortex, 
mainly within its ventral parts.

For the fourth seed combination, significant networks obtained by the 3-seed-CPIk-SPMs calculations for the 
left hemisphere were characterized by CP no. 4 in scale 1. For the right hemisphere, significant networks were 
characterized by CP no. 4 in scale 1 (Table 2). Figure 2D show 3D plots of the 3-seed-CPIk-SPMs for seeds in 
the left hemisphere (left column) and right hemisphere (right column). Whereas significant clusters of the left 
hemisphere were mainly restricted to associative somatosensory and frontal areas, the right hemisphere included 
multiple clusters distributed across the cortex and subcortex.

The dorsal system.  For the dorsal system, we used the following four predefined seeds: the primary visual cortex 
(V1), the secondary visual cortex of the dorsal system (in hereafter termed ‘V2_dorsal’), the associative visual 
cortex of the dorsal system (in hereafter termed ‘V3_dorsal’) and a fourth seed that was constructed by the use of 
significant clusters obtained by 3-seed-CPIk-SPMs of the first three seeds and included clusters within the superior 
parietal gyrus (in hereafter termed ‘SP’, see method). The analyses were done for seeds of the right hemisphere 
and for seeds of the left hemisphere separately. A 3D plot of the four seeds is shown in Supplementary Figure 1. 
3-seed-CPIk-SPMs were calculated for all combinations of choosing three out of the four seeds: (1) R1 = V1, 
R2 = V2_dorsal, R3 = V3_dorsal; (2) R1 = V1, R2 = V2_dorsal, R3 = SP; (3) R1 = V1, R2 = V3_dorsal, R3 = SP 
and (4) R1 = V2_dorsal, R2 = V3_dorsal, R3 = SP.

For the first seed combination, all significant networks obtained by the 3-seed-CPIk-SPMs calculations were 
characterized by CP number 4. For the left hemisphere, networks were found in scales 1,2,4 and for the right hem-
isphere in scales 1 and 2 (Table 2). Fig. 3A show 3D plots of the 3-seed-CPIk-SPMs for seeds in the left hemisphere 
(left column) and seeds in the right hemisphere (right column). Networks in the right hemisphere were found 
within the extrastriate and associative somatosensory cortices and in addition in lateral frontal areas, including the 
frontal eye fields (FEF). Networks of the left hemisphere were found in the same areas with larger clusters. For both 
hemispheres, the distribution of clusters highly overlapped with the dorsal attention network (DAN), including 
the intraparietal sulcus (IPS) and the FEF. For the left hemisphere, additional clusters were indicated in the ventral 
attention network (VAN), including the temporoparietal junction (TPJ) and ventral frontal cortex (VFC).

For the second seed combination, significant networks obtained by the 3-seed-CPIk-SPMs calculations for the 
left hemisphere were characterized by CP no. 3 in scales 1 and 2 and CP no. 4 in scale 1. For the right hemisphere, 
significant networks were characterized by CP no. 2 in scale 3, CP no. 3 in scales 1,2 and CP no. 4 in scale 2 
(Table 2). Fig. 3B show 3D plots of the 3-seed-CPIk-SPMs for seeds in the left hemisphere (left column) and seeds 

Left Hemisphere Right Hemisphere

Scale 1 Scale 2 Scale 3 Scale 4 Scale 1 Scale 2 Scale 3 Scale 4

Ventral System

Combination 1 CP 1 3982 1144 3997 3834

Combination 2 CP 1 2325

CP 2 12384 6098 1331 1057

Combination 3 CP 6 1924 4034 2424 1799

Combination 4 CP 4 15993 46988

Dorsal System

Combination 1 CP 4 30225 31464 2667 1173 15832

Combination 2 CP 3 1665 2530 1037 2989

CP 2 3424

CP 4 8706 9304

Combination 3 CP 5 4665 1746 1552

CP 4 59793 40520 18741 3595 29119 8955

Combination 4 CP 4 95183 35675 81227 1568 9276 29171 40993

Table 2.  Numbers of ‘4 time series’ networks of the ventral and the dorsal systems. Networks were made from 
time series of 3 seeds and a voxel and are defined by the 3-seed-CPIk-SPMs. Numbers of networks are given for 
the four seed combinations arranged by their CP’s, frequency scales and hemisphere. For the ventral system 
the seed combinations were: combination 1: V1, V2_ventral, V3_ventral; combination 2:V1, V2_ventral, FG; 
combination 3: V1, V3_ventral, FG; combination 4: V2_ventral, V3_ventral_FG. For the dorsal system the 
combinations were: combination 1: V1, V2_dorsal, V3_dorsal; combination 2:V1, V2_dorsal, SP; combination 
3: V1, V3_dorsal, SP; combination 4: V2_dorsal, V3_dorsal_SP. ‘FG’ indicates a cluster within the fusiform 
gyrus and ‘SP’ indicates a cluster defined within the superior parietal gyrus.
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in the right hemisphere (right column). Significant clusters of CP numbers 2 and 3 were within the extrastriate 
and associative somatosensory cortices, which are known to be a part of the dorsal system, whereas significant 
clusters of CP no. 4 included also remote regions such as the frontal gyrus and specifically the FEF. The left TPJ, 
IPS and FEF were included in networks of both left and right hemispheres.

For the third seed combination, significant networks obtained by the 3-seed-CPIk-SPMs calculations for the 
left hemisphere were characterized by CP no. 4 in scales 1,2,3 and CP no. 5 in scales 1,2. For the right hemisphere, 
significant networks were characterized by CP no. 4 in scales 1,2,3 and CP. no 5 in scale 2 (Table 2). Fig. 3C show 
3D plots of the 3-seed-CPIk-SPMs. Significant clusters of CP no. 5 of the left hemisphere were found within the 
striate and extrastriate cortices, and significant clusters of CP no. 4 for both hemispheres were distributed in the 
entire dorsal system, including regions in the DAN and VAN. Note that much more networks were found for seeds 
in the left hemisphere compared to the right hemisphere, with widespread involvement of almost the entire cortex.

For the fourth seed combination, all significant networks were characterized by CP no. 4. For the left hemi-
sphere, networks were found in scales 1,2,3 and 4. For the right hemisphere, networks were found in scales 1,2 
and 3 (Table 2). Figure 3D show 3D plots of the 3-seed-CPIk-SPMs. Significant clusters were found within the 
ventral system and the entire bilateral dorsal system. Whereas networks of seeds in the left hemisphere cov-
ered almost the entire cortex and subcortex, networks of the right hemisphere were smaller, less distributed and 
included the DAN.

Table 2 suggests that there was no effect of frequency (scale). Permutation-based non-parametric tests show 
that for the dorsal system the number of networks for seeds in the left hemisphere was significantly higher than 

Figure 3.  3-seed-CPIk-SPMs of the dorsal stream. The figure shows 3D representations of significant clusters 
included in the circular-patterns (CPs). Different CPs are indicated by the color bar. (A) 3-seed-CPIk-SPMs for 
seed combination 1 (R1 = V1, R2 = V2_dorsal, R3 = V3_dorsal) of the left and right hemispheres. (B) 3-seed-
CPIk-SPMs s for seed combination 2 (R1 = V1, R2 = V2_dorsal, R3 = SP) of the left and right hemispheres. (C) 
3-seed-CPIk-SPMs for seed combination 3 (R1 = V1, R2 = V3_dorsal, R3 = SP) of the left and right hemispheres. 
(D) 3-seed-CPIk-SPMs for seed combination 4 (R1 = R2_dorsal, R2 = V3_dorsal, R3 = SP) of the left and right 
hemispheres. ‘SP’ indicates a cluster defined within the superior parietal gyrus.
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the number of networks for seeds in the right hemisphere in seed combinations 3 and 4. This was due to more 
networks in the left hemisphere that connected the dorsal system with non-visual regions characterized by CP no. 
4 (e.g. the DAN). In contrast, the number of networks that were confined to the dorsal system, were about equal 
between the hemispheres. An additional finding of greater significance was the higher number of networks in the 
dorsal system compared to the ventral system, for either right or left hemispheres. These results support pathways 
of information flow specifically between the dorsal visual system and the VAN and DAN.

Comparison of 4 time-series to pairwise coherences analyses.  To examine the extent to which the 
results above are unique for the new multivariate 4 time-series analysis, we compared it to bivariate pairwise 
coherence analyse. Specifically, we aimed to test whether the differences found between the dorsal and ventral sys-
tems namely, a greater extent of connectivity of the left dorsal system to non-visual regions, can be also identified 
by second order pairwise coherence analysis.

Pairwise functional connectivity was obtained similarly to previous studies6,24,25:

ω ω θ ω= ⋅ = ⋅ω ω
⁎ ( )FC t W W A t i t( , ) ( ) ( ) ( , ) exp ( , ) (4)seed j t
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Average over time was performed for the resting-state data as in the multivariate analysis. For testing coher-
ence phase significance, we used the Phase Lag Index (PLI)22,23 method since it is more similar to the CPI than 
the phase locking value (PLV). The V2 region was chosen for comparison, and the pairwise coherence analyses 
was computed for the V2_ventral and V2_dorsal seeds of the left and right hemispheres, the same seeds that were 
used in the multivariate analysis. Seed-PLI-SPMs were obtained by calculating pairwise coherences (between a 
seed and a voxel time-series, for all voxels in the brain) for each frequency, using wavelet analysis with the same 
frequency scales. Seed-PLI-SPMs of V2_ventral and V2_dorsal seeds of the right and left hemispheres are shown 
in Supplementary Figure 2.

Seed-PLI-SPMs of different frequency scales were largely overlapping, suggesting no effect of scale, similarly 
to the finding for the 3-seed-CPIk-SPMs. As seen in Supplementary Figure 2, Seed-PLI-SPMs of V2 regions were 
confined to the early visual areas and were almost invariant to left and right choices. This contrasts with the results 
for the 3-seed-CPIk-SPMs that were very different for the left and right hemispheres (Figs 2 and 3). Seed-PLI-SPMs 
of V2_ventral had about twice significant pairwise coherences compared with the V2_dorsal which is opposite 
to the results obtained with 3-seed-CPIk-SPMs. Note also that the number of significant pairwise coherences was 
much lower compared with the number of significant networks obtained by the multivariate analysis.

To test whether the differences found in coherence phases between the multivariate and bivariate analyses were 
complimented by differences in coherence strength (amplitude), we calculated the average coherence strength 
for both analyses over all voxels. Namely, the average bivariate coherence strength of the left and right V2_ventral 
and V2_dorsal seeds over all voxels and frequency scales. Similarly, we calculated the average multivariate coher-
ence strength of the left and right ventral and dorsal 3-seed networks of combination IV (using R1 = V2_ventral, 
R2 = V3_ventral, R3 = FG for the ventral stream and R1 = V2_ventral, R2 = V3_dorsal, R3 = SP for the dorsal 
stream), over all voxels. Supplementary Figure 3 shows these results. Whereas there were no differences between 
ventral and dorsal bivariate coherence strengths for all scales, significant differences were found between the ventral 
and the dorsal 4 time-series networks’ strength for the right and the left hemispheres (with p < 0.01 paired t-test for 
all comparisons besides the comparison of the left hemisphere at scale 1). For the 4-timeseries analysis, the ventral 
stream had stronger coherence strength for all scales with differences in strength a function of scale. Note that the 
amplitude values, for the bivariate and the multivariate analyses, changed approximately as 1/f, as expected.

Taken together, the results suggest marked differences between the 4 time-series and pairwise coherence anal-
yses with higher specificity of the former.

Directed pathways in the visual system.  To obtain directed pathways from the CPs, two assumptions 
are needed. A global assumption for the directionality of signal progression within the CP and a local assump-
tion for the region in which the pathway starts. We assume that fMRI BOLD time-lags are related to neuronal 
time-lags and therefore BOLD signals, in the majority of pathways, progress from lower to higher visual areas. 
This is based on previous studies suggesting neuronal flow from V1 to higher visual areas12,13. To determine the 
global flow directionality, we used the following two considerations: one, in all the four possible seed combina-
tions, the 3-seed-CPIk-SPMs calculations were performed with the first three seeds (R1, R2 and R3 in Table 1) 
chosen according to the expected hierarchy of the system, where R1 is the lower visual area of the three seeds 
and R3 the highest visual area (e.g. R1 = V1 R2 = V2 and R3 = V3). Second, as shown in Figs 2 and 3 and Table 2, 
most networks were characterized by CP no. 4 (i.e. R4-R3-R2-R1). Taking together the above and expecting 
that the majority of pathways will correspond to signal flow from lower to higher visual areas, this implies that 
the directionality within CP no. 4 is R1→R2→R3→R4 which is a counter-clockwise directionality. Although 
Equations 1 and 2 do not infer that the same directionality exists in all networks (i.e. networks with different 
seeds), we argue that once directionality is defined it is valid to all CPs. This is since BOLD temporal signals of all 
regions are locked such that the phase-difference’s signs, that determine directionality, are related. Consequently, 
to construct directed pathways for all other CPs, we need also to assume counter-clockwise directionality. For the 
local definition of where the pathway starts in each CP, the expected low ↔ high visual hierarchal organization is 
used. Note, that even without using the last assumption, our analysis infer the existence of both feedforward and 
feedback pathways in the visual system.

The ventral system.  Four CPs were identified in the ventral system. For the first seed combination, CP no. 1 
(V1-V2-V3-R4) was identified where R4 included clusters within the fusiform gyrus. Counter clockwise direc-
tionality and low ↔ high hierarchal organization suggest the directed pathway: FG → V3 → V2 → V1. For the 
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second seed combination, CP no. 2 (V1-V2-R4-FG) was identified where R4 included clusters within V2_ventral, 
V3_ventral, the fusiform gyrus and regions known to be part of the left dorsal stream (e.g. the middle tem-
poral gyrus). Counter clockwise directionality and low ↔ high hierarchal organization suggest the following 
directed pathways: FG → V3/V2 → V2 → V1 and FG → MT → V2 → V1. For the third combination, CP no. 6 
(V1-R4-V3-FG) was identified where R4 included clusters within V2_ventral. Counter clockwise directionality 
and low ↔ high hierarchal organization suggest the directed pathway: FG → V3 → V2 → V1. For the fourth seed 
combination, CP no. 4 (V2-R4-FG-V3) was identified where R4 included various distributed clusters in both 
hemispheres. Applying the same assumptions as above, this leads to the directed pathway: V2 → V3 → FG → R4.

The dorsal system.  Seven CPs were identified in the dorsal system. The majority of networks were characterized 
by CP no. 4 (96%). For the first seed combination, CP no. 4 (V1-R4-V3-V2) was identified where R4 included 
largely distributed clusters. Counter clockwise directionality and low ↔ high hierarchal organization suggest the 
following directed pathway: V1 → V2 → V3 → R4. For the second seed combination, CPs no. 2,3, and 4 were iden-
tified. R4 clusters in CP no. 2 (V1-V2-R4-SP) were mainly found within the extrastriate cortex. Counter clockwise 
directionality and low ↔ high hierarchal organization suggest the directed pathway: V1 → V2 → V2/V3 → SP.  
R4 in CP no 3 (V1-SP-R4-V2) included clusters within the superior parietal gyrus. Counter clockwise direc-
tionality and low ↔ high hierarchal organization suggest the directed pathway: V1 → V2 → R4 → SP. CP no. 4 
(V1-R4-SP-V2) included R4 clusters in multiple remote areas of the dorsal stream. Counter clockwise direc-
tionality and low ↔ high hierarchal organization suggest the pathway: V1 → V2 → SP → R4. For the third seed 
combination, CPs no. 4 and 5 were identified. CP no. 4 (V1-R4-SP-V3) included R4 clusters across the entire 
dorsal stream. For this CP, counter clockwise directionality and low ↔ high hierarchal organization suggest the 
pathway: V1 → V3 → SP → R4. CP no. 5 (V1-SP-V3-R4) included R4 clusters within the striate and extrastriate 
cortices, and its directionality is suggested to be: V1 → R4 → V3 → SP. For the fourth seed combination, CP no. 4 
(V2-R4-SP-V3) was identified where R4 clusters were mainly distributed outside the visual system, in addition to 
clusters within the entire dorsal and ventral streams. Counter clockwise directionality and low ↔ high hierarchal 
organization suggest the pathway: V2 → V3 → SP → R4.

Figure 4 summarizes these pathways for the ventral (4A) and dorsal (4B) systems in a box-arrow diagram. In 
the figure, arrows represent the predominantly direction of coupling. For both streams, pathways that connect the 
visual system with other systems (e.g. frontal regions) were feedforward. Pathways within the early visual cortex 
were of opposite directionality between the streams: dorsal pathways were feedforward while ventral pathways 
were feedback. Note, that whereas pathways of the ventral stream that included regions outside the visual system 
didn’t contain the striate cortex, pathways of the dorsal stream that included regions outside the visual system 
involved the striate and the extrastriate cortices.

Discussion
Using a novel high order multivariate functional connectivity analysis method that is based on nonlinear coher-
ence with resting-state fMRI data of 40 healthy subjects, we have identified patterns of signal progression in the 
ventral and dorsal visual systems, with no need for any assumption. The analysis enables to obtain functional 
patterns of signal progression in a network of 4 time-series In our approach, three are the average BOLD signals 
of predefined regions and the forth is the BOLD temporal signal of a voxel. A circular-pattern flow, one out of 

Figure 4.  Directed functional pathways of the ventral and dorsal systems during resting-state acquisition with 
eyes open. Pathways were inferred from the circular-patterns (CPs) that were obtained by the 3-seed-CPIk-
SPMs calculations. The method enables to infer directed functional pathways of 4 stages. Solid arrows indicate 
the inferred directions and different pathways are indicated by colors. The percentage of each pathway and its 
frequency scale are denoted above each arrow, and the widths of the arrows are proportional to the percentage 
of the pathway. (A) Directed pathways of the ventral system. (B) Directed pathways of the dorsal system.
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possible 6 which characterizes the signal progression, was assigned to each network using only the network’s 
phases (Fig. 1). In this respect, our analysis is different from most other connectivity analyses which utilize con-
nectivity strength. An intrinsic limitation of the analysis is that it is limited to four network nodes. This may 
possibly result with an over simplified description of signal progression and with a limited ability to characterize 
accurately a certain pathway. However, this remains an advantage of the method over existing functional connec-
tivity analyses that are limited to two nodes. Another limitation that is specific for resting-state data is the need to 
average along time. The wavelet coefficients used in the analysis were associated with time-averaged signals and 
thus the directionality found is the average directionality. This limitation, however, is common to all resting-state 
data analyses. We note that the analysis can be used with other imaging types including stimulus driven data for 
which no time averaging is required enabling dynamic study. Last, for simplicity, we have limited our analysis to 
continuous pathways. The case of general flow patterns will be dealt in a future study.

Our results were obtained with resting-state fMRI data therefore, could be limited to this type of data. 
However, increasing evidence suggests that neurons in vivo are active in the absent of external input and that 
this spontaneous activity has a coherent structure. In support of this possibility, neurophysiological studies 
have shown that the activity of individual neurons is similar across spontaneous and stimulus-driven brain 
states26,27. Furthermore, multiple neuroimaging studies have shown a correspondence between spontaneous 
and stimulus-driven states consistent with the idea that the brain has an intrinsic functional architecture28,29. 
Additionally, interhemispheric coupling of somatosensory regions and of auditory cortices were synchronized in 
response to stimulus at 20–30 Hz and 7–12 Hz respectively and these frequencies were also selective to these inter-
regional interactions during spontaneous activity30. Consequently, we assume that our findings are applicable to 
the visual system in general, and in the discussion below we refer to previous findings of single- or multi-unit 
recordings as well as of stimulus driven data to support our findings.

Coherence between 4 time-series at a given time-frequency window implies that all four time-series are 
mutually coupled. This means that key characteristics of the signals (within these windows) coexist in all the 
time-series. For such mutual coupling to occur, interaction between the four time-series must happen simultane-
ously (i.e., within the time-resolution of the data). This implies that the time resolution of data acquisition might 
affect the results, giving a higher weight to faster signal transfer processes. Several other scenarios that enable 
such mutual coherences can be considered, including recurrent connections. The issue of whether we can discern 
feedforward (or unilateral feedback) connections from reciprocal or recurrent connections is outstanding. Local 
processing and recurrent connections could either increase or decrease phase differences, with subsequent effects 
on our circular pattern statistics. We therefore limit ourselves to interpreting any significant hierarchical ordering 
of phase delays in terms of predominantly unidirectional (feedforward or feedback) coupling. We will present a 
simulation analysis of the effect of recurrent connections in a subsequent work.

By obtaining 3-seed-CPIk-SPMs and seed-PLI-SPMs using the same seeds of the V2 region and equal statisti-
cal thresholds, we showed that the clusters found to be connected to the V2 seeds by pairwise coherences were 
limited to the early visual system, were largely overlapped for the right and left hemispheres and were smaller 
compared to those detected by the 4 time-series analysis (Supplementary Figure 2). In contrast, major differences 
between the ventral and dorsal systems and between the hemispheres were found using the 4 time-series multi-
variate analysis (Figs 2 and 3). Furthermore, the average bivariate pairwise coherences’ strengths over all voxels of 
the V2_dorsal and V2_ventral seeds were found to be equal for all scales (Supplementary Figure 3). In contrast, 
the average multivariate 4 time-series coherence’s strengths over all voxels for networks of seed combination 
IV (and the other seed combinations) were found to be different between the ventral and the dorsal systems 
(Supplementary Figure 3). The dorsal system was shown to have lower coherence’s strength and the differences in 
strength were scale depended. The fact that such differences were only detected by the new analysis, suggests that 
it can distinguish between diverse coherence types that are not detectable by pairwise coherences. With regards 
to the reasons for dorsal coherence’s strength to be lower compared to ventral coherence’s strength, we note that 
in general coherence’s strength decreases as the phase-differences (between the time-series) increase. This is also 
evident from the observed scale dependency shown in Supplementary Figure 3: Assuming a fixed or pseudo-fixed 
time-delay between time-series for the different scales, the corresponding phase-differences increase with scale. It 
remains to be explained why dorsal networks had larger phase-differences. At this level we can only speculate that 
the higher recurrent flow that is expected in the dorsal system resulted with an effective higher phase-differences. 
This issue will be further studied in the future.

One of the most pronounced finding was the higher number of networks for the dorsal system compared 
to the ventral system, where most of these were networks that connected visual and non-visual systems. This 
suggests that signal transfer between visual and non-visual regions has different characteristics in the ventral 
and dorsal systems. Indeed, multiple studies have shown faster signal flow in the dorsal compared to the ventral 
system18. This fast flow in the dorsal system (the’magnocellular advantage’) was suggested to enable top-down 
influence of higher brain regions on visual processing and organization by multiple local and remote recurrent 
loops. We therefore suggest that the higher number of networks observed in the dorsal system is the result of 
faster neuronal flow in that system.

The number of networks in the left dorsal system for seed combinations 3 and 4 was found to be higher than 
in the right hemisphere. In these seed combinations, the last two seeds were V3_dorsal and a seed within the pari-
etal cortex (the SP seed). The parietal cortex in the non-dominant hemisphere (right hemisphere of 77.5% of the 
subjects) is well known to be involved in visualization of spatial relationships and imagery as well as non-verbal 
memory. An injury to the parietal cortex in the non-dominant hemisphere might cause various “visual-related” 
clinical symptoms such as spatial disorientation, constructional apraxia including difficulties in dressing, drawing 
and navigating, loss of imagery and neglect of the left-side world including space and self. No such symptoms 
are related to parietal injuries in the dominant hemisphere (left hemisphere) where injury leads to non-visual 
symptoms such as Gerstmann syndrome, receptive aphasia and mathematical problems. Consequently, the right 
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parietal lobe is thought to be more involved with visual processing. Although the intuitive assumption might be 
that the right hemisphere should have more visual networks, our data shows the opposite. Based on our findings, 
we claim that the more local and less distributed connectivity found in the right hemisphere compared to the 
left, implies higher sensitivity to visual deficits following injuries and therefore relates to the clinical symptoms 
described above. In other words, we suggest that the higher number of visual networks for the left hemispheres 
and their unspecific widespread distribution with multiple clusters that almost covered the whole cortex might 
reduce its sensitivity for visual deficits following injuries. Furthermore, the data suggests that these networks are 
feedforward pathways that include V3 and the parietal cortex, suggesting a strong dependency on hierarchical 
order (i.e. including all visual stages).

Our results showed that the dorsal and ventral systems are functionally connected. Networks connecting the 
dorsal to the ventral systems were mainly of the left hemisphere with the connecting region in the superior pari-
etal gyrus (seed 4). This is in line with several studies suggesting that information retro-injected from the parietal 
cortex is used to guide further processing of parvocellular and koniocellular information in the inferotemporal 
cortex17. Much fewer networks were found to connect the ventral system to the dorsal system, suggesting that 
interaction between the two systems is predominantly from the dorsal system.

Figure 4 presents the predominant direction of coupling found during resting-state acquisition with eyes 
open. As seen, although the majority of pathways in both streams were feedforward, major differences were found 
between the two streams. The directionality of the pathways shown in Fig. 4 is the direct consequence of the 
assumption of lower to higher processing and of low ↔ high hierarchal organization. However, the use of other 
assumptions (e.g. opposite directionality) will retain the major differences found between the dorsal and ventral 
systems. Within the assumption of lower to higher processing, almost all feedforward pathways of the dorsal sys-
tem were connected to non-visual systems and initiated in the early visual stages (V1 and V2). In contrary, about 
half of the pathways in the ventral system were feedforward, all connected to non-visual systems and initiated in 
V2. Furthermore, all pathways that were confined to the striate and extrastriate cortices in the ventral system were 
feedback pathways that initiated in the fusiform gyrus while the few that were confined to these regions in the 
dorsal system were feedforward and initiated in V1. These findings demonstrate a major organization difference 
between the two streams.

Conclusions
We extended our novel multivariate analysis method to obtain directed functional pathways of BOLD signal pro-
gression within the brain. In contrast to most other connectivity analyses that are based on temporal similarity 
(i.e. connectivity strength), our analysis is based on the temporal order between multiple regions (i.e. coherences). 
We show that the new analysis contains more information compared with functional connectivity based on pair-
wise coherences since it discriminates between the two streams. Within the limitation of interpreting hierarchical 
ordering by means of phase delays in terms of unidirectional (feedforward or feedback) coupling, we show that 
the organizations of the ventral and dorsal systems are remarkably different. Whereas the dorsal system consisted 
of mainly feedforward pathways that included the striate, extrastriate cortices and non-visual regions, the ven-
tral system included fewer pathways that were classified into two types: feedback pathways that initiated in the 
fusiform gyrus and either confined to the striate and extrastriate cortices or connected to the dorsal system, and 
feedforward pathways that initiated at V2 and included non-visual regions. Finally we note that the new analysis 
can be further extended to include more regions, applied on other neuroimaging data types (e.g. MEG) and thus 
open possibilities for characterization of complex neural systems.

Method
Subjects.  The same sample was used as in our previous publication6. The sample was composed of 42 
healthy control young subjects (20 women, age: 24.14 ± 2.67 years). Subjects were recruited among students at 
the Hebrew University of Jerusalem. Before inclusion, all subjects were clinically interviewed using Structured 
Clinical Interview for DSM-IV (SCID-CV) to exclude past or present psychiatric or neurological disorders. One 
male subject was excluded due to family history of schizophrenia and another male subject was excluded due to 
anxiety during the MRI scan, which yielded a final sample of 40 subjects (20 women, age: 24.15 ± 2.74 years). 13 
men and 18 women were right handed. The study was approved by the Hadassah Hebrew University Medical 
Center Ethics Committee. All participants provided written informed consent prior to inclusion in the study in 
compliance with the Declaration of Helsinki.

MRI data acquisition.  Magnetic resonance images were acquired with a 3T Siemens MR scanner at 
the Neuroimaging Unit of the Edmond and Lily Safra Center for Brain Sciences at the Hebrew University of 
Jerusalem. Each participant underwent 10-minute of resting-state functional MRI during which they were 
instructed to fixate on a visual crosshair, remain still and awake. Immediately after the scan, each participant 
confirmed not falling asleep. Functional images were acquired using T2

*-weighted gradient-echo echo-planar 
imaging (GE-EPI) sequence with TR = 2 sec, TE = 30 ms, image matrix = 64 × 64, field of view = 192 × 192mm, 
flip angle = 90°, resolution = 3 × 3 × 3mm, interstice gap = 0.45 mm. Each brain volume comprised 30 axial 
slices, and each functional run contained 300 image volumes. High resolution anatomical images were acquired 
using a sagittal T1-weighted magnetization-prepared rapid acquisition gradient echo (MP-RAGE) sequence 
with TR = 2300 ms, TE = 2.98 ms, inversion time = 900 ms, flip angle = 9°, resolution = 1x1x1mm. T1-weighted 
images were acquired for coregistration and normalization of the functional images.

Functional MRI data preprocessing and functional connectivity analysis.  Standard initial pre-
processing of functional MRI data was done using Statistical Parametric Mapping (SPM8, Wellcome Trust Centre 
for Neuroimaging, London, United Kingdom, http://www.fil.ion.ucl.ac.uk/spm/software/spm8). First, functional 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8
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images were spatially realigned using a least squares approach and a six parameter (rigid body) spatial transfor-
mation. Subsequently, functional images were coregistered to high resolution T1 anatomical images, normalized 
to Montreal Neurological Institute (MNI) space and resampled at an isotropic voxel size of 2 mm. The normalized 
images were smoothed with an isotropic 8 mm full-width-at-half-maximum Gaussian kernel. Motion parameter 
estimates were carefully checked for each individual separately. Subjects were excluded if head motion reached 
voxel size in any direction. Average maximal displacement for subjects was <1 mm. Further preprocessing was 
done using CONN toolbox31. Censoring was done according to the method of Power et al.32. Confounds were 
removed by regression, including the six motion parameters, their first order derivatives, scrubbing parameters 
and 3 principle components of the CSF and the white matter. Prior to regression of principal components, the 
white matter and CSF masks were eroded to ensure that only pure white matter or CSF signal was regressed from 
the data. Potential effects of scan initiation were removed by applying a step function convolved with the hemo-
dynamic response function. Regression-out of confounds was done to minimize effects of motion and potential 
physiological and non-neuronal signals such as cardiac and respiratory signals, without the risk of artificially 
introducing anticorrelations into the functional connectivity estimates33–37. Last, linear detrending and band-pass 
filtering (0.009-0.08 Hz) were applied. Note that a narrower frequency range was used compared to our previous 
publication, since previously most networks in the visual system were found in the lowest frequency range.

Multiple-region directed connectivity analysis.  All further calculations were performed with IDL 
version 8.2.0 (Exelis Visual Information Solutions, Inc.) using custom-developed software. The complex Morlet 
wavelet functions were chosen for wavelet analysis since they have been shown to provide a good trade-off 
between time and frequency localization38. We used 3 for the smallest scale, 2 for the time resolution and 25 scales 
to cover the entire frequency window. Wavelet software was provided by C. Torrence and G. Compo available at: 
http://paos.colorado.edu/research/wavelets 39. The 25 frequency scales were further averaged into 4 frequency 
scales: 0.01–0.03 Hz; 0.03–0.044 Hz; 0.047–0.067 Hz and 0.074–0.1 Hz.

Selection of brain regions.  The mask of Brodmann area 17 (primary visual area) obtained from the 
Talairach Daemon atlas40 was manually divided to left and right hemispheres using MRIcron toolbox41. The 
masks of Brodmann areas 18 (secondary visual area) and 19 (associative visual area) were manually divided to 
left, right, ventral and dorsal parts using the same toolbox. This resulted with a total of 10 masks: left and the 
right V1, left and right ventral V2, left and right dorsal V2, left and right ventral V3 and left and right dorsal V3. 
These masks were visually inspected to match the corresponding areas and no overlap was confirmed. Masks for 
the fourth seeds (for the ventral and dorsal systems) were obtained from the 3-seed-CPIk-SPMs obtained by the 
first three seeds, to ensure their inclusion in the systems of interest. Brodmann masks rather than individualized 
ROIs were used to simplify the experiments and analysis and to minimize differences in seeds’s volumes between 
individuals.

Statistical analysis.  CPI null distributions.  To define the significance of the Circular-Pattern-Indexes 
(CPI), permutation tests were used and the CPI’s null distributions were calculated for each CP and each scale. 
The null distributions were calculated as following: 4 time-series networks were constructed by 4 BOLD sig-
nals that were the average BOLD signals from different visual Automated Anatomical Labeling (AAL)42 regions, 
where each signal was taken from a different subject. These seeds where chosen from the visual system to obtain 
null distributions close as possible to the data. No randomization was used on the choice of the seeds. By using 
time-series from different subjects we guaranteed that no correlation between them is expected. For each net-
work, functional connectivity (Equation 1) was calculated for each frequency separately and the phases were 
obtained according to Equation 2. Averaging of the wavelet coefficients over time was performed before phase 
calculations. CPIs for the group of 40 subjects were calculated according to Equation 3. Random number gen-
erator was used to select the subjects from which the time-series were taken. This process was repeated 10000 
times and the CPIs were calculated each time. Consequently, 10000 numbers were obtained (for each CP and each 
scale). These numbers were used to construct the null distributions of each CP and each frequency. The distribu-
tions for the different CPs and different frequencies were approximately identical and therefore averaged together. 
Supplementary Figure 4A shows this average CPI’s null distribution. The distribution implies that CPI of 0.35 cor-
responded to an uncorrected voxel-level of p = 0.0001. This statistical cutoff was further used in all calculations.

PLI null distributions.  To define the significance of the pairwise coherences used for comparison with the circu-
lar pattern analysis (see “Pairwise coherences of the visual system” section under results), we used the Phase Lag 
Index (PLI)22,23 since it is more similar to the CPI than the phase locking value. Similarly to the CPI, significance 
was defined from the PLI’s null distributions that were calculated for each scale using permutation tests. The null 
distributions were calculated by using two uncoupled BOLD signals that were the average BOLD signals from 
two different visual AAL regions in different subjects (no randomization was used on these regions). Averaging 
over time of the wavelet coefficients was performed before PLI calculations. PLIs for the group of 40 subjects were 
calculated for each scale by the following equation:

∑ ϕ= Δω =PLI
N

sign1 ( ) (5)
i j

n
N,

1

with Δϕ the phase-difference between the two BOLD signals of subject n at a specific time and frequency win-
dow. Random number generator was used to select patients from which time-series were taken. This process was 
repeated 10000 times and the PLIs were calculated each time. Consequently, 10000 numbers were obtained (for 
each scale). These numbers were used to construct the null distributions. The distributions for different scales 
were approximately identical and therefore were averaged together. Supplementary Figure 4B shows this average 
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distribution. The distribution implies that PLI of 0.55 corresponded to an uncorrected voxel-level of p=0.0001. 
This statistical cutoff was used in the calculations.

3-seed-CPIk-SPMs.  To obtain the statistical threshold of the 3-seed-CPIk-SPMs used in the circular-pattern cal-
culations, a CPI uncorrected voxel-level p < 0.0001 and cluster-level threshold of 1000 voxels were used. This 
cluster size was chosen to ensure a corrected false discovery rate (FDR), given the number of multiple compar-
isons. Similar to fMRI analysis, the FDR corrected threshold was p < 0.001 which also correct for the multiple 
3-seed-CPIk-SPMs calculations.

Seed-PLI-SPMs.  To obtain the statistical threshold of the seed-PLI-SPMs used in the pairwise coherence calcu-
lations, a PLI uncorrected voxel-level p < 0.0001 with a cluster-level threshold of 1000 voxels were used. Together 
this gave a threshold of p < 0.001, FDR corrected for multiple comparisons.

Permutation based non-parametric tests for the number of networks in the dorsal system.  To test for differences 
in the number of networks between the right and left hemispheres, permutation based non-parametric statis-
tics were used. For these comparisons, 50 pairs of pseudo groups each of 40 subjects were constructed. Each 
pseudo group included 3-seed-CPIk-SPMs calculated with seeds either in the left or right hemisphere (termed 
hereinafter “left SPM”, “right SPM”). 3-seed-CPIk-SPMs were calculated for seed combinations 1, 3 and 4. No tests 
were performed for seed combination 2 since the difference between left and right dorsal systems for this seed 
combination was neglectable. The number of left SPMs, within the group of 40 SPMs, was randomly selected 
with a distribution centered at 20. The number of right SPMs was 40 minus the number of the left SPMs. Pairs 
of such pseudo groups were constructed such that one group included N left SPMs and M right SPMs, while the 
other group included 40 minus N left SPMs and 40 minus M right SPMs, with no overlap of subjects between 
the groups. 3-seed-CPIk-SPMs of these pseudo groups were calculated using the same calculations and statistical 
threshold as used in the actual data. The number of networks for each CP and scale was calculated for each pair. 
These yielded 50 sets of numbers (one set for each pair). The mean and standard deviation (SD) of the differences 
in the numbers of networks between the pseudo group pairs were calculated. The significant level was defined as 
mean ± 2*SD estimated at p < 0.05.

As expected, only networks of CP no. 4 (see results) were found significant in these calculations. Significant 
differences of the number of networks in the dorsal system between the left and right hemispheres were found for 
seed combinations 3 and 4.

Data Availability
Data is available to anyone upon request.
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