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Abstract: We show that there is a relationship between the generalized Euler characteristic Eo(|VDo |)
of the original graph that was split at vertices into two disconnected subgraphs i = 1, 2 and their
generalized Euler characteristics Ei(|VDi |). Here, |VDo | and |VDi | denote the numbers of vertices with
the Dirichlet boundary conditions in the graphs. The theoretical results are experimentally verified
using microwave networks that simulate quantum graphs. We demonstrate that the evaluation of
the generalized Euler characteristics Eo(|VDo |) and Ei(|VDi |) allow us to determine the number of
vertices where the two subgraphs were initially connected.

Keywords: quantum graphs; microwave networks; Euler characteristic; Neumann and Dirichlet
boundary conditions

1. Introduction

The concept of graphs was already introduced in the XVIII century by Leonhard
Euler [1]. Two hundred years later, Linus Pauling [2] considered quantum graphs in order
to describe the motion of quantum particles in a physical network. The models of quantum
graphs were widely used to investigate many physical systems, e.g., quantum wires [3],
mesoscopic quantum systems [4,5], a topological edge invariant [6], and the photon number
statistics of coherent light [7]. Broad applications of graphs and networks mean that the
theory of quantum graphs has been a subject of extensive research [8–14].

We will consider a metric graph Γ = (V, E), which consists of v vertices, v ∈ V,
connected by e edges, e ∈ E. The edges e are intervals of the length le on the real line R.
The metric graph becomes quantum when we equip it with the free Schrödinger operator.
In our case, this is the one-dimensional Laplace operator, which equals L(Γ) = − d2

dx2
e

on
each of the edges e ∈ E of the graph Γ. The self-adjoint Laplace operator L(Γ) has a discrete
and non-negative spectrum [12].

A signal inside a graph moves along the edges, and at each vertex v ∈ V it splits and
enters all edges adjacent to v. If the signal enters the vertex v along the edge e′ and leaves it
along the edge e, then the ratio of amplitudes of entering and leaving signals is given by
the vertex scattering matrix, which depends on the vertex boundary condition. We will
consider two types of vertex boundary conditions. The standard boundary conditions are
called also Neumann boundary conditions, for which the eigenfunctions are continuous at
vertices and the sums of their oriented derivatives at vertices are zero. The vertex scattering
matrix corresponding to the Neumann boundary conditions [15] is given by

Nσ
(v)
e,e′ =

2
dv
− δe,e′ , (1)

where dv is the degree of the vertex v, i.e., the number of edges incident to the vertex v, and
δe,e′ is the Kronecker delta. The vertices with the Neumann boundary conditions will be
denoted as vN .
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For the Dirichlet boundary condition, an eigenfunction at the vertex takes the value
zero, which leads to the vertex scattering matrix [15,16]

Dσ
(v)
e,e′ = −δe,e′ . (2)

One should point out that the Dirichlet boundary conditions are imposed only at
degree one vertices and higher-degree Dirichlet vertices should be treated as separate
degree one Dirichlet vertices. The vertices with the Dirichlet boundary conditions will
be denoted as vD. Different types of the boundary conditions, including the Neumann
and Dirichlet ones for higher-dimensional systems such as grains, are comprehensively
described in Refs. [17,18].

The total number of vertices |V| in a general graph, consisting of both Neumann and
Dirichlet boundary conditions, is defined by |V| = |VN |+ |VD|, where |VN | and |VD| denote
the number of vertices with Neumann and Dirichlet boundary conditions, respectively.

One of the most important characteristics of metric graphs Γ = (V, E) with the
standard boundary conditions (|VD| = 0) is the Euler characteristic

χ = |V| − |E| , (3)

where |V| and |E| denote the number of vertices and edges of the graph. It is a purely
topological quantity; however, it has been shown in [19–22] that it can also be defined by
the graph and microwave network spectra. The formula describing the generalized Euler
characteristic E [22,23], which is also applicable for graphs and networks with the Dirichlet
boundary conditions, will be discussed later.

In the experimental investigation of properties of quantum graphs, we used microwave
networks simulating quantum graphs [16,24–29]. The emulation of quantum graphs by
microwave networks is possible because of the formal analogy of the one-dimensional
Schrödinger equation describing quantum graphs and the telegrapher’s equation for mi-
crowave networks [24,26]. Microwave networks are the only ones that allow for the
experimental simulation of quantum systems with all three types of symmetry within the
framework of the random matrix theory (RMT): Gaussian orthogonal ensemble (GOE)—
systems with preserved time reversal symmetry (TRS) [16,21,24,25,27,30–32], Gaussian
unitary ensemble (GUE)—systems with broken TRS [24,28,33–36], and Gaussian symplectic
ensemble (GSE)—systems with TRS and half-spin [37]. The other model systems, which are
not as versatile as microwave networks, but are often used in simulations of complex quan-
tum systems, are flat microwave billiards [38–54], and exited atoms in strong microwave
fields [55–67].

In this article, we will analyze the splitting of a quantum graph (network) into two dis-
connected subgraphs (subnetworks). Using a currently introduced spectral invariant—the
generalized Euler characteristic E [22]—we determine the number |Vc| of common vertices
where the two subgraphs were initially connected. The application of the generalized
Euler characteristic E for this purpose stems from the fact that it can be evaluated without
knowing the topologies of quantum graphs (networks), using small or moderate numbers
of their lowest eigenenergies (resonances). The theoretical results are numerically veri-
fied and confirmed experimentally using the spectra of microwave networks simulating
quantum graphs.

2. Theoretical Outline
2.1. The Generalized EULER Characteristic

In Refs. [21,22], the formulas for the Euler characteristic for graphs with the standard
boundary conditions at the vertices and with the mixed ones, standard and Dirichlet bound-
ary conditions at vertices, were derived. In the case of the standard boundary conditions,
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χ = 2 + 8π2 ∑
kn∈Σ(Lst(Γ))

kn 6=0

sin(kn/t)
(kn/t)

(
(2π)2 − (kn/t)2

) |t≥t0 , (4)

where Σ(Lst(Γ)) denotes the spectrum of the Laplacian Lst(Γ) with the standard vertex
conditions, taken in the square root scale, i.e., the numbers kn are the square roots of the
eigenenergies λn and t is a scaling parameter [19–21] with t0 = 1

2lmin
, where lmin is the length

of the shortest edge of the graph. The above formula is equivalent to Equation (3); however,
instead of using topological information about graphs or networks, such as the number
of vertices |V| and edges |E|, it requires a certain number of the lowest eigenenergies
(resonances) of graphs or networks.

For graphs and networks with the mixed boundary conditions, namely the standard
and Dirichlet ones (|VD| 6= 0), the generalized Euler characteristic can be expressed by the
following formula:

χG := χ− |VD| = 8π2 ∑
kn∈Σ(Lst,D(Γ))

sin(kn/t)
(kn/t)

(
(2π)2 − (kn/t)2

) |t≥t0 . (5)

In Equation (5), the spectrum of the Laplacian Lst,D(Γ) with the standard and Dirichlet
vertex conditions is denoted by Σ(Lst,D(Γ)).

The above two equations can be unified into a single one for the generalized
Euler characteristic:

E(|VD|) = 2δ0,|VD | + 8π2 ∑
kn∈Σ(L(Γ))

kn 6=0

sin(kn/t)
(kn/t)

(
(2π)2 − (kn/t)2

) |t≥t0 . (6)

Depending on the boundary conditions, Σ(L(Γ)) denotes either the spectrum of the Lapla-
cian Lst(Γ) or Lst,D(Γ). In the borderline cases |VD| = 0 and |VD| 6= 0, E(|VD| = 0) = χ
and E(|VD| 6= 0) = χG, recovering, respectively, Equations (4) and (5).

From the experimental point of view, the usefulness of Equation (6) stems from the
fact that the generalized Euler characteristic can be evaluated using only a limited number
K = Kmin of the lowest eigenvalues (resonances) [21,22,68,69]

K ≥ |V|+ 2Lt
[

1− exp
(
−επ

Lt

)]−1/2
, (7)

where |V| is the total number of graph vertices, L = ∑e∈E le is the total length of the graph,
and ε is the accuracy of determining the Euler characteristic from Formula (7). To obtain
the smallest possible number of resonances Kmin, for a given accuracy ε, we assign to t
its smallest allowed value t = t0 = 1

2lmin
. Since the Euler characteristic is an integer, the

accuracy of its determination should be taken ε < 1/2. In our calculations of Kmin, we
assumed ε = 1/4.

2.2. A Graph Split into Two Disconnected Subgraphs

In order to simplify the description of the graphs, we introduce the following notation
of graphs and networks Γ(|V|, |E|, |VD|), where |V| = |VN |+ |VD|. A graph or network
Γ(|V|, |E|, |VD|) contains |V| vertices, including |VN | and |VD| vertices with standard (Neu-
mann) and Dirichlet boundary conditions and |E| edges.

We will consider a general situation when an original graph Γo(|Vo|, |Eo|, |VDo |) is
split into two disconnected subgraphs Γi(|Vi|, |Ei|, |VDi |), i = 1, 2, at the common for the
subgraphs vertices Vc, which are characterized by the Neumann boundary conditions.
In the partition process, each common vertex v ∈ Vc will be split into two new vertices
belonging to the different subgraphs (see Figure 1).

The generalized Euler characteristics of the original graph and its subgraphs are
Eo(|VDo |) = |Vo| − |Eo| − |VDo | and Ei(|VDi |) = |Vi| − |Ei| − |VDi |, i = 1, 2, respectively.
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The relationships between the number of vertices and edges of the graphs are the following:
|Vo|+ |Vc| = |V1|+ |V2|, |Eo| = |E1|+ |E2|. It leads to the following relationship between
Eo(|VDo |) and Ei(|VDi |), i = 1, 2

E1(|VD1 |) + E2(|VD2 |) = Eo(|VDo |) + |Vc|+ |VDo | − |VD1 | − |VD2 |, (8)

where |Vc| denotes the number of common vertices.
In Figure 1, we show the case when the original graph Γo(|Vo| = 6, |Eo| = 9, |VDo | =

0) = Γo(6, 9, 0) is divided into two subgraphs Γ1(4, 6, 0) and Γ2(4, 3, 0). Using Equation (8),
one can find that the subgraphs before the disconnection were connected in |Vc| = 2 common
vertices. In this relatively simple situation, the generalized Euler characteristics of the graphs
or networks can be found from their topological properties, i.e., the numbers of vertices and
edges of the graphs. However, if we do not see the graphs and therefore do not know their
topological properties but we know their eigenvalues (spectra), the only available solution
to the problem is to use Equation (6) to find their generalized Euler characteristics and
consequently the number |Vc| of the common vertices. The same situation exists for the
graphs possessing the Dirichlet boundary conditions. In this case, in order to identify them,
one needs to know (measure) the eigenvalues (resonances) of graphs or networks and use
Equations (6) and (8) to evaluate the number |Vc| of the common vertices.

Figure 1. The scheme of the original graph Γo(6, 9, 0), which was divided into two subgraphs
Γ1(4, 6, 0) and Γ2(4, 3, 0). All graphs possess the vertices with the Neumann boundary conditions,
which are marked by blue capital letters N. In the case of the graphs with the mixed boundary
conditions, the original graph Γo(6, 9, 1) was divided into two subgraphs Γ1(4, 6, 0) and Γ2(4, 3, 1).
The vertices with the Dirichlet boundary conditions are marked by red capital letters D. The vertices
where a vector network analyzer was connected to the microwave networks simulating quantum
graphs presented in this figure are marked by VNA.

3. Measurements of the Spectra of Microwave Networks

In order to evaluate the generalized Euler characteristic E(|VD|) defined by Equation (6),
we measured the spectra of microwave networks simulating quantum graphs. In our
investigations, we used a set-up (see Figure 2) that consisted of an Agilent E8364B vector
network analyzer (VNA) and HP 85133-60016 flexible microwave cable that connected the
VNA to the measured network. The flexible cable connected to the network is equivalent to
attaching an infinite lead to the quantum graph [22,32]. In this way, the one-port scattering
matrix S11(ν) of the network was measured as a function of microwave frequency ν. The
modulus of |S11(ν)| was used to identify the network’s resonances. In Figure 2, we also
show the original microwave network Γo(6, 9, 1), which possesses a single vertex with the
Dirichlet boundary condition (VDo = 1), marked by the red capital letter D. The measured
spectrum of the network Γo(6, 9, 1) is shown in the inset of Figure 2 in the frequency
range ν = [0.01, 1] GHz. In order to reconfirm our experimental results, the spectra of the
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quantum graphs simulated by the microwave networks were also calculated numerically
using the pseudo-orbits method developed in Ref. [31].

Figure 2. The experimental set-up. It contains an Agilent E8364B vector network analyzer (VNA)
and HP 85133-60016 flexible microwave cable that connects the VNA to the measured network.
The original microwave network Γo(6, 9, 1) possesses a single vertex with the Dirichlet boundary
condition, which is marked by the red capital letter D. The measured spectrum of the network
Γo(6, 9, 1) is shown in the inset in the frequency range ν = [0.01, 1] GHz.

In the construction of microwave networks simulating quantum graphs, we used
microwave coaxial cables and junctions that corresponded to the edges and vertices of the
quantum graphs. The microwave cables consisted of an outer conductor with an inner
radius r2 = 0.15 cm and an inner conductor of radius r1 = 0.05 cm, which was surrounded
by the dielectric material (Teflon). The fundamental TEM mode propagates in such cables
below the cut-off frequency of the TE11 mode νcut =

c
π(r1+r2)

√
ε
= 33 GHz [70,71], where

the dielectric constant of Teflon ε = 2.06. It is important to point out that the lengths of
edges of the simulated quantum graph have to be compared to the optical lengths of the
edges of the microwave networks, i.e., lopt =

√
εlph, where lph is the physical length of the

network edges.
In this paper, we discuss two general situations that are possible when the original

network (graph) is split into two subnetworks (subgraphs): the case when the original net-
work and its subnetworks have only the standard boundary conditions and the case when
they are characterized by the mixed boundary conditions, when the Dirichlet boundary
conditions are present.

3.1. Networks with the Standard Boundary Conditions

Here, we will consider the original network Γo(|Vo|, |Eo|, |VDo |), which is split into two
disconnected subnetworks Γi(|Vi|, |Ei|, |VDi |), i = 1, 2, at the common for the subnetworks
vertices v ∈ Vc. All networks are characterized by the standard (Neumann) boundary
conditions. The experimental realizations of the networks Γo(6, 9, 0) and its two subnet-
works Γ1(4, 6, 0) and Γ2(4, 3, 0) are schematically shown in Figures 1 and 2. In this case, all
networks possess only standard (Neumann) boundary conditions, denoted with the capital
letter N.

The total optical lengths of the networks Γo(6, 9, 0), Γ1(4, 6, 0), and Γ2(4, 3, 0) are
Lo = 2.579 m, L1 = 1.675 m, and L2 = 0.940 m, respectively. The lengths of their shortest
edges are lmino = l6 = 0.221 m, lmin1 = l6 = 0.221 m, and lmin2 = l9 = 0.270 m, giv-
ing Kmino = 38, Kmin1 = 23, and Kmin2 = 8, respectively, which were estimated using
Equation (7). Experimentally, in order to find the minimum number of resonances deter-
mined by the parameters Kmino , Kmin1 , and Kmin2 , it was necessary to measure the spectra
of the microwave networks Γo(6, 9, 0), Γ1(4, 6, 0), and Γ2(4, 3, 0) in the frequency ranges
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[0.010, 2.347] GHz, [0.010, 2.234] GHz, and [0.010, 1.271] GHz, respectively. Taking into
account the above parameters, the generalized Euler characteristics Eo(|VDo |), E1(|VD1 |),
and E2(|VD2 |) were calculated using Equation (6).

In Figure 3a–c, we show the generalized Euler characteristics Eo(|VDo | = 0), E1(|VD1 | = 0),
and E2(|VD2 | = 0) (red dotted lines), evaluated experimentally as a function of the parame-
ter t. The numerically found generalized Euler characteristics are marked with blue full
lines. In all three cases, for both experimental and theoretical results, the plateaus at the
generalized Euler characteristics start close to the points t0o = 2.26 m−1, t01 = 2.26 m−1,
and t02 = 1.85 m−1 defined by the theory (see the discussion below Equation (7)). The
values of the generalized Euler characteristics are found to be Eo(|VDo | = 0) = −3,
E1(|VD1 | = 0) = −2, and E2(|VD2 | = 0) = 1, respectively. Using Equation (8), it is easy to
find that |Vc| = 2. It means that, before splitting, the two subgraphs were connected at the
two vertices. It is important to point out that the above information was obtained without
knowing anything about the topologies of the networks.

3.2. Networks with the Mixed Boundary Conditions

We used the same physical networks to investigate the split of the original network
Γo(6, 9, 1) possessing the mixed boundary conditions into two separated subnetworks
Γ1(4, 6, 0) and Γ2(4, 3, 1). The network Γo(6, 9, 1) and the subnetwork Γ2(4, 3, 1) possess a
single Dirichlet boundary condition. Figure 1 shows the schemes of the networks. The
Dirichlet boundary conditions are denoted by the capital letter D. All other parameters of
the networks, such as the total lengths and the shortest edges, are the same as in the case of
the networks with the standard boundary conditions, which were discussed above. How-
ever, for the networks with the mixed boundary conditions, one requires the same number
of resonances as, in the case of the networks with the Neumann boundary conditions, the
frequency ranges where they can be identified are different. For example, for the networks
Γo(6, 9, 1) and Γ2(4, 3, 1), they are [0.010, 2.500] GHz and [0.010, 1.131] GHz, respectively.

In Figure 4a–c, we show the generalized Euler characteristics Eo(|VDo | = 1), E1(|VD1 | = 0),
and E2(|VD2 | = 1) (red dotted lines), evaluated experimentally as a function of the parame-
ter t. The generalized Euler characteristics that were found numerically are marked with
blue full lines. Moreover, here, in all three cases, for both experimental and theoretical
results, the plateaus at the generalized Euler characteristics start close to the points t0o ,
t01 , and t02 defined by the theory. The values of the generalized Euler characteristics are
found to be Eo(|VDo | = 1) = −4, E1(|VD1 | = 0) = −2, and E2(|VD2 | = 1) = 0, respectively.
In addition, in this case, using Equation (8), we found that |Vc| = 2. One should remark
that in the case of the mixed boundary conditions, the knowledge of the topologies of the
experimental networks does not allow us to find their generalized Euler characteristics.
We also have to know the number of their Dirichlet boundary conditions. Therefore, the
measurements of the spectra of the networks and using Equation (6) are mandatory.
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Figure 3. Generalized Euler characteristics evaluated for the networks with the standard boundary
conditions as a function of the parameter t. Panels (a–c) show the generalized Euler characteristics
Eo(|VDo | = 0), E1(|VD1 | = 0), and E2(|VD2 | = 0) of the networks Γo(6, 9, 0), Γ1(4, 6, 0), and Γ2(4, 3, 0),
respectively. The experimental and numerical results are marked with red dotted and blue full lines,
respectively. In all three cases, the plateaus at the generalized Euler characteristics start close to the
points t0o = 2.26 m−1, t01 = 2.26 m−1, and t02 = 1.85 m−1, respectively, defined by the theory (see
the discussion below Equation (7)). The black broken lines show the limits of the expected errors
Eq(|VDq |)± 1/4, where q = o, 1, and 2.
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Figure 4. Generalized Euler characteristics evaluated for the networks with the mixed boundary
conditions as a function of the parameter t. Panels (a–c) show the generalized Euler characteristics
Eo(|VDo | = 1), E1(|VD1 | = 0), and E2(|VD2 | = 1) of the networks Γo(6, 9, 1), Γ1(4, 6, 0), and Γ2(4, 3, 1),
respectively. The experimental and numerical results are marked with red dotted and blue full lines,
respectively. Moreover, here, in all three cases, the plateaus at the generalized Euler characteristics
start close to the points t0o = 2.26 m−1, t01 = 2.26 m−1, and t02 = 1.85 m−1, respectively, defined
by the theory. The black broken lines show the limits of the expected errors Eq(|VDq |)± 1/4, where
q = o, 1, and 2.

4. Summary

We analyzed a relationship between the generalized Euler characteristic Eo(|VDo |)
of the original graph (network), which was split into two disconnected subgraphs (sub-
networks) i = 1, 2, and their generalized Euler characteristics Ei(|VDi |). We showed that
the evaluation of the generalized Euler characteristics Eo(|VDo |) and Ei(|VDi |) allows us
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to determine the number |Vc| of common vertices where the two subgraphs were initially
connected. The theoretical results were numerically verified and confirmed experimen-
tally using microwave networks with the standard and mixed boundary conditions. The
application of the generalized Euler characteristics defined by Equation (6) requires the
measurement of the spectra of the networks but in return allows us to find |Vc| without
knowing their topologies. Therefore, it might be possible to apply the properties of the
splitting networks discussed in this article in some more practical applications, such as
the diagnostics of electronic or microwave networks. One should underline that the first
practical test of such diagnostics where the properties of splitting networks and the gen-
eralized Euler characteristic were applied was presented in this article. For this purpose,
we used real-world systems, such as microwave networks. They are open and dissipative
systems, which are completely different from the ideal dissipationless graphs considered in
their mathematical studies. In spite of this, even for more complex networks possessing the
mixed boundary conditions, we were able to find experimentally the number of common
vertices |Vc| where the two separated subnetworks were connected before their splitting.
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