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Abstract: Polypropylene (PP) fibers are employed commonly as the raw material of technical
textiles (nonwovens), and the research focuses on fine-denier fibers and their functionalities. In this
work, antibacterial PP masterbatches with different dosage (1–5 wt.%) of nano-ZnO particles as the
antibacterial agent were prepared via a twin-screw extruder. The as-prepared PP masterbatches were
electrospun on a home-made electrospinning device to afford ultra-fine PP fibers. The morphologies
of as-spun ultrathin PP fibers with 16 µm of average diameter were observed by SEM. The structure
and element distribution were characterized by means of energy-dispersive spectroscopy (EDS)
and Fourier-transfer infrared spectroscopy (FTIR), respectively. There was some zinc obviously
distributed on the surface when a dosage of ZnO more than 1 wt.% was used, which contributed to
the antibacterial activity. The crystallinity of PP fibers was not affected strongly by the dosage of ZnO
based on the differential scanning calorimetry (DSC) heating curves, while thermal decomposition
improved with the increase in ZnO content, and the mechanical strength decreased predictably with
the increase in inorganic ZnO content.

Keywords: melt electrospinning; PP fibers; ZnO; antibacterial fibers

1. Introduction

Polypropylene (PP) is a colorless, odorless, non-toxic organic polymer with chemical resistance,
electrical insulation, high-strength mechanical properties, and good wear-resistant processing
performance. PP and its composites are applied in many fields such as the machinery, automobile,
electronics, textile, packaging, agriculture, forestry, fishery, and food industries [1]. With particular
regard to technical textiles, following the rapid development of the chemical, environmental protection,
energy, and other emerging industries, the development trend of fine-denier PP fibers is being focused,
as well as their functionality [2–5].

In the last few decades, the electrospinning (e-spinning) technique attracted more and more
attention because it is a facile method of preparing ultra-fine and functional fibers [6–8]. Based on
the properties of precursors, the e-spinning strategies can be divided into three types: solution, melt,
and novel solventless e-spinning [9]. In the solution e-spinning processes, the polymer solution is
used as the precursor. The jet drawn by electrostatic force leaves the Taylor cone and then solidifies
quickly with solvent volatilization [10]. Because of the environment concerns of organic solvents and
low efficiency, solution e-spinning cannot be easily applied widely and industrialized. Novel types of
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solventless e-spinning were developed, in which some liquid materials sensitive to light [11], heat [12],
or moisture [13] are used as precursors, while the jets are initiated easily under these corresponding
conditions to solidify quickly into fibers. However, these methods need more complicated devices
to provide steady initiating conditions. Melt e-spinning utilizes polymer melts as precursors, which
is close to spunbond, a spinning process for technical textiles [14,15]. The fibers produced by melt
e-spinning are much finer than those produced by spunbond. The e-spinning conditions and fibrous
morphologies of various melt polymers were previously reviewed [16]. Nayak et al. explored the melt
e-spinning conditions of PP [17] and Kadomae et al. explained the relationship between the tactility and
diameter of electrospun (e-spun) fibers [18]. Cho et al. investigated the conditions for melt e-spinning
of PP and solution e-spinning of PP with dissolution in decalin, with the best results obtained at
temperatures higher than 130 ◦C, and they also compared the e-spun PP ultrathin fibers produced via
two different e-spinning methods with average diameters of 9.6 µm and 0.8 µm achieved [19].

Nano-ZnO is a kind of stable inorganic oxide, belonging to the n-type semiconductor family [20].
The electrons on the valence band of ZnO can accept an energy transition from ultraviolet rays, which
can provide broad-spectrum ultraviolet protection [21,22], as well as antibacterial properties [23,24],
and this material was verified to be safe and effective in the evaluation of sunscreen [25]. With concerns
about the safety of heavy metals, such as nano-silver or its ions, more and more researchers began
studying the antibacterial properties of nano-ZnO applied as a non-leaching additive [26], such as in
cellulose filled with nano-ZnO to prepare an antibacterial lyocell [27], PP or PE doped with nano-ZnO
as an antibacterial food packaging film [28], and antibacterial PP nonwovens with the addition of ZnO
nanorods [29].

Nano-ZnO powder as an antibacterial additive was applied in some e-spinning precursors of
soluble polymers, such as polylactide (PLA) [30], polyurethane (PU) [31], polycaprolactone (PCL) [32],
poly (3-hydroxybutyrate) [33], etc. There are scarce reports on melt e-spinning to fabricate antibacterial
fibers by adding nano-ZnO. In this research, a blending composite of commercial nano-ZnO in a PP
matrix was prepared using a twin-screw machine, and antibacterial masterbatches were produced.
A series of ultra-fine PP fibers with different proportions of nano-ZnO were afforded by melt e-spinning,
and the morphology, structure, and mechanical and thermal properties of the fibers were analyzed.
The antibacterial effect was also evaluated. The obtained fibers have promising application in the field
of hygienic textiles.

2. Materials and Methods

2.1. Materials

PP (ExxonMobil™ 3155E5) was obtained from Shandong SWT New Material Technology Co.,Ltd.
(Yantai, China), with a melt flow index of 35 g/10 min, and nano-ZnO was purchased from Boyu High
Technique New Material Technology Co., Ltd. (Beijing, China), with an average particle size of 30 nm.

2.2. Preparation of PP Antibacterial Masterbatches

The masterbatches were prepared using a twin-screw extruder with a main feeder and a side feeder
(16 mm Benchtop Twin-Screw Extrusion Pelletizing Line, Labtech Engineering Co., Ltd., Samutprakarn,
Thailand). The pristine PP was charged from the main feeder and nano-ZnO particles were charged
from the side feeder, blended in a ratio of 8:2 to prepare the 20 wt.% high-proportion antibacterial
masterbatch. The temperature of each heating zone of the twin-screw extruder was set based on Table 1.
Then, this masterbatch containing 20% ZnO was diluted by pristine PP in the same twin-screw extruder,
thus obtaining PP antibacterial masterbatches with ZnO content of 1 wt.%, 2 wt.%, 3 wt.%, 4 wt.%,
and 5 wt.%. The appearances of pristine PP and ZnO, as well as PP with 1 wt.% ZnO, are shown in
Figure S1 (Supplementary Materials).
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Table 1. The temperatures of heating zones of twin-screw extruder.

Heating Zones 1 2 3 4 5 6 7 8 9 10

Temperature (◦C) 170 180 190 200 200 210 210 210 210 210

2.3. Home-Made Melt E-Spinning Device

A melt e-spinning device was built, as illustrated in Figure 1, which consisted of a heater with a
controller, a high-voltage power source (HVPS, Tianjin Dongwen high voltage power company, Tianjin,
China), a syringe connected with a nozzle and a pipeline of inert CO2 gas to prevent oxidation, and a
roller receiver connected to a positive electrode.

The prepared PP masterbatches with ZnO content of 0 wt.%, 1 wt.%, 2 wt.%, 3 wt.%, 4 wt.% and
5 wt.% were put into the metal syringe in turn and heated to 210 ◦C for 20 min while ventilating CO2

gas into the metal syringe. This was followed by turning on the receiving roller and HVPS, with the
voltage set to 30 kV. The PP melt exited the nozzle, forming a Taylor cone in the high electrostatic field.
Then, the melt jet exited the Taylor cone and solidified into a fiber deposited on the receiver. All PP
masterbatches were e-spun to give fibers PP-0, PP-1, PP-2, PP-3, PP-4, and PP-5 with ZnO content of
0 wt.%, 1 wt.%, 2 wt.%, 3 wt.%, 4 wt.%, and 5 wt.%, respectively.
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Figure 1. (a) Home-made melt e-spinning device; (b) heating device; (c) melt e-spun polypropylene
(PP) fibers.

2.4. Characterization

The morphologies of e-spun fibers were observed by scanning electron microscopy (SEM,
TESCAN-VEGA3, Kohoutovice, Czech). The structures and the elemental analysis of e-spun fibers
were characterized by a Fourier-transform infrared spectroscope (FT-IR, Nicolet iS10, Thermo Fisher
Scientific, Waltham, MA, USA) and an energy-dispersive spectrometer (EDS, SERIAL#: E1856-C2B,
Brno, Czech), respectively. Furthermore, their strength was measured eight times for every sample
on a FAVIMAT Fiber Test machine (FAVIMAT, TexTechno, Mönchengladbach, Germany), with a
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tensile rate of 100 mm/min and a tensile length of 10 mm. The adopted stress–strain curve of every
sample was close to the average values of all eight tests (see Figure S2, Supplementary Materials).
The thermal properties of e-spun fiber were characterized by means of a thermogravimetry analyzer
(TGA)/differential scanning calorimeter (DSC) 3 + (TA Q2000, TA Instruments, New Castle, DE, USA),
in which the temperature of differential scanning calorimetry (DSC) was raised from 35 ◦C to 250 ◦C
under an atmosphere of nitrogen. Every sample was tested three times on the DSC for averaging the
thermal enthalpy. The thermogravimetric analyzer (TGA) was also implemented in an N2 atmosphere.
The temperature was raised from 35 ◦C to 700 ◦C, and the heating rate was 10 ◦C/min. The antibacterial
property of the fibers was determined via an agar plate diffusion test based on the standard of GB/T
20944.1-2007 (China), and the inhibitory effects on Escherichia coli (E.C.) and Staphylococcus aureus (S.A.)
were evaluated.

3. Results and Discussion

3.1. Morphologies of PPS E-Spun Fibers

As shown in Figures 2 and 3, the morphologies of e-spun PP fibers containing different contents
of ZnO were observed by SEM. All e-spun fibers with or without ZnO were about 16 µm on average in
diameter, which indicated that the e-spinning process and as-spun fibers were not affected strongly
when adding inorganic nano-ZnO with content lower than 5 wt.%
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SEM with energy-dispersive spectroscopy (SEM–EDS) was employed to show the element
distribution on the surface of e-spun fibers. Although there were some ZnO particles embedded inside
the e-spun PP fibers, others were distributed on the surface, as demonstrated by the EDS patterns
(Figure 4). The content or density of zinc especially increased when the dosage increased. As shown in
the FTIR spectra (Figure 5), the peaks at 2946 cm−1 and 2862 cm−1 were assigned to asymmetric and
symmetric stretching vibrations of CH3 of PP, and those at 2912 cm−1 and 2833 cm−1 were assigned to
CH2 of PP. The peak of 1459 cm−1 was attributed to the bending vibration of CH2 of PP, and that at
1373 cm−1 was assigned to the deformation vibration of CH3. The peak at 3435 cm−1 of ZnO may have
originated from the stretching vibration of residual OH or moisture, as, after blending with PP in the
extruder, it disappeared because of the high temperature or low dosage. All FTIR spectra of the e-spun
PP fibers demonstrated that the PP structure, including crystalline type, was not changed [34].
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3.2. Thermal Properties of E-Spun PP Fiber

Figure 6a shows the DSC analysis of the fiber. The melting temperature of the PP fibers with
different content of ZnO was between 168 and 170 ◦C, which shows that the addition of nano-ZnO
particles did not affect the melting point of the PP fibers. The crystallinity of e-spun fibers was
calculated as follows:

Xc = ∆H1/∆H2, (1)

where Xc is the crystallinity, ∆H1 is the thermal enthalpy of the sample (J/g) given by measuring the
peak area in the thermogram, and ∆H2 is the thermal enthalpy of 100% crystalline PP (209 J/g) [35].

As shown in Figure 6b, the crystallinity of the e-spun fibers did not change greatly when the
dosage of ZnO was lower than 4 wt.%. However, it decreased remarkably with the addition of ZnO
higher than 5 wt.%, which indicated that more inorganic nanoparticles affected the crystallization.
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When ZnO nanoparticles were added to PP, the thermal decomposition temperature of the fibers
increased. Based on the TG and DTG curves in Figure 7, the rate of fiber decomposition gradually
increased with the increase in nano-ZnO content, and the thermal decomposition temperature
constantly increased from 438 ◦C (PP-0) to 461 ◦C (PP-5). Because nano-ZnO has a large specific
surface area, when it is dispersed in the PP matrix, it would inhibit the release of volatile thermal
decomposition products, thus playing an important role in forming a barrier layer and further inhibiting
the decomposition of the matrix [36].
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3.3. Mechanical Tensile Properties of E-Spun PP Fibers

Due to their compatibility or dispersion with inorganic compounds, organic polymers, including
PP, commonly suffer from a deterioration of mechanical performance when preparing composites or
functional materials with inorganic materials. In this work, the introduction of nano-ZnO particles
as an antibacterial additive also caused a reduction in the mechanical properties. The stress–strain
behavior of the e-spun PP fibers was compared (Figure 8a), and the elongation at break and breaking
strength were found to reduce with an increase in the content of ZnO (Figure 8b).
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3.4. Antibacterial Properties of E-Spun Fibers

The antibacterial mechanisms of ZnO were disclosed under different conditions. Under dark
conditions, the antimicrobial activity of ZnO nanoparticles results from the attachment of ZnO to
bacterial cell walls and a subsequent release of Zn2+ ions into the bacterial cytoplasm [37]. It is
generally believed that the electrons (e−) on the valence band of ZnO are excited and transition to the
conduction band when they are irradiated by light with a photon energy larger than the band gap
width, leaving a positively charged hole (h+) on the valence band. The e− and h+ react with oxygen,
hydroxyl, and water adsorbed on the surface of the substrate materials to form OH·, O2

−, and H2O2.
Among them, h+ and OH· have very strong oxidation activity, which can break the chemical bond of
most organic materials. Thus, they can decompose various components of microorganisms and be
used to kill germs. In addition, O2

− has a high reduction capacity and also plays a role in antibacterial
performance [38–40].

ZnO + hv→ e− + h+ (2)

h+ + H2O→ OH· + H+ (3)

e− + O2→ O2
− (4)

O2
− + 2 H+

→ H2O (5)

The as-spun PP fibers were cut into pieces and put into agar solution (15 mL) which was added to
the bacterial solution (the bacterial colony concentration was 1 × 108 colony-forming units (CFU)/mL),
based on the national standard of agar plate diffusion (GB/T 20944.1-2007, China). After culturing
for 24 h under a constant temperature of 36.5 ◦C, the inhibition effect of the fiber on Escherichia coli
and Staphylococcus aureus was as shown in Figures 9 and 10. The pure PP fibers were used as control
samples (Figures 9a and 10a). There were still many colonies, and there was no antibacterial ring,
i.e., no antibacterial effect. The other PP fibers with different proportions of ZnO nanoparticles had
obvious inhibition zones, i.e., an antibacterial effect, which was attributed to the nano ZnO particles
migrating to the surface of the fibers.
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Figure 10. Antibacterial (Staphylococcus aureus) activity measurements of e-spun PP fibers containing
ZnO: (a) 0 wt.%; (b) 1 wt.%; (c) 2 wt.%; (d) 3 wt.%; (e) 4 wt.%; (f) 5 wt.%. The diameter of all containers
was 9 cm.

4. Conclusions

PP masterbatches containing different contents of nano-ZnO particles were prepared using a
twin-screw extruder, and then applied as a melt e-spinning precursor to obtain ultra-fine fibers with
antibacterial activity. The e-spun PP fibers were afforded with 16 µm of average diameter, and their
structures and morphologies with or without nano ZnO were not changed remarkably. When ZnO
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dosage was increased, the strength of the fibers decreased. Although the melting temperature and
crystallinity of the e-spun fiber were not changed greatly, the thermal stability was effectively improved,
as the decomposition temperature increased from 438 ◦C (PP-0) to 461 ◦C (PP-5). All e-spun PP fibers
with ZnO dosages of 1 wt.%, 2 wt.%, 3 wt.%, 4 wt.%, and 5 wt.% were evaluated in terms of antibacterial
performance, where even the 1 wt.% dosage of nano-ZnO particles could grant the e-spun PP fibers
antibacterial activity against Escherichia coli and Staphylococcus aureus.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/3/606/s1:
Figure S1: The digital camera photo of pristine PP, nano-ZnO and PP blended with 1wt% ZnO; Figure S2:
Stress-strain behaviors of e-spun PP fibers containing ZnO.
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