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Myeloid-derived Suppressor Cells (MDSCs) are a sub-population of leukocytes that are
important for carcinogenesis and cancer immunotherapy. During carcinogenesis or
severe infections, inflammatory mediators induce MDSCs via aberrant differentiation of
myeloid precursors. Although several transcription factors, including C/EBPb, STAT3, c-
Rel, STAT5, and IRF8, have been reported to regulate MDSC differentiation, none of them
are specifically expressed in MDSCs. How these lineage-non-specific transcription factors
specify MDSC differentiation in a lineage-specific manner is unclear. The recent discovery
of the c-Rel−C/EBPb enhanceosome in MDSCs may help explain these context-
dependent roles. In this review, we examine several transcriptional regulators of MDSC
differentiation, and discuss the concept of non-modular regulation of MDSC signature
gene expression by transcription factors such as c-Rel and C/EBPß.

Keywords: myeloid-derived suppressor cell, immunosuppression, enhanceosome, aberrant myelopoiesis,
tumor immunobiology
Abbreviations: AKT, Protein kinase B; ATF, Activating transcription factor; C/EBPb, CCAAT-enhancer-binding protein ß;
COX-2, Cyclooxygenase 2; CREB, cAMP response element-binding protein; ERK, Extracellular-signal-regulated kinase; G-
CSF, Granulocyte colony-stimulating factor; GCN2, General control nonderepressible 2; GM-CSF, Granulocyte-macrophage
colony-stimulating factor; HDAC2, Histone Deacetylase 2; HMG I/Y, High mobility group protein; IL-1ß/6/10/23, Interleukin
-1ß/6/10/23; IRF8, Interferon Regulatory Factor 8; LAP/LAP*, Liver-enriched activating protein – C/EBPß isoforms; LIF,
Leukemia inhibitory factor; LIP, Liver-enriched inhibitory protein; MAPK, Mitogen-activated protein kinase; MDSC,
Myeloid-derived suppressor cell; NFAT, Nuclear factor of activated T-cells; NFI-A, Nuclear factor 1 A-type; NOX2,
NADPH oxidase 2; PGE2, Prostaglandin E2; PI3K, Phosphoinositide 3-kinase; RAGE, Receptor for advanced glycation
endproducts; RB, Retinoblastoma protein; ReCHIP, Re-Chromatin immunoprecipitation; S100A8/9, S100 Calcium Binding
Protein A8; STAT3/5, Signal transducer and activator of transcription 3/5; TIPE2, TNF alpha induced protein 8 like 2; TNF,
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INTRODUCTION

Tumor immune evasion is an essential feature of tumorigenesis (1, 2).
To successfully establish themselves within a host, tumor cells
leverage biochemical signals and rogue immune cells to hide from
and repress host immune responses (1–3). Immunotherapy, which
can restore immune response and anti-cancer immunity, has
revolutionized cancer therapy. However, rogue immunosuppressive
cells, including tumor-associated macrophages (TAMs), tumor-
associated neutrophils (TANs), regulatory T-cells (Tregs),
regulatory dendritic cells (RegDCs), cancer-associated fibroblasts,
and myeloid-derived suppressor cells (MDSCs), still represent
significant impediments to immunotherapy, contributing to
therapy failure and poor clinical outcomes (4–8). Of these pro-
tumoral cell types, MDSCs are perhaps the least well characterized.

MDSCs are a heterogenous population of immunosuppressive
pro-tumoral leukocytes which arise as a result of defects in
myelopoiesis (9). Under physiological conditions, progenitor
myeloid cells differentiate into macrophages, dendritic cells or
granulocytes. Under pathological conditions like cancer or
chronic infections, aberrant myelopoiesis allows the accumulation
and expansion of immature myeloid cells with strong
immunosuppressive capabilities (10–16). While these cells possess
many phenotypic and morphological hallmarks of anti-tumor
myeloid-lineage cells like monocytes and neutrophils, they differ
significantly in their activation programs and function to inhibit
anti-tumor immunity by producing immunosuppressive factors like
arginase, nitrogen species and reactive oxygen species, among others
(10, 17–19). MDSCs are a significant obstacle to immunotherapies
including checkpoint inhibitors; accumulation of MDSCs
populations within circulating and tumor-infiltrating leukocytes
have been observed in patients who fail to respond to checkpoint
inhibitor therapy (18, 19).

There are two major subsets of MDSCs– granulocytic or
polymorphonuclear MDSCs (G-MDSCs or PMN-MDSCs), which
are phenotypically similar to granulocytes, and monocytic or
mononuclear MDSCs (M-MDSCs), which are phenotypically
similar to monocytes. PMN-MDSCs have a CD11b+Ly6G+Ly6Clo

phenotype in mice and a CD11b+CD14−CD15+/CD66b+ phenotype
in humans while M-MDSCs are identified as CD11b+Ly6G−Ly6Chi

in mice, and CD11b+CD14+HLA-DR−/loCD15− in humans (20, 21).
MDSC markers were recently reviewed here (21). A third mixed
population of MDSCs, early-stage MDSC (e-MDSC), with
phenotype Lin- (including CD3, CD14, CD15, CD19, and CD56)
HLA-DR-CD33+ was recently proposed in humans (22). e-MDSCs
also contain immature progenitor myeloid cells and their equivalent
in mice is yet to be identified (22).

While a lot is known about the phenotypic and morphological
delineations of MDSCs, the biochemical markers and effectors
underlying their development and function are still poorly
understood. As such, the identification of these drivers of
pathological MDSC expansion and immunosuppressive activity
has been the subject of intensive research in recent years.
Recently identified MDSC effectors, mostly transcription
factors (TFs) and apoptotic regulators, include IRF8 (23),
STAT3 (23–26), C/EBPß (27, 28), S100A8/9 (29), TIPE2 (30,
31), GCN2 (32), among others (Table 1). Of all these regulators,
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C/EBPß has emerged as an essential “master” regulator of MDSC
expansion and immunosuppressive activity. Most of the known
MDSC regulators drive expansion and immunosuppressive
activity in C/EBPß-dependent mechanisms. Additionally, C/
EBPß deletion alone in myeloid cells was sufficient to halt
MDSC generation and immunosuppressive activity (27).
Recent evidence, however, suggests that c-Rel, a member of the
NF-kB (nuclear factor kappa-light-chain-enhancer of activated B
cells) family of transcription factors, regulates C/EBPß activity
and expression in MDSCs (33). In this review we describe c-Rel
and C/EBPß as master effectors of MDSC biology and highlight
how a non-modular c-Rel-C/EBPß “enhanceosome” drives
MDSC development and function in cancer.
KNOWN MDSC EFFECTORS

MDSCs arise when sustained pathologic inflammation induces an
aberrant differentiation program in myeloid precursors giving rise to
immunosuppressive cells (10–16). This is mediated by activation of
complex transcriptional machinery within these cells by
inflammatory cytokines including GM-CSF, IL-6, G-CSF, IL-1ß,
PGE2, TNFa, and VEGF (10–16). Currently known transcriptional
regulators of MDSC biology include STAT3, CEBP/b, STAT5, IRF8,
S100A8/9, RB, TIPE2 and GCN2 (Table 1).

STAT3 is a key repressor of antitumor immunity (39, 40). It
impairs antigen presentation and inhibits the production of
immunostimulatory cytokines while promoting the expression of
immunosuppressive molecules. It is highly active in most cancers
where it promotes the production of inflammatory cytokines and
growth factors like IL-6, IL-10, IL-23, LIF, VEGF, and HGF (39, 41).
These molecules induce STAT3 activation in myeloid precursors
which drives cell survival, transcription of immunosuppressive
enzymes (ARG1 and iNOS), and aberrant differentiation into
MDSCs. It also interacts with C/EBPß at promoter sites to
regulate transcription (33, 34). Intriguingly, a decrease in MDSC
STAT3 activity in the tumor environment is associated with
differentiation into TAMs (42). Within myeloid precursors, STAT3
and STAT5 also inhibit IRF8, a crucial transcription factor for
normal myeloid differentiation into monocytes and dendritic cells
(23). IRF8 functions as a negative regulator of MDSCs and its
downregulation is necessary for pathologic MDSC expansion (23).

S100A8/9 produced by tumors binds to RAGE receptors on
myeloid precursors inducing activation of an NF-kB-C/EBPß-
STAT3 axis (29). This promotes production of S100A8/9 in MDSCs
and drives both expansion and chemotactic migration to tumor sites
for immunosuppression. The MDSC-secreted S100A8/9 creates an
autocrine feedback loop that exacerbates MDSC accumulation.

High reactive oxygen species (ROS) associated within tumor
microenvironments and IL-6 induce TIPE2 in myeloid
precursors (30, 31). Active TIPE2 promotes the expression of
C/EBPß and STAT3 via the PI3K/AKT and MAPK/ERK
pathways. This leads to MDSC accumulation and polarization
into an immunosuppressive phenotype. In the absence of TIPE2
MDSCs became anti-tumoral indicating TIPE2 functions as a
molecular polarity switch in MDSCs (30). GCN2 similarly
functions as a polarity switch in MDSCs. It alters myeloid
January 2021 | Volume 11 | Article 619253
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function by inducing C/EBPß and CREB-2/ATF4 which
promote MDSC expansion and immunosuppressive activity
(32). Epigenetic silencing of Rb by HDAC-2 in myeloid
precursors also promotes accumulation of PMN-MDSCs (38).

C/EBPß appears to be an essential player among these
effectors in MDSCs.
C/EBP PROTEIN FAMILY

C/EBPß is the second member of the CCAAT/Enhancer Binding
Protein (C/EBP) family of transcription factors (28). C/EBP proteins
are basic-region-leucine zipper transcription factors which regulate
both emergency and steady state myelopoiesis (35, 43–45). C/EBPa,
the first member of the family, regulates steady state myelopoiesis.
C/EBPa is highly expressed early identified n the myeloid
differentiation process and is an essential molecular switch for the
transition from common myeloid precursors to granulocyte
macrophage progenitors (46). The role of other C/EBP family
proteins, including C/EBPd and CHOP, are less clear but they are
all thought to similarly regulate myelopoiesis as well as modulate the
activity of other C/EBP proteins (28). C/EBPd regulates the
expression of inflammatory cytokines including COX-2, iNOS, G-
CSF, IL-1b, IL-6, and TNF-a, and has been implicated in MDSC
expansion (47, 48). CHOP on the other hand, lacks DNA-binding
activity but can form heterodimers with C/EBPß isoforms and other
family members, regulating their activity (49). It has similarly been
implicated in MDSC expansion via these regulatory events (50).

Within the context ofMDSC development and function, C/EBPß
(also known as IL6-DBP, CRP2, NF-IL6, NF-M or TCF5) is themost
important C/EBP (Figure 1). It has three isoforms with diverse,
context-dependent roles (28, 51). The first two, LAP and LAP*,
contain both a DNA-binding domain and an activation domain. The
third isoform, LIP, lacks an activation domain and attenuates
transcriptional activity via heterodimerization with LAP/LAP* (35,
45, 52). C/EBPß controls emergency myelopoiesis, which is a
characteristic feature of many solid tumors due to chronic tumor-
induced inflammation (53–55). Deregulations of C/EBPß activity are
thus a significant contributing factor to aberrant myelopoiesis and
MDSC expansion under pathological conditions (27, 28).

Stimulation with inflammatory cytokines like G-CSF, GM-
CSF and IL-6 drives an increase in C/EBPß expression and
DNA-binding activity (27, 35, 56). Upregulated LAP and LAP*
isoforms of C/EBPß function as mediators of cytokine-induced
inflammatory response via transcriptional activation of
Frontiers in Immunology | www.frontiersin.org 3
inflammatory genes IL-6, TNF and G-CSF, exacerbating
the response (45). Under pathological conditions, this
sustained inflammatory activation promotes aberrant myeloid
development and differentiation into immunosuppressive
phenotypes (27, 35, 36). Following IL-6 stimulation, C/EBPß,
in concert with STAT3, also promotes miR-21 and miR-181b,
which induce NFI-A to promote MDSC accumulation in the
bone marrow and spleen (34).

Within tumors, aerobic glycolysis, a hallmark of cancer, leads
to an increase in LAP which promotes G-CSF+GM-CSF
expression and secretion (37). Li et al. showed that in breast
cancer cells, preferential activation of aerobic glycolysis over
oxidative phosphorylation, inhibits AMPK-ULK1 and autophagy
signaling, allowing stabilization and activity of LAP (37).
Cytokines, induced by LAP, travel to the myeloid compartment
where they promote expansion of MDSC precursors and direct
their differentiation into suppressor cells. Within MDSCs,
activated C/EBPß directly binds to and promotes the
transcription of immunosuppressive enzymes including Arg1,
Nos2, Nox2, and Cox2 (27, 36, 57). These enzymes are crucial
members of the MDSC immunosuppressive machinery. Arg1 and
Nos2 deplete environmental L-arginine, a crucial amino acid for
T-cell survival and anti-tumor activity (58–61). Nox2 increases
ROS which block T-cell activation and activity (62, 63). The COX-
2-PGE2 cascade suppresses both dendritic and natural killer cell
activity, while promoting the expression of immunity repressor
PD-L1 (64, 65). It is also plausible that activated C/EBPß in
myeloid precursors similarly induces the production of GM-CSF
and IL-6 which drive MDSC accumulation and function in
autocrine signaling mechanisms.

In macrophages, PI3Kg activates C/EBPß, which serves as a
critical polarization switch from an immunostimulatory to an
immunosuppressive phenotype during tumor progression (66).
This suggests C/EBPß could also regulate MDSC differentiation
into TAMs in the tumor microenvironment.

Seminal work by Marigo et al. showed that C/EBPß deletion
in all hematopoietic lineage cells was enough to halt MDSC
genesis and completely abrogate their immunosuppressive
activity on antigen activated T-cells (27). They also observed
significant reduction in both Arg1 and Nos2 expression and
activity. C/EBPß deletion potentiated adoptive T-cell therapy
resulting in a complete cure for 60% of mice bearing
subcutaneous fibrosarcoma. Their work and subsequent studies
suggest C/EBPß is an essential mediator of MDSC development
and activity (36, 67, 68).
TABLE 1 | Known effectors or regulators of MDSC biology.

Effectors Mechanisms References

STAT3 Stimulates inflammatory cytokines, activates transcription of immunosuppressive enzymes with C/EBPß. Downregulates IRF8 (23, 33, 34)
STAT5 Downregulates IRF8, promoting aberrant myeloid differentiation (23)
C/EBPß Master regulator. Promotes transcription of immunosuppressive enzymes and inflammatory cytokines in tumor microenvironment (27, 35–37)
IRF8 Crucial for normal myeloid differentiation. Negative regulator of MDSCs. Downregulated by STAT3/5 (23)
S100A8/
9

Produced by tumors. Binds to RAGE receptors in myeloid precursors and activates immunosuppressive NF-kB-C/EBPß-STAT3 signaling
axis.

(29)

RB Epigenetically silenced by HDAC6 in MDSCs. Negatively regulates myeloid differentiation into PMN-MDSCs. (38)
TIPE2 Induced by IL-6 and high ROS in tumor microenvironment. Activates C/EBPß and STAT3 which promote immunosuppressive activity. (30, 31)
GCN2 Polarity switch. Expression correlates with immunosuppressive activity. Induces C/EBPß and CREB2/ATF4 promoting immunosuppression. (31)
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Perhaps unsurprisingly, many studies into molecular effectors
of MDSCs have focused on upstream regulators of C/EBPß. Of
these recently found effectors, c-Rel, appears to be an essential
regulatory partner for C/EBPß in MDSC.
C-REL, A NEW REGULATOR OF MDSC
DIFFERENTIATION AND FUNCTION

c-Rel, is a member of the NF-kB family of TFs which regulate a
variety of molecular processes from embryogenesis to
hematopoiesis and inflammation (69, 70). Being a class 2 member
of the family, it contains both an N-terminal Rel-homology domain
(RHD) and a transactivation domain (TAD) (70, 71). c-Rel’s RHD
mediates interactions with other proteins and transcriptional
regulators at promoter sites where its TAD recognizes and binds
to consensus GGGCTTTCC sequences (69, 72). These interactions,
especially with other NF-kB members to form heterodimers, are
essential for c-Rel transcriptional activity. c-Rel’s TAD also contains
several serine residues which are readily phosphorylated, regulating
c-Rel nuclear localization, transactivation and DNA binding activity
(73–76).

c-Rel is an important regulator of immune cell function. It is crucial
for normal B- and T- cell activation and proliferation (77–81). Upon
lymphocyte activation, c-Rel induces IRF-4 in B-cells which promotes
cell cycle progression and proliferation. IRF-4 has kB elements in its
promoter region to which a c-Rel:p50 heterodimer binds. B-cell
proliferation defects have been observed in c-Rel deficient mice (82).
Similar defects in T-cell activation and proliferation following
stimulation have been observed in c-Rel knockout mice (77).
Frontiers in Immunology | www.frontiersin.org 4
c-Rel is a key regulator of autoimmunity via its role in
promoting the generation of Th1, Th17 and Foxp3+ regulatory
T cells (Tregs) (83–87). c-Rel is responsible for assembling a
transcriptional enhanceosome including RelA, NFAT, SMAD
and CREB that binds and transcribes Foxp3, a master regulator
of Treg immunosuppression (84). c-Rel also directly regulates the
expression of many proinflammatory cytokines via its context-
dependent binding events at promoter sequences (79, 80, 88).
Intriguingly, despite its significant roles in both inflammation
and autoimmunity, the effects of c-Rel deficiency on immune
homeostasis appear to be mostly minor (77).

Although previously thought to primarily function in the lymphoid
compartment, mounting evidence suggests a significant role for c-Rel
in myeloid cells. We recently showed that c-Rel regulates MDSC
expansion and function in cancer (57). Both global and myeloid-
specific c-Rel deletion blocked tumor growth and markedly decreased
MDSC accumulation in melanoma and lymphoma mice models. The
few MDSCs that were generated in the c-Rel knockout mice were
defective in suppression when compared to MDSCs from Wild-type
mice. c-Rel deletion also altered MDSC metabolism, reducing
mitochondrial respiration and glycolysis, inducing a Warburg-like
metabolic state. We also observed downregulation of signatureMDSC
genes in c-Rel knockout mice including Arg1, Nos2, and C/EBPß, key
members of the MDSC immunosuppression machinery. There was
also heightened inflammatory gene expression in c-Rel deficient
MDSCs compared to wild type, a phenotype that was rescued by
C/EBPß overexpression. This suggests that c-Rel’s effect in MDSCs is
C/EBPß dependent.

Mechanistically, c-Rel directly regulates the transcription of
these MDSC signature genes (57). Upon stimulation with
FIGURE 1 | C/EBPß regulates MDSC expansion and function. Within the tumor, C/EBPß promotes transcription of inflammatory cytokines. Inflammatory cytokines
then reciprocally induce C/EBPß in myeloid compartment which promotes transcription of immunosuppressive molecules. Created with BioRender.com.
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GM-CSF and IL-6, c-Rel binds to the promoters of Arg1 and
Cebpb where it forms a transcriptional complex with pSTAT3, C/
EBPß and p65. ReChIP analyses showed that these factors all
bind to the same promoter element, suggesting the formation of
a single enhanceosome complex which drives MDSC biology. c-
Rel-C/EBPß enhanceosomes have previously been identified as
transcriptional regulators in hepatocytes (89, 90).
ENHANCEOSOMES

Enhanceosomes are high-order protein complexes, usually
transcription factors, that bind cooperatively at a gene’s promoter
or enhancer regions to activate transcription (91, 92). Many cis-
regulatory elements, including promoters and enhancers, contain
overlapping DNA binding sites for various transcription factors. This
allows the formation of elaborate protein complexes which alter
chromatin architecture and recruit the RNA polymerase
transcription machinery, regulating gene expression as a
functional, nucleoprotein unit (91, 92). These enhanceosome
complexes effectively function as “on” and “off” transcriptional
switches, specifying key developmental and cell lineage-
determining gene regulation events (91, 92). Enhanceosomes could
comprise any number of multifunctional transcriptional regulators
in an almost limitless number of combinations, specifying the varied
cell differentiation programs found in multicellular organisms. An
increasing number of enhanceosomes are being described, shifting
previously established transcription paradigms.

Fiedler et al. recently described a “Wnt enhanceosome”
consisting of ChiLS, Runt/RUNX2, ARID1 and Groucho/TLE
which is integrated by Pygo at TCF enhancers to drive Wnt
signaling in Drosophila (93). Additionally, the Wnt enhanceosome
could incorporate a number of factors in a lineage-dependent
manner and be switched “off” by Notch. This allows context-
dependent regulation of TCF/LEF target genes to simultaneously
promote embryogenesis and development while preventing
hyperproliferation and cancer. Pawlus et al. similarly described a
multifactorial HIF enhanceosome comprising of HIF1, HIF2, RNA
poll II and varied transcription factors at enhancer sites for HIF
target genes (94). These context-dependent enhanceosomes help
explain the dual oncogenic and tumor-suppressive role of HIF-
mediate hypoxia. Scotto et al. also showed that multidrug resistance
in cancer is governed by an MDR1 enhanceosome at the MDR1
promoter which can be activated by a variety of stimuli including
differentiation agents like retinoic acid, UV radiation and
chemotherapy (95). The MDR1 enhanceosome included NF-Y,
Sp family transcription factors and histone acetyltransferase PCAF
and could be targeted to reverse multidrug resistance.

The assembly and disassembly of enhanceosomes is essential
for tight gene regulation in a cell. Because the assembly of a
functional enhanceosome complex depends on several factors
including local DNA conformation, protein availability and
modifications, gene regulation via enhanceosomes can be very
cell-specific. The absence of any one factor disrupts
enhanceosome activity, preventing transactivation. In the case
of MDSCs, enhanceosomes at regulatory sites for MDSC
Frontiers in Immunology | www.frontiersin.org 5
signature genes are compelling as key effectors of aberrant
MDSC development under pathological conditions.
THE C-REL-C/EBPß ENHANCEOSOME

It is plausible that higher levels of active c-Rel and C/EBPß within
the nucleus of pathologically activated myeloid cells drive the
formation of altered enhanceosomes at regulatory regions for
Arg1, Nos2, Nox2, Cebpb, and other MDSC genes. Previous work
has identified enhanceosomes for several immunosuppressive
mediators including Nos2, Arg1, and Nox2 that do not contain
either C/EBPß or c-Rel (96–98). We recently showed abundant c-
Rel and C/EBPß accumulation at the gene promoters of both Arg1
and C/EBPß following stimulation with GM-CSF and IL-6 (57). In
this c-Rel-C/EBPß MDSC enhanceosome model, c-Rel is recruited
first to the promoter site and in its absence, the enhanceosome fails
to assemble. Following c-Rel binding, pSTAT3, p65 and C/EBPß are
recruited to the promoter site to drive transcription and
differentiation into immunosuppressive MDSCs (Figure 2).

A similar c-Rel-C/EBPß enhanceosome was previously described
(89, 90). Cha-Molstad et al. showed that in hepatocytes, cytokine
stimulation promotes c-Rel-mediated recruitment of C/EBPß and
STAT3 to the CRP gene promoter to activate transcription (89).
Intriguingly, c-Rel itself was not directly bound to the DNA sequence.
c-Rel DNA binding activity is regulated by phosphorylation of the
many serine residues within its TAD (73–76). Because we found c-
Rel binding to DNA forming the MDSC enhanceosome, it is
plausible highly active kinases within pathologically activated
myeloid cells contribute to the formation of the MDSC-specific c-
Rel enhanceosome. Other post-translational modifications, specific to
myeloid cells under pathological activation, that modulate protein-
protein interactions and protein-DNA interactions, might drive the
formation of MDSC enhanceosomes. Other NF-kB proteins,
including p50, have been reported to be involved in MDSC
expansion following stimulation by tumor-derived PGE2 (99). We
previously showed that c-Rel could bind p50 in MDSCs (57). P50
could similarly be incorporated into the MDSC enhanceosome
during tumorigenesis to drive MDSC expansion and activity. The
c-Rel-C/EBPß enhanceosome might also contain other nuclear
proteins including co-regulators, deacetylases, architectural proteins
like HMG I/Y and nucleosome remodeling proteins.

The c-Rel-C/EBPß enhanceosome is also a promising
candidate as a biochemical marker for MDSCs. A significant
constraint in MDSC research is the lack of reliable markers to
characterize this highly heterogeneous cell population (22).
Because yields are often low when isolating MDSCs, especially
from in vivo systems, most studies lack functional validation of
immunoregulatory activity. Improved biochemical markers,
specific to MDSCs, would provide a simple validatable
phenotype for MDSCs. The individual factors within the
enhanceosome are not specific to MDSCs: C/EBPß is enriched
in monocytes/macrophages (100, 101). c-Rel and p65 are
pervasive regulators of B- and T- cell proliferation (77–81).
pSTAT3 is a ubiquitous transcription factor within eukaryotic
cells (25, 41). However, concurrent activation of all four, as well
January 2021 | Volume 11 | Article 619253
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as other putative members of the enhanceosome, could be
indicative of an MDSC phenotype. Monitoring assembly and
activation of the c-Rel-C/EBPß enhanceosome could thus be a
testable marker for MDSC activation and expansion.

This also provides an exciting therapeutic avenue. We showed
that a small molecule inhibitor of c-Rel abrogated MDSC
development and immunosuppression via disruption of the c-
Rel complex (57). Similar approaches targeting individual
members, aiming to disrupt their interactions in the MDSC
enhanceosome, could have thrilling outcomes. Lee et al. showed
that cerulenin, a small molecule inhibitor of the NF-kB
enhanceosome in macrophages, might disrupt the assembly of
the enhanceosome, suppressing pro-inflammatory activation and
sepsis (102). Cerulenin specifically disrupted the p65-TonEBP-
p300 complex without affecting their expression or DNA-binding.
It had no detectable toxicity and animals could tolerate high doses
for several weeks (103). Additionally, our c-Rel inhibitor enhanced
the anti-tumor effect of anti-PD-1 antibodies suggesting
combinatorial restoration of T cell function (via MDSC
inhibition) and activation (via PD-1 inhibition) as a viable
clinical strategy (57). The development of a novel class of
enhanceosome inhibitors targeting MDSCs could represent an
exciting approach to potentiate immunotherapy.
Frontiers in Immunology | www.frontiersin.org 6
CONCLUSION

MDSCs are a product of sustained pathologic inflammation,
which develop as a result of aberrant cytokine-mediated
activation of complex transcriptional machinery in myeloid
precursors (9, 10). They are involved in the pathogenesis of a
host of human diseases from cancers to acute infections. In cancer,
tumor-produced cytokines mediated by C/EBPß induce c-Rel
and C/EBPß in the myeloid compartment, which drives
the formation of a c-Rel-C/EBPß-pSTAT3-p65 MDSC
enhanceosome. This enhanceosome promotes the transcription
of immunosuppressive enzymes and other MDSC signature genes,
guiding their differentiation into immunosuppressive cell
populations. Because this putative enhanceosome is MDSC-
specific, it can be targeted to repress MDSC expansion and
immunosuppression. It is thus imperative to further characterize
this enhanceosome and develop modalities to inhibit it.
Additionally, further studies into other complex transcription
programs underlying spatiotemporal gene regulation during
aberrant myeloid cell differentiation are warranted. These would
identify novel mechanisms and therapeutic targets, which could be
blocked clinically to enhance the efficacy of immunotherapies like
checkpoint blockade.
FIGURE 2 | The c-Rel/C/EBPß enhanceosome in MDSCs. c-Rel and C/EBPß induced by tumor secreted cytokines, translocate to the nucleus and assemble an
enhanceosome containing STAT3, p65 and other regulators at enhancer sites for immunosuppressive molecules. Created with BioRender.com.
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