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Young Kyung Lim, Jong Hwi Jeong, Sang Hee Youn, Sung Uk Lee, Sung Ho Moon,
Tae Hyun Kim and Haksoo Kim*

Proton Therapy Center, National Cancer Center, Goyang-si, South Korea

To automatically identify optimal beam angles for proton therapy configured with the
double-scattering delivery technique, a beam angle optimization method based on a
convolutional neural network (BAODS-Net) is proposed. Fifty liver plans were used for
training in BAODS-Net. To generate a sequence of input data, 25 rays on the eye view of
the beam were determined per angle. Each ray collects nine features, including the
normalized Hounsfield unit and the position information of eight structures per 2° of gantry
angle. The outputs are a set of beam angle ranking scores (Sbeam) ranging from 0° to 359°,
with a step size of 1°. Based on these input and output designs, BAODS-Net consists of
eight convolution layers and four fully connected layers. To evaluate the plan qualities of
deep-learning, equi-spaced, and clinical plans, we compared the performances of three
types of loss functions and performed K-fold cross-validation (K = 5). For statistical
analysis, the volumes V27Gy and V30Gy as well as the mean, minimum, and maximum
doses were calculated for organs-at-risk by using a paired-samples t-test. As a result,
smooth-L1 loss showed the best optimization performance. At the end of the training
procedure, the mean squared errors between the reference and predicted Sbeam were
0.031, 0.011, and 0.004 for L1, L2, and smooth-L1 loss, respectively. In terms of the plan
quality, statistically, PlanBAO has no significant difference from PlanClinic (P >.05). In our
test, a deep-learning based beam angle optimization method for proton double-scattering
treatments was developed and verified. Using Eclipse API and BAODS-Net, a plan with
clinically acceptable quality was created within 5 min.

Keywords: deep-learning, convolutional neural network, beam angle optimization, proton therapy, double-
scattering technique
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INTRODUCTION

Interest in beam angle optimization (BAO) research has been on
the rise recently again. When intensity-modulated radiotherapy
(IMRT) emerged as a novel treatment method, BAO research
was being actively undertaken. IMRT could achieve high dose
conformity while minimizing undesirable dose to organs-at-risk
(OARs). However, the conventional BAO process for the IMRT
plan is based on trial-and-error searching by a planner; the
optimal beam angle is affected by the experience and
understanding of the treatment planning system (TPS) of the
planner (1). Thus, various studies for BAO have been conducted
to reduce the workload of treatment planning and decrease the
planning time. These BAO studies incorporated techniques such
as simulated annealing (2–9), geometric information scoring
(10–19), gradient descent (20–25), genetic algorithms (26–29),
and neural networks (30–34). However, the advent of
volumetric-modulated arc therapy and the templatization of
the radiation treatment plan, including dose prescription and
gantry angles, have reduced interest in BAO research for
X-ray therapy.

Recently, with increasing interest in proton and heavy ion
therapy, which rely on the characteristics of a Bragg peak and a
relatively higher radiation biological effect than X-ray therapy,
several recent studies on intensity-modulated ion therapy (35) in
BAO research have been published (1, 36–39).

The present study was inspired by two previous studies on
BAO. In 1999, Hosseini-Ashrafi et al. conducted a study on the
BAO of X-ray therapy in which they used an artificial neural
network (ANN) (30). In that study, the radiation treatment plans
were divided into several templates, and the ANN classified the
test data according to the template. The ANN consisted of three
layers of a multi-layer perceptron. The input contained 12 pre-
calculated features, which were the body contour outline,
treatment volume, sensitive organs, and border of tissue
inhomogeneity for each case. The output contained three types
of binary data for eight classification tasks. The ANN was
validated using the leave-one-out method, which showed the
feasibility of applying ANNs to the BAO problem.

In 2002, Pugachev et al. published a research paper on BAO
for IMRT (4). They proposed beam’s eye view dosimetrics
(BEVD) to overcome low computation speed, which is a
disadvantage of the simulated algorithm. The BEVD score was
calculated by using the geometric and dosimetric information of
the patient. This score was used for ranking information and as a
prescreening tool to optimize the beam orientation by using a
simulated annealing-based BAO algorithm. The treatment plans
generated with the guidance of the BEVD score were compared
with those created with five equiangular-spaced beams. They
validated the feasibility of the BEVD score for the BAO problem.
The BEVD guidance indicated that the computational efficiency
increased by a factor of ~10.

In the current study, we developed a deep-learning based
BAO method for the three-ports proton double-scattering (DS)
technique using the geometric information of the patient
computed tomography (CT) anatomy and Hounsfield unit
(HU) data as well as a convolutional neural network (CNN).
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In particular, the DS technique was used for large-field proton
therapy. The proposed method requires only geometric
information without a fluence optimization process. The
geometric information is automatically extracted using an
application programming interface (API) of a TPS (Eclipse,
Varian, Palo Alto, CA, USA). A set of beam angle ranking
scores (Sbeam) for all angles is predicted using the deep-
learning model. The quality of the treatment plans created
with the predicted Sbeam guidance was statistically compared
for equi-spaced and clinical plans. The evaluation was performed
using the dose–volume histogram (DVH) parameters.
MATERIALS AND METHODS

Patient Database
Patient data from 50 liver cases, consisting of average intensity
projection (AIP) CT images calculated from the four-
dimensional (4D) CT images of 40–60% phases, a digital image
communication in medicine-radiation therapy (DICOM-RT)
structure file, and a DICOM-RT plan file, were used in this
study. The patients were originally treated using the proton DS
delivery technique configured with three DS fields at the
National Cancer Centre in the Republic of Korea (40).

To automatically access information of interesting structures
in the TPS, an in-house software was developed using the Eclipse
script API. The eight structures of interest included the body,
total liver volume (TLV), primary gross tumor volume (PGTV),
duodenum, stomach, esophagus, heart, and spleen. The body
contour included areas such as immobilizers that should be
considered for dose calculation.

Geometric Information and a Set of Beam
Angle Ranking Scores for Beam Angle
Optimization: Input and Output of the
Deep-Learning Model
To train a beam angle optimization network (BAODS-Net),
geometric information extracted from the AIP CT images and
DICOM-RT structures (an input of BAODS-Net) and Sbeam
generated from RT-plan (an output of BAODS-Net) were used.

The geometric information was collected by the ray tracing
method (4). A ray, which is a collector, was determined to
penetrate from the body contour to the isocenter, and the path
of the ray was tracked in a 3D treatment room coordinate system.
The ray collected geometric information by dividing the length of
1,000 mm into 4,000 bins (Figure 1A). The collected data
included the following: specifically HU from the AIP CT
images as a double data type and the anatomy position
information of interest of eight structures as a binary data type
(Figure 1B). Thus, the shape of geometric information extracted
from a collector was 9 × 4,000. Geometric information collected
by the penetrating ray is useful data to evaluate the best DS field
that considers range uncertainties and OAR positions. In this
regard, additional 24 parallel rays penetrating the target volume
were created. In detail, the positions of the 24 rays were
automatically determined at an isometric angle on two ellipses
September 2021 | Volume 11 | Article 707464
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with different radii placed on the PGTV cross-section in the
isocenter plane observed from the beam's eye view (Figure 1C).
Thus, at a specific gantry angle, 25 data collectors extracted nine
geometric information points (Figure 1D). In the same manner,
the patient CT anatomy and HU data for all directions were
collected at angles from 0° to 358° in steps of 2°. Finally, the
shape of the geometric information extracted by the 25 data
collectors on coplanar was 40,500 × 4,000. The geometric
information was reshaped to input 4D tensor (batch, channel,
height, and width). For pre-processing, only the HU values were
normalized by using Z-score normalization per patient. The Z-
score normalization is a standardization method for the fast
convergence of deep-learning models. For the case of the
anatomy position information of eight structures, normalization
was not performed.

A Sbeam ground-truth for each patient was generated using the
gantry angle information in the DICOM-RT plan files with steps
of 1°. The Sbeam comprised one-dimensional (1D) data
continuously ranging from 0.0 to 1.0. The gantry angles used
in the clinic were assigned a value of 1.0; otherwise, a value of 0.0
was assigned. Then, to induce effective optimization of BAODS-
Net, a normalized Gaussian filter was applied. Finally, the size of
Sbeam was 360, and the shape of Sbeam was reshaped to a batch-
considered shape. An example of a reference Sbeam is shown
in Figure 2.

K-fold cross-validation (CV) could provide a better indication
of how well the BAODS-Net was universalized to unobserved
Frontiers in Oncology | www.frontiersin.org 3
data. We performed a patient-wise K-fold CV method (K = 5),
and all datasets were divided into five disjointed and identically
sized subsets (41).
Double-Scattering Beam Angle
Optimization Network
In this paper, the BAODS-Net based on a CNN is proposed as
shown in Figure 3. It consists of two main stages: a feature
extractor and a predictor. The feature extractor was configured
with eight convolution layers to extract distinguishable features
of the geometric information by applying a convolution layer
with various strides. The first convolution layer was designed
with dimensions of 1 × 9 for the width and height, respectively.
The convolution layer was operated with a stride size of nine and
with the same padding option. This is because the nine geometric
features extracted by a ray are intended to be integrated into a
weighted geometric feature. The second convolution layer was
designed with dimensions of 1 × 25 for the width and height,
respectively. A stride size of 25 was used to integrate each
weighted geometric feature extracted from the 25 rays into one
weighted ray representing a specific angle. The remaining part of
the feature extractor was designed with six convolution layers
(width: 3, height: 3, stride: 1) and max-pooling layers. The output
of the feature extractor was flattened and then passed to the
predictor. The predictor was designed with four fully connected
(FC) layers to continuously predict Sbeam from 0° to 359°.
Although the FC layer is computationally expensive, it can
effectively predict Sbeam with a non-linear activation function
because the FC layer has a structure agnostic property.

Batch normalization was applied for fast convergence in the
optimization process and to ensure the robustness of the
performance (42). Randomly initialized biases were added for all
layers. Additionally, the activation function was the leaky rectified
linear unit (43), which was used to maintain the contribution of
negative data, and the adaptive momentum estimation optimizer
was employed (44). The BAODS-Net trained for 5,000 epochs with
a learning rate of 0.001 and weight decay of 0.0002, and to compute
the runningaverageof the gradient,b1was0.9 andb2was0.999.The
output shape and parameters of the layers composing the BAODS-
Net are summarized in Table 1.
FIGURE 2 | Sample of planned beam angles (140°, 190°, and 240°) and a
reference set of beam angle ranking scores (Sbeam) for BAODS-Net.
A B C D

FIGURE 1 | Data collector of patient CT anatomy and Hounsfield unit (HU) data used as input to BAODS-Net. (A) Data collector in 3D. (B) Extracted patient
anatomy and HU data. (C) Twenty-five data collectors in the cross-section of the primary gross tumor volume at the isocenter plane. (D) Final data collectors
consisting of 25 rays per angle.
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FIGURE 3 | Diagram of the proposed beam angle optimization for proton double-scattering network (BAODS-Net).
TABLE 1 | The architecture of the proposed BAODS-Net.

Layer Output Shape (B, C, W, H) Kerner Size

Feature
extractor

Conv2d (None, 1, 4500, 4000) (1, 1, 9, 1)
BatchNorm2d (None, 1, 4500, 4000) 2
Conv2d (None, 1, 180, 4000) (1, 1, 25, 1)
BatchNorm2d (None, 1, 180, 4000) 2
Conv2d (None, 3, 178, 3998) (3, 1, 3, 3)
BatchNorm2d (None, 3, 178, 3998) 6
MaxPool2d (None, 3, 89, 1999) 0
Conv2d (None, 9, 87, 1997) (9, 3, 3, 3)
BatchNorm2d (None, 9, 87, 1997) 18
MaxPool2d (None, 9, 43, 998) 0
Conv2d (None, 27, 41, 996) (27, 9, 3, 3)
BatchNorm2d (None, 27, 41, 996) 54
MaxPool2d (None, 27, 20, 498) 0
Conv2d (None, 9, 18, 496) (9, 27, 3, 3)
BatchNorm2d (None, 9, 18, 496) 18
MaxPool2d (None, 9, 9, 248) 0
Conv2d (None, 3, 7, 246) (3, 9, 3, 3)
BatchNorm2d (None, 3, 7, 246) 6
Conv2d (None, 1, 5, 244) (1, 3, 3, 3)
BatchNorm2d (None, 1, 5, 244) 2

Predictor Linear (None, 560) (560, 1220)
BatchNorm1d (None, 560) 1,120
Linear (None, 560) (560, 560)
BatchNorm1d (None, 560) 1,120
Linear (None, 560) (560, 560)
BatchNorm1d (None, 560) 1,120
Linear (None, 360) (360, 560)
Frontiers in Oncology | www.frontiersin.org
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B, batch size; C, channel; W, width; H, height; Conv2d, two-dimensional (2D) convolution layer; BatchNorm2d, 2D batch normalization layer; MaxPool2d, 2DMax pooling layer; Linear, fully
connected layer; BatchNorm1d, one-dimensional batch normalization layer.
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Training and Validation of BAODS-Net
In the training process, BAODS-Net was optimized to predict
Sbeam by using the training data. To find the training loss
function that could achieve the best BAODS-Net performance,
we compared the performances of the three types of loss
functions: L1 loss (Eq. 1), L2 loss (Eq. 2), and smooth-L1 loss
(Eq. 3). The prediction accuracy for Sbeam was calculated by using
mean squared error (MSE) between the reference and predicted
Sbeam.

L1 loss(x, y) =
1
noiZi,Zi = xi − yij j, (1)

L2 loss(x, y) =
1
noiZi,Zi = (xi − yi)

2, (2)

Smooth L1 loss(x, y)

=
1
noiZi,Zi =

0:5(xi−yi)
2

b , if xi − yij j < b

xi − yij j − 0:5b,  otherwise

(
(3)

where (x, y) is the reference Sbeam and predicted Sbeam,
respectively, and n is the number of samples. The hyper-
parameter beta (b) in Eq. 3 was a value for applying additional
weight to the loss. b was empirically determined to be 0.5.

In this experiment, the data of the first fold were used.
Specifically, the smooth-L1 loss could be interpreted as a
combination of L1 and L2 losses.

To improve the BAODS-Net performance and reduce its
generalization error, a 1D augmentation technique, which is a
1D data translation ranging from −2 to 2°, was applied to the
reference Sbeam. The augmentation data were randomly
generated for each epoch. Through the K-fold CV principle,
we independently conducted five different runs for five separate
CV datasets to evaluate the BAODS-Net performance.

Plan Creation With BAODS-Net
The procedure for creating a three-ports proton DS plan with the
guidance of BAODS-Net (PlanBAO) was as follows: (i) the patient
CT anatomy and HU data were automatically extracted by using
an in-house software based on Eclipse API, (ii) the patient CT
anatomy and HU data were fed into the BAODS-Net, and then
the BAODS-Net output (Sbeam) was predicted; (iii) the specific
angles in Sbeam were selected according to a selection rule. The
rule preferentially selected the three gantry angles corresponding
to the highest score. However, if the interval was less than 30°,
the next priority angle was selected; (iv) the collimator and
compensator were designed using the default TPS option without
manual modification for objective evaluation of BAODS-Net
performance, and (v) the field weight was set to one for all fields.

Plan Comparison of BAODS-Net,
Equi-Spaced Angle, and Clinical Plan
To validate the liver treatment plan quality for 50 patients, results
were obtained by combining the results of the five folds. The
DVH parameters were analyzed for PlanBAO, the equi-spaced
plan [gantry angles were fixed at 0°, 120°, 240° (PlanEqui)], and
Frontiers in Oncology | www.frontiersin.org 5
the clinical plan (PlanClinic). Although the equi-spaced plan is
rarely applied in clinics for proton beam by a planner, we added
to the equi-spaced plan for comparative study (4). The PlanClinics
were created by a qualified planner with 5 years of clinical
experience. The evaluation metric is defined below, and the
conformity index (CI) was calculated for PGTV (Eq. 4).

Conformity index =
TV� PIV
TV2

PIV
, (4)

where TV is the target volume and PIV is the prescribed
isodose volume. The closer PIV is to TV, the closer the CI is to 1.
The volumes V27Gy and V30Gy for TLV as well as the mean,
minimum, and maximum doses for OARs were calculated. VxGy

represents the volume percentage of the whole organ receiving a
dose ≥xGy. For statistical analysis, these results were compared
with the paired-samples t-test. All statistical analyses were
implemented using SAS 9.4 software (SAS Institute Inc., Cary,
NC, USA), and the statistically significant level was set at P = .05.
RESULT

Performance Comparison of L1, L2, and
Smooth-L1 Loss Functions
To determine the optimal loss function, BAODS-Net was trained
using L1, L2, and smooth-L1 loss. The training time was
approximately 120 h by using the training data of the first fold,
which corresponded to 5,000 epochs when using an NVIDIA
Quadro GV100 graphics processing unit (GPU) (NVIDIA, Santa
Clara, CA, USA). The seed number was fixed in the training
procedure. The MSE between the predicted and reference Sbeam
was evaluated when L1, L2, and smooth-L1 loss were used for
each model training procedure. At 5,000 epochs, the MSEs were
0.031, 0.011, and 0.004 for L1, L2, and smooth-L1 loss,
respectively. As a result, the smooth-L1 loss was adopted as a
metric for the training loss.

Plan Comparison of BAOBS-Net, Equi-
Spaced Angle, and Planner
To evaluate the cases of 50 patients as test data, BAODS-Net was
trained and evaluated with five different folds, and the training
losses in the five different runs were recorded. At the 5,000th
epoch, the mean and standard deviation of MSEs between the
predicted and reference Sbeam for the five folds were 0.0037 and
0.0006, respectively.

The plans created by guidance with BAODS-Net, equi-spaced
angle, and the planner method were compared using the DVH
parameters. In Figure 4, the paired two test cases of PlanBAO and
PlanClinic are visually analyzed, including the reference, predicted
Sbeam, and 2D dose distribution at the isocenter plane. The star
markers in Figures 4A, D are the gantry angles finally selected
for PlanBAO.

Data from a total of 37 out of 50 patients were used for
comparative evaluation; 13 cases were outside the approved
proton range of the TPS for using the equi-spaced angle. The
errors occurred in the right posterior oblique (RPO) field of 120°.
September 2021 | Volume 11 | Article 707464
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For the evaluation data, the mean CIs for PGTV were 1.04,
0.99, and 1.17 for BAODS-Net, equi-spaced angle, and planner,
respectively. The mean (standard deviation) V27Gy values for
TLV were 10.3% (5.4), 10.6% (5.3), and 10.3% (5.3), respectively.
The mean (standard deviation) V30Gy values for TLV were 9.7%
(5.1), 9.8% (5.0), and 9.7% (5.0), respectively. Although V27Gy

and V30Gy of PlanEqui were higher than other plans, the PlanBAO
had no statistically significant difference with both PlanClinic (P =
.94) and PlanEqui (P = .11).

For the mean dose of OARs, the results of statistical
comparison between PlanBAO and PlanClinic are summarized in
Table 2. The results of statistical comparison between PlanBAO
and PlanEqui are summarized in Table 3. As a statistical result,
the mean dose has no significant differences between PlanBAO
and PlanClinic (P >.05), while the mean dose of PlanEqui has a
significant difference with PlanBAO (P <.05). These results
signified that PlanBAO is superior to PlanEqui and similar to
PlanClinic in OARs. The mean dose is visualized for each structure
in Figure 5 as a boxplot. The central mark (red) indicates the
median, and the top and bottom edges of the box indicate the
25th and 75th percentiles, respectively. The whiskers (-) extend to
the most extreme data points, while not considering outliers (+).
Table 4 summarizes the average of the mean, minimum,
maximum doses of OARs for the three planning methods. As a
result, guidance using the BAODS-Net method may engender a
Frontiers in Oncology | www.frontiersin.org 6
plan with a quality similar to that created by the planner. In the
case of the equi-spaced plan, the quality is relatively low
compared to that of the clinical plan.
DISCUSSION

The conventional procedure for creating a proton DS treatment
plan is time-consuming and planner dependent. BAO can be
utilized as a logical step for the development of efficient and
optimal proton plans, similar to studies finding optimal fields in
the static IMRT planning area. To date, there is no clinically
applicable commercial software for BAO or for enabling intuitive
comprehension by a planner.

In this study, we designed BAODS-Net, a new deep-learning
based method of BAO for proton therapy. BAODS-Net is based
on a CNN and employs the patient anatomy and HU data from
the DICOM-RT structure file and AIP CT images, which are
automatically extracted using the Eclipse API. The output is the
predicted Sbeam as angle ranking information, which could be
used as a priori knowledge to guide the determination of the
three gantry angles used for clinical practice.

According to the study results, the proposed method
produced clinically acceptable and practical plans. The time
required to create a proton DS treatment plan was decreased
FIGURE 4 | Two test cases of reference and predicted Sbeam and 2D dose distribution at the isocenter plane: case 1 (A–C) and case 2 (D–F).
September 2021 | Volume 11 | Article 707464

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Cheon et al. Deep-Learning Based Beam Angle Optimization
to approximately 5 min; specifically, the predicted Sbeam was
calculated within approximately 0.2 s through BAODS-Net.

This study provides key contributions and is distinguished
from recent BAO research in several ways. This study is the
first to employ the BAO method of the proton DS delivery
technique, and a deep-learning based one-stop solution was
developed. By leveraging this solution, a planner can refer to
the predicted Sbeam in the commercial TPS using Eclipse API.
In contrast, conventional BAO research required multiple
steps to solve the BAO problem, specifically optimizing the
fluence map and then computing the dose influence matrices.
However, in our research, only the patient CT anatomy and
Frontiers in Oncology | www.frontiersin.org 7
HU data were used for BAO procedures without dosimetric
information from candidate beams. Similarly, Barkousaraie
et al. (34) proposed a BAO method using the art column
generation (CG) method and a CNN. The architecture of their
deep-learning model is based on U-net (45), and the model is
trained to mimic the result of the CG algorithm by using only
extracted features from the patient anatomy. Although this
approach also does not directly use dosimetric information for
BAO, more time and additional effort are required to obtain
the CG algorithm results.

The following factors may have affected the measurement
accuracy. The predicted beam could not provide an optimal
TABLE 3 | Comparison of mean dose for organs-at-risk between PlanBAO and PlanEqui.

Normalized Mean Dose (%) Mean Difference (95% CI) p-value

PlanBAO (N = 37) PlanEqui (N = 37)

Total liver volume
Mean ± SD 10.7 ± 5.3 12.9 ± 5.8 -2.195 (-2.981, -1.409) <.0001a

Median (min–max) 9.2 (3.7–22.9) 11.5 (3.8–24.8)
Duodenum
Mean ± SD 1.8 ± 6.9 2.3 ± 6.8 -0.565 (-1.056, -0.074) 0.0253a

Median (min–max) 0 (0–40.4) 0 (0–39.8)
Stomach
Mean ± SD 1.3 ± 3.3 2.4 ± 4.2 -1.132 (-2.069, -0.196) 0.0192a

Median (min–max) 0 (0–14) 0 (0–18.5)
Esophagus
Mean ± SD 1.6 ± 4.9 6.5 ± 8 -4.868 (-7.270, -2.465) 0.0002a

Median (min–max) 0 (0–27.6) 3.2 (0–26.1)
Heart
Mean ± SD 0.5 ± 1 0.7 ± 1.2 -0.230 (-0.409, -0.050) 0.0136a

Median (min–max) 0 (0–5.6) 0.1 (0–4.9)
Spleen
Mean ± SD 0.2 ± 0.8 1.3 ± 3.4 -1.143 (-2.109, -0.178) 0.0216a

Median (min–max) 0 (0–4.8) 0 (0–14.4)
September 2021 | Volume 11 | Article
aPaired samples t-test.
TABLE 2 | Comparison of mean dose for organs-at risk-between PlanBAO and PlanClinic.

Normalized Mean Dose (%) Mean Difference (95% CI) p-value

PlanBAO (N = 37) PlanClinic (N = 37)

Total liver volume
Mean ± SD 10.7 ± 5.3 10.7 ± 5.2 0.051 (-0.335, 0.438) 0.7891a

Median (min–max) 9.2 (3.7–22.9) 9.2 (3.7–21.3)
Duodenum
Mean ± SD 1.8 ± 6.9 1.1 ± 4.6 0.678 (-0.115, 1.472) 0.0913a

Median (min–max) 0 (0–40.4) 0 (0–27.4)
Stomach
Mean ± SD 1.3 ± 3.3 1.0 ± 3.0 0.235 (-0.430, 0.900) 0.4778a

Median (min–max) 0 (0–14) 0 (0–14)
Esophagus
Mean ± SD 1.6 ± 4.9 1.6 ± 4.1 <0.001 (-0.551, 0.551) 1.0000a

Median (min–max) 0 (0–27.6) 0 (0–21.1)
Heart
Mean ± SD 0.5 ± 1.0 0.6 ± 1.0 -0.081 (-0.254, 0.092) 0.3473a

Median (min–max) 0 (0–5.6) 0 (0–3.9)
Spleen
Mean ± SD 0.2 ± 0.8 0.5 ± 1.9 -0.346 (-0.915, 0.223) 0.2252a

Median (min–max) 0 (0–4.8) 0 (0–10.3)
aPaired samples t-test.
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beam configuration because a reference Sbeam was originated
from PlanClinic. In addition, the PlanBAO was generated
without manual modification/optimization procedure such as
beam weight, collimator design, compensator design, etc. In
other words, it means that the plan quality of PlanBAO has the
scope for improvement. In this study, we considered only
coplanar proton DS plans for liver cases. However, if the
search space is expanded for a non-coplanar proton DS plan,
the proposed method could be applied to a non-coplanar
proton DS plan for other diseases. Meanwhile, it should be
noted that the field design of PlanEqui, specifically anterior–
posterior , RPO, and lef t posterior oblique can be
disadvantageous for liver cases. However, according to
Figure 5 and Tables 2–4, it can be confirmed that PlanBAO
Frontiers in Oncology | www.frontiersin.org 8
can create a plan of similar quality to that of PlanClinic by
considering the patient CT anatomy and HU data.

CONCLUSION

In this paper, we validated the feasibility of using BAODS-Net for
BAO of the three-port proton DS plan. BAODS-Net only used
geometric information automatically extracted through the Eclipse
API and could successfully predict the Sbeam for the planning. The
results clearly showed its potential for facilitating the three-port proton
DSplanning.TheBAODS-Netdramatically reduced theplanning time
and brought us one step closer to real-time adaptive proton
radiotherapy. Finally, the quality of PlanBAO was statistically verified
to be similar to that of PlanClinic in the mean dose of OARs (P >.05)
FIGURE 5 | Box plot for the average of the mean dose of each structure for plans guided by BAODS-Net, equi-spaced angle, and the planner method, respectively.
September 2021 | Volume 11 | Article 707464
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