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Abstract: Recently, the release of some metal ions to the environment has been observed to cause se-
rious damages to human health and the environment. Herein, a chromium(VI)- and zinc(II)-selective
adsorbent (CB18crown6/SBA-15) was successfully fabricated through the covalent attachment of
4′-carboxybenzo-18-crown-6 (CB18crown6) as a ligand on mesoporous silica support (SBA-15).
The CB18crown6/SBA-15 adsorbent was characterized by Fourier-transform infrared (FTIR) spec-
trometry, X-ray diffraction (XRD), N2 adsorption–desorption, thermogravimetric analysis (TGA),
scanning electron microscopy (SEM), and transmission electron microscopy (TEM). To evaluate
its ability to selectively capture Cr(VI) and Zn(II), adsorption experiments were conducted. The
influences of pH, initial concentration of metal ions, and coexisting metal ions on the adsorption
process were examined. The CB18crown6/SBA-15 selectively adsorbed Cr(VI) at pH 2 and Zn(II) at
pH 5, respectively, from the mixed aqueous solutions of chromium, zinc, lithium, cadmium, cobalt,
strontium, and cesium ions. The data for the adsorption of Cr(VI) onto the CB18crown6/SBA-15
were well explained by the Langmuir adsorption isotherm. In addition, the recycling and reuse of
CB18crown6/SBA-15 was successfully achieved, and 71 and 76% reuse efficiency of Cr(VI) and Zn(II),
respectively, was obtained after five cycles. This study suggests that the use of the CB18crown6/SBA-
15 can be a feasible approach for the selective remediation of Cr(VI) and Zn(II) contamination.

Keywords: mesoporous silica; crown ether; Cr(VI); Zn(II); selective adsorption

1. Introduction

When industrial water containing metal ions and heavy metal ions is released into
nature, the contaminated water causes damages to various lifeforms, and eventually affects
humans [1,2]. For instance, zinc can cause abdominal pain, vomiting, and headache, and is
considered to be hazardous to human health and the environment [3], while the presence of
hexavalent chromium (Cr(VI)) in water may cause ailments such as skin allergy, bronchial
and liver damage, and kidney failure due to its frequent occurrence and toxicity to living
organisms [3]. Thus, removal of metal ions from contaminated water is essential. Over
the decades, several methods have been devoted to removing metal ions from aqueous
solutions via various techniques, such as adsorption, ion exchange, sedimentation, and
membrane processes [4–7]. Amongst them, adsorption is a convenient technique to remove
metal ions from aqueous solutions, with the advantages of low cost, high efficiency, easy
operation, and low secondary pollution impact [8].

Particularly, SBA-15—one of the most popular mesoporous silicas—has a large specific
surface area (~1000 m2g−1), high porosity, and high hydrothermal and mechanical stabil-
ity [9–12]. Thus, SBA-15 is an attractive material in effectively anchoring the metal ions due
to the structural advantages [13,14]. However, SBA-15 does not provide fast adsorption
and selectivity to metal ions, due to the lack of corresponding active sites [15,16]. Thus,
to endow the SBA-15-based adsorbents with selective removal capability of metal ions, the
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surface modification must be considered. Fortunately, its surface is abundant with silanol
groups that can be used as reaction sites to functionalize it.

Most crown ethers, having polarizing holes and outer hydrocarbons, are suitable for
the adsorption of metal ions [17,18]. The oxygen ring present in the crown ether with
electron-rich ring structures could selectively and effectively form stable complexes with
metal ions, with compatible dimensions and strong affinity [17–20]. Moreover, the adsorp-
tion of metal ions can be easily controlled through the adjustment of pH. Luo et al. [20] and
Mohamed et al. [21] reported the adsorption of metal ions (Sr2+, Cs+, Li+) using crown ether
molecules or polybenzoxazine functionalized with crown ether moieties as adsorbents.
In the case of using crown ether moieties, it is difficult to separate the adsorbent from the
solution and the organic polymers as a support due to their chemically unstable nature.
Meanwhile, Duman et al. [17] reported the adsorption of metal ions (Cr3+, Co2+, Ni2+)
using activated carbon with crown ether molecules introduced by electrostatic interaction
as an absorbent. Hong et al. [19] reported the adsorption of Ag+ using mesoporous silica
with crown ether moieties introduced by chemical reaction. These works mainly studied
the adsorption behavior using a single solution of metal ions.

In particular, highly selective adsorption of Cr(VI) and Zn(II) in aqueous solutions
with various metal ions using an adsorbent chemically modified with crown ether moieties
on mesoporous silica with high surface area and uniform pore size have not yet been
reported, to the best of our knowledge. Easy separation the adsorbent from the solution is
very important, as is highly selective adsorption of metal ions. Meanwhile, if improved for
the low-cost synthesis of the adsorbent material, the commercial application value will be
much higher.

In addition, most crown ethers do not contain functional groups, so it is difficult to
graft them to other materials by covalent bonding [18,20–22]. For instance, Awual et al. [18]
reported that the fabrication of a mesoporous adsorbent by direct physical immobilization
of dibenzo-30-crown-10-ether (DB30C10) to a mesoporous silica substrate. However, crown
ethers mixed with inorganic mesoporous silica without covalent bonding, but simply
via physical blending, are likely to cause the elution of effective crown ether during the
adsorption process. Thus, the choice of a crown ether is quite important for effectively
introducing it to SBA-15. 4′-Carboxybenzo-18-crown-6 containing a carboxyl group was
selected in this work, since a dehydration condensation reaction occurs with the amino
group to form an amide bond under the action of the activator. The SBA-15 was modified
with (3-aminopropyl) triethoxysilane (APTES) to make the surface of SBA-15 contain an
amino group. Thanks to the choice of modifying agent, the amines present in the modified
SBA-15 (SBA-15-NH2) can combine well with the carboxyl group. For more effective bond-
ing of the carboxyl group with the amino group, 4′-carboxybenzo-18-crown-6 was added
with N-hydroxysuccinimide (NHS) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide
hydrochloride (EDC) to enable the carboxyl group to change into the initiating mode and
then react effectively with the amino group on the SBA-15-NH2.

In this work, we employed SBA-15 as a supporting material, for which carboxy-
containing 4′-carboxybenzo-18-crown-6-ether (CB18crown6) was grafted onto the surface
of the SBA-15-NH2 (amino-functionalized SBA-15) through a facile and robust covalent
grafting approach. This led to CB18crown6/SBA-15 with surface-accessible crown ether.
The structural characteristics of the CB18crown6/SBA-15 adsorbent before and after modifi-
cation, as well as its adsorption behavior, were investigated. Batch adsorption experiments
were conducted to study the influences of pH, initial metal ion concentrations, and coex-
isting metal ions on the adsorption process. The selectivity of the CB18crown6/SBA-15
adsorbent towards Cr(VI) and Zn(II) ions was evaluated in the presence of coexisting metal
ions of chromium, zinc, lithium, cadmium, cobalt, strontium, and cesium ions.
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2. Materials and Methods
2.1. Materials

Poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide)
(PEO20PPO70PEO20: P123, Molecular weight (MW) = 5800), tetraethyl orthosilicate (TEOS,
98%), 3-aminopropyltriethoxysilane (APTES, ≥98%), N-hydroxysuccinimide (NHS, 98%),
tetrahydrofuran (THF, 99.9%), toluene, cadmium nitrate tetrahydrate (CdN2O8·4H2O,
≥98%), cobalt(II) nitrate hexahydrate (Co(NO3)2·6H2O, ≥98%), cesium nitrate (CsNO3,
99%), zinc nitrate hexahydrate (Zn(NO3)2·6H2O,≥99%), strontium nitrate (Sr(NO3)2, 99%),
and lithium nitrate (LiNO3, 99%) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). 4′-Carboxybenzo-18-crown-6-ether (Crown, >97%) and 1-(3-dimethylaminopropyl)-
3-ethylcarbodiimide hydrochloride (EDC, 98%) were purchased from Tokyo Chemical
Industry (Tokyo, Japan). Hydrochloric acid and sodium hydroxide were purchased from
DaeJung Chemicals & Metals Co., Ltd. (Siheung, Korea). Anhydrous ethanol (99%) was
purchased from Junsei Chemical (Tokyo, Japan). Potassium dichromate (K2Cr2O7, ≥99%)
was purchased from Osaka Chemical (Osaka, Japan). All reagents were used without
further purification [23].

2.2. Synthesis of Santa Barbara Amorphous-15 (SBA-15)

SBA-15 was prepared by a sol–gel reaction as described in our previous work, with
optimized material ratios, as follows [23]: SBA-15 was synthesized using poly (ethylene
glycol)-block-poly (propylene glycol)-block-poly (ethylene glycol) (P123) as a template
and tetraethyl orthosilicate (TEOS) as a silica source. First, P123 (16.0214 g) was added
to 500 mL of distilled water and stirred at 35 ◦C for 30 min. Then, hydrochloric acid
(80 mL) was poured into the P123 aqueous solution, followed by dropwise addition of
TEOS (36.87 mL). After stirring for an additional 1 h, the mixture was kept at 35 ◦C for
24 h. After raising the temperature to 100 ◦C, it was again kept for 24 h, then washed
with distilled water 2–3 times, followed by washing with ethanol once. When the washing
was complete, it was dried in an oven (JEIO TECH, Kimpo, Korea) at 80 ◦C for 24 h. This
sample was named SBA-15-T.

Two methods were used to remove the template in order to compare the effectiveness
of further modification, as well as the physicochemical properties of the SBA-15, since
the surface functionalization with an amine group and further modification with crown
ether are key steps to prepare the required adsorbents for this work. For calcination, 10 g
of the SBA-15-T was calcined in an oven at 540 ◦C for 9 h [24]. For extraction, 1 g of
the SBA-15-T was added to the mixture of hydrochloric acid (36.5%, 3 mL) and ethanol
(150 mL), followed by stirring for 12 h at 60 ◦C [25]. The calcined sample was named
SBA-15-Cal, while the extraction sample was named SBA-15-Ex.

2.3. Surface Functionalization of SBA-15

The APTES-functionalized SBA-15 was prepared using the following method: 0.9 mL
of APTES was added to 0.3 g of SBA-15-Ex in 50 mL of toluene, followed by stirring at 60 ◦C
for 24 h. The sample was washed several times with toluene and then dried in a vacuum
oven (JEIO TECH, Kimpo, Korea) at 60 ◦C for 24 h; this sample was named SBA-15-NH2
(Scheme 1). For comparison, SBA-15-Cal-NH2 was synthesized using a similar procedure.

2.4. Modification of SBA-15-NH2 with Crown Ether

To convert the carboxyl group in 4′-carboxybenzo-18-crown-6-ether into the initiation
mode, the crown ether (0.01 g) was stirred and dispersed in THF (50 mL), and then EDC
(0.5 mmol, 0.0958 g) and NHS (0.5 mmol, 0.0575 g) were slowly added and stirred for
1 h. SBA-15-NH2 (0.1 g) was suspended in a beaker containing THF (50 mL), and then
it was added to the crown ether mixture and stirred for 24 h at room temperature. The
final adsorbent was collected by centrifugation, and then washed with THF, and vacuum-
dried at 60 ◦C for 24 h. This sample was denoted as CB18crown6/SBA-15 (Scheme 1).
For comparison, CB18crown6/SBA-15-Cal was synthesized using a similar procedure.
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Scheme 1. Schematic illustration of the preparation of CB18crown6/SBA-15.

2.5. Batch Adsorption Experiments

The adsorption of metal ions onto CB18crown6/SBA-15 was examined through batch
adsorption experiments. In general, potentially toxic metal ions coexist in industrial
wastewater, limiting its reusability for practical applications. Therefore, it is important to
develop an efficient material featuring selective adsorption capacities for specific metal ions
in multicomponent systems. Coexistent ions in multicomponent systems might begin to
compete for the adsorption sites of CB18crown6/SBA-15. Therefore, to investigate the prac-
tical applicability of CB18crown6/SBA-15, we need to understand the role of each metal ion
and its adsorption behavior. For this purpose, the seven metal ions designated in this study
were chromium (Cr), cadmium (Cd), zinc (Zn), lithium (Li), cobalt (Co), strontium (Sr),
and cesium (Cs). Competitive metal ion adsorption was performed in the pH range 2–6 in
a batch experiment with a mixture of all seven metal ions at concentrations of 0.5 mmol/L
(25 ◦C). In this study, the adsorption selectivity studies of Cr(VI) were mainly performed in
highly acidic media, though such conditions are unusual for water treatment, based on
two major factors: (1) the experimental results indicated that CB18crown6/SBA-15 exhibits
effectively selective adsorption of Cr(VI) at pH 2, as in previous reports, which will be
discussed later in more detail; (2) when the pH exceeded 7–8, metal ions were precipitated,
so we did not measure the adsorption experiments with pH > 7. This may be because
for Zn(II), Cd(II), and Co(II), the addition of NaOH to increase the pH may result in the
generation of white precipitates of metal hydroxides or salts. Metal ion adsorption experi-
ments were conducted by adding 0.01 g of CB18crown6/SBA-15 to 10 mL of the prepared
metal ions in aqueous solution (Milli Q, Merck, Kenilworth, NJ, USA) with shaking for
24 h. After each adsorption experiment, the metal-ion-adsorbed CB18crown6/SBA-15
was separated by centrifugation from the solution. The amount of metal adsorbed by the
adsorbent was measured by inductively coupled plasma optical emission spectrometry
(ICP-OES). To investigate the improvement of the adsorption capacity of SBA-15 by intro-
ducing CB18crown6, isotherm adsorption experiments were carried out on SBA-15-NH2
and CB18crown6/SBA-15 by changing the initial Cr(VI) concentration from 1 to 50 mg/L
at room temperature.

The adsorbed amount, qe (mg/g), was estimated using the following equation:

qe =
(C0 −Ce)×V

m
(1)

where C0 (mg/L) is the initial concentration of a metal ion adsorbate, Ce (mg/L) is the
equilibrium concentration of the metal ion adsorbate, V (mL) is the volume of the solution,
and m (mg) is the mass of the adsorbent [26].
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2.6. Characterization

Samples were characterized by Fourier-transform infrared (FTIR) spectrometry (FTIR-
4100, JASCO, Tokyo, Japan) in the scanning range 400–4000 cm−1. Brunauer–Emmett–
Teller (BET) specific surface area and Barrett–Joyner–Halenda (BJH) pore size distributions
were determined using N2 adsorption–desorption isotherms (Micromeritics ASAP 2020
V3.04G, Micromeritics, Norcross, GA, USA). Thermogravimetric analysis was carried
out on a PerkinElmer Pyris Diamond TG (PerkinElmer, Waltham, MA, USA) in a N2
atmosphere at a heating rate of 5 ◦C/min. The concentrations of metal ions were measured
using an inductively coupled plasma optical emission spectrometer (ICP-OES-720, Agilent
Technologies, Santa Clara, CA, USA). The X-ray diffraction (XRD, Bruker AXS, Billerica,
MA, USA) was conducted using Cu Kα irradiation at 40 kV and 40 mA in the 2θ ranging
from 1.2 to 10◦. The morphologies of adsorbents were analyzed by field emission scanning
electron microscopy (FESEM, ZEISS SUPRA 25 VP, Carl Zeiss AG, Jena, Germany) and
transmission electron microscopy (TEM, JEOL 2011, Tokyo, Japan) at an acceleration voltage
of 200 kV.

3. Results and Discussion
3.1. Characterization of Adsorbents
3.1.1. FTIR Spectroscopic Analysis

FTIR spectra were used to explore the changes in the functional group of SBA-15
after modifying. Figure 1a shows the FTIR spectrum of SBA-15 with a template, while
Figure 1b,c show the FTIR spectra of the SBA-15-Cal and the SBA-15-Ex, respectively.
For the SBA-15-T, the peaks at 2921 and 2845 cm−1 were due to the C–H stretching
vibration of P123. As shown in Figure 1b,c, the peak due to P123 was totally absent after
calcination (SBA-15-Cal), whereas it still remained after extraction (SBA-15-Ex), indicating
the residuals of the silanol group in the SBA-15-Ex. It can also be seen that the peak at
962 cm−1 is significantly reduced after calcination but less reduced after extraction, which
is associated with the silanol group (Si–OH) [27]. In this work, although the template P123
in SBA-15-Ex may not be completely removed, the remaining silanol groups on the surface
of SBA-15-Ex may contribute to further functionalization or modification; thus, we chose
SBA-15-Ex for the next step to synthesize the adsorbent. Figure 1d shows the FTIR spectrum
of the SBA-15-NH2. The peak at 1625 cm−1 is due to the stretching vibrations of the N–H
group [16]. In addition, the peaks identified in the SBA-15-Ex at 962 cm−1 due to the Si–OH
groups were significantly decreased, indicating the successful modification of the SBA-15 by
APTES. Figure 1e shows the FTIR spectrum of the SBA-15-NH2 modified with CB18crown6.
The appearance of the peaks at 1738 and 1631 cm−1 suggests the presence of the C=O and
N–H groups as CB18crown6 is attached to the SBA-15-NH2 surface. Compared with the
intensity of the SBA-15-NH2, the intensity of the O–H and N–H vibration at 3420 cm−1 in
CB18crown6/SBA-15 decreased. The FTIR results confirmed that CB18crown6 had been
grafted onto the SBA-15-NH2. In addition, another peak for the Si–O–Si vibrational bond
at 1081 cm−1 indicated that the structure of the mesoporous material remains intact during
the modification process.

3.1.2. XRD Analysis

The XRD patterns for SBA-15-Ex, SBA-15-NH2, and CB18crown6/SBA-15 are dis-
played in Figure 2. All of these samples exhibit two characteristic diffraction peaks in
the range of 1.2◦–2◦ that can be indexed to (110) and (200) diffraction associated with
two-dimensional hexagonal symmetry (P6mm) [28,29]. The results indicate that after mod-
ification of SBA-15 with CB18crown6, CB18crown6/SBA-15 still shows ordered mesopores
with uniform pore size. The intensities of these characteristic diffraction peaks decreased
after grafting of APTES with respect to the SBA-15-Ex, and decreased further after the cova-
lent attachment of CB18crown6. In addition, the position of these characteristic diffraction
peaks shifted to the right after grafting of APTES, and shifted further after the covalent
attachment of CB18crown6. The shift to the right indicates a decrease in the pore sizes.
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The decrease in intensity as well as the peak shifts indicate that the crown ether has been
successfully introduced into SBA-15.
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3.1.3. Thermogravimetric Analysis

Figure 3 shows the TGA curves of SBA-15-T, SBA-15-Cal, SBA-15-Ex, SBA-15-NH2,
and CB18crown6/SBA-15. Comparing Figure 3a–c, the SBA-15-T shows the greatest
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weight loss due to the degradation of the template P123 around 300 ◦C. The SBA-15-
Cal in Figure 3b, where P123 was removed at high temperature by calcination, showed
the highest thermal stability and no noticeable loss in weight. The weight loss up to
around 100 ◦C resulted from the evaporation of the physisorbed water on the surface
of the mesoporous materials. The SBA-15-Ex in Figure 3c displayed reduced weight
loss compared to that of the SBA-15-T and greater weight loss than that of the SBA-15-
Cal, due to the degradation of the remaining P123 and the silanol groups on the surface.
Meanwhile, after grafting APTES onto the SBA-15-Ex, the weight loss of the SBA-15-NH2
increased to 25% due to the degradation of the organic moieties in SBA-15-NH2, owing
to the presence of APTES. For CB18crown6/SBA-15, the weight loss further increased to
30% due to the decomposition of CB18crown6. It is notable that the residue contents of
SBA-15-Ex, SBA-15-NH2, and CB18crown6/SBA-15 were 82.3, 75, and 70%, respectively,
indicating that the content of APTES and CB18crown6 grafted to the surface of SBA-15-Ex
was approximately 7.3 and 5%, respectively. These phenomena indicate the successful
grafting of the CB18crown6 ligand onto the SBA-15.

Materials 2021, 14, 5060 8 of 18 
 

 

 
Figure 3. Thermogravimetric analysis curves of (a) SBA-15-T, (b) SBA-15-Cal, (c) SBA-15-Ex, (d) 
SBA-15-NH2, and (e) CB18crown6/SBA-15. 

3.1.4. FESEM and TEM Analyses 
The morphology and microstructure of the SBA-15-Ex, SBA-15-NH2, and 

CB18crown6/SBA-15 can be observed via FESEM (Figure 4). The synthesized SBA-15-Ex ex-
hibited uniform, hexagonal, rod-like particles and uniform pore channels (Figure 4a,d). After 
modification, the morphologies of SBA-15-NH2 and CB18crown6/SBA-15 did not change 
much (Figure 4b,c). In addition, a well-ordered parallel mesochannel could also be identified, 
even when the APTES and CB18crown6 were attached to the SBA-15, as shown in Figure 5e,f. 

 
Figure 4. FESEM images of (a,d) SBA-15-Ex, (b,e) SBA-15-NH2, and (c,f) CB18crown6/SBA-15. (a–c): Low magnification; 
(d–f): high magnification. 
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3.1.4. FESEM and TEM Analyses

The morphology and microstructure of the SBA-15-Ex, SBA-15-NH2,
and CB18crown6/SBA-15 can be observed via FESEM (Figure 4). The synthesized SBA-15-
Ex exhibited uniform, hexagonal, rod-like particles and uniform pore channels (Figure 4a,d).
After modification, the morphologies of SBA-15-NH2 and CB18crown6/SBA-15 did not
change much (Figure 4b,c). In addition, a well-ordered parallel mesochannel could also be
identified, even when the APTES and CB18crown6 were attached to the SBA-15, as shown
in Figure 5e,f.

Figure 5a,b show TEM images of the SBA-15-Ex and the CB18crown6/SBA-15, respec-
tively. The TEM image revealing the well-ordered mesoporous channels of the SBA-15
was well maintained even after modification with CB18crown6. In addition, combined
with the BET data that will be discussed later, the TEM images may also indicate that the
diameter of the channels of CB18crown6/SBA-15 was slightly lower than that of SBA-15-Ex.
This result confirms that the CB18crown6/SBA-15 adsorbent with uniform mesopores was
successfully prepared, which will be beneficial to the performance of the adsorbent.
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Figure 5. TEM images of (a) SBA-15-Ex and (b) CB18crown6/SBA-15.

3.1.5. Nitrogen Adsorption–Desorption Analysis

The N2 adsorption–desorption isotherms of the SBA-15-Cal, SBA 15-Cal-NH2,
CB18crown6/SBA-15-Cal, SBA-15-Ex, SBA 15-NH2, and CB18crown6/SBA-15 were mea-
sured, and the results are shown in Figure 6 and summarized in Table 1. All of the materials
exhibited type-IV isotherms with H1-type hysteresis loops, indicating the presence of a
mesoporous structure. Figure 6a shows the N2 adsorption–desorption isotherms of SBA-
15-Cal, SBA 15-Cal-NH2, and CB18crown6/SBA-15-Cal (SBA-15 obtained via calcination).
In the N2 adsorption–desorption isotherms, the isotherm of SBA-15-Cal was shifted to
the left after modification with CB18crown6. This means that the CB18crown6/SBA-15-
Cal has a relatively small volume and small pore size compared to the SBA-15-Cal-NH2
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and the SBA-15-Cal [23,30]. Figure 6c shows the N2 adsorption–desorption isotherms
of SBA-15-Ex, SBA 15-NH2, and CB18crown6/SBA-15. Similar adsorption behavior was
observed; however, the surface area and pore size of the SBA-15-Ex are larger than those
of the SBA-15-Cal (Table 1). This may be due to the fact that when P123 is removed at
high temperatures by calcination, the silanol groups on the surface may be combined
with another silanol group by heat, leading to decreased pore size. Furthermore, it was
found that the volume reduction of SBA-15-Ex is greater than that of SBA-15-Cal after
modification with APTES and CB18crown6 under the same conditions. These phenomena
not only confirm the modification of CB18crown6/SBA-15 via covalent grafting, but also
indicate that the SBA-15-Ex could introduce more APTES and CB18crown6, depending on
the presence of more silanol groups on the SBA-15 [31]. This is consistent with the reasons
we mentioned earlier for choosing SBA-15-Ex for further modification. In addition, even
after surface modification, the specific surface area of CB18crown6/SBA-15 can still reach
172 m2/g.
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Table 1. Textural properties of SBA-15-Cal, SBA-15-Cal-NH2, CB18crown6/SBA-15-Cal, SBA-15-Ex,
SBA-15-NH2, and CB18crown6/SBA-15.

Samples Surface Area (m2/g) Pore Volume (cm3/g) Pore Size (nm)

SBA-15-Cal 640 0.9 7.7
SBA-15-Cal-NH2 311 0.5 6.9

CB18crown6/SBA-15-Cal 232 0.4 5.9
SBA-15-Ex 652 0.9 8.5

SBA-15-NH2 246 0.4 7.6
CB18crown6/SBA-15 172 0.3 6.3
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3.2. Adsorption Performance and Selective Adsorption

Before the selective adsorption experiment, we checked first whether the CB18crown6
modification of SBA-15 could effectively improve the adsorption performance. The adsorp-
tion isotherm was studied for SBA-15-NH2 and CB18crown6/SBA-15. Figure 7 displays
the adsorption isotherms of Cr(VI) adsorbed onto CB18crown6/SBA-15 at pH 2 for 24 h.
Figure 7 demonstrates that the Cr(VI) adsorption capacity of CB18crown6/SBA-15 was
enhanced after surface functionalization of SBA-15-NH2 with CB18crown6, though the
data may not be representative of the maximum experimental adsorption capacity. This
may be attributable to the synergy of the –NH– and crown ether groups. In order to obtain
more precise information on the adsorption capacity, further works should be conducted
on the kinetics of metal ions’ adsorption in the present multicomponent solution systems,
as well as true maximum adsorption capacity at longer times and different temperatures.
Although the adsorption capacity of CB18crown6/SBA-15 and SBA-15-NH2 was similar at
low concentrations of Cr(VI) (Ce = 1 mg/L or less), CB18crown6/SBA-15 showed higher
adsorption capacity of Cr(VI) than SBA-15-NH2 at higher concentrations (Ce = 2 mg/L or
more). This result may be attributable to the different affinity of CB18crown6 and the amine
(–NH2) group for Cr(VI). Based on these results, therefore, CB18crown6/SBA-15 would be
a more useful adsorbent than SBA-15-NH2 at higher Cr(VI) concentrations. The Langmuir
and Freundlich isotherms were used to evaluate the processes of Cr(VI) adsorption onto
SBA-15-NH2 and CB18crown6/SBA-15. The Langmuir isotherm of the homogeneous
system illustrates the single-layer adsorption behavior. The Freundlich isotherm explains
the multilayer adsorption and heterogeneous adsorbent systems. The nonlinear Langmuir
model Equations (2) and (3), and the Freundlich model Equation (4), are expressed as
follows [26,32]:

qe =
qmKCe

1 + KCe
(2)

RL =
1

1 + KC0
(3)

qe = KfCe
1/n (4)

where qe (mg/g) and qm (mg/g) are the amount of Cr(VI) adsorbed on SBA-15-NH2 and
CB18crown6/SBA-15 at the equilibrium and the maximum adsorption capacity, respec-
tively, Ce (mg/L) is the equilibrium concentration of Cr(VI), K (L/mg) is the Langmuir
constant, Kf represents the Freundlich constant—which is an indicator of adsorption
capacity—and 1/n is the adsorption strength of the system.

The fitting results are shown in Figure 7 and Table 2, which clearly illustrate that
the fitting results from the Langmuir isothermal adsorption model (R2 = 0.996 and 0.998)
were more suitable than those from the Freundlich model (R2 = 0.963 and 0.987). This
result suggests the homogeneous adsorption of Cr(VI) ions by the SBA-15-NH2 and
CB18crown6/SBA-15. The maximum adsorption capacity obtained from the Langmuir
isotherm for the adsorption of Cr(VI) onto SBA-15-NH2 was 52.1 mg/g, while the maximum
adsorption capacity of CB18crown6/SBA-15 was 86.0 mg/g. The adsorption performance
was compared with related adsorbents in previous works (Table 3) [33–41], showing that
the adsorption performance of CB18crown6/SBA-15 is generally comparable to other
adsorbents.

Table 2. Parameters associated with the Langmuir and Freundlich isotherms for the adsorption of
Cr(VI) onto SBA-15-NH2 and CB18crown6/SBA-15.

Adsorbent
Langmuir Isotherm Freundlich Isotherm

qm
(mg/g)

K
(L/mg) R2 Kf

(mg/g (L/mg)1/n) n R2

SBA-15-NH2
CB18crown6/SBA-15

52.1 0.1575 0.996 7.76 1.7039 0.963
86.0 0.1057 0.998 8.58 1.3699 0.987
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Table 3. Comparative studies of the Cr(VI) adsorption capacity of CB18crown6/SBA-15 with other
related sorbents.

Adsorbents * Adsorbates
Adsorption

Capacity
(mg/g)

References

BC 1 Cr(VI) 21.3 [33]
4-VP/HEMA-grafted PET 2 Cr(VI) 81.0 [34]

PyR resin 3 Cr(VI) 94.3 [35]
SGE-10/12-en 4 Cr(VI) 109.7 [36]

AFC-coated silica gel 5 Cr(VI) 65.0 [37]
SBA/SA 6 Cr(VI) 66.7 [38]

SBA-TMPED 7 Cr(VI) 55.0 [39]
PPy/SBA-15 8 Cr(VI) 194.2 [40]
PD/MCM-41 9 Cr(VI) 70.9 [41]

CB18crown6/SBA-15 Cr(VI) 86.0 This work

* (Note: a brief explanation of the above samples is summarized as follows). 1 BC: wheat-residue-derived black
carbon; 2 4-VP/HEMA-grafted PET: 4-vinly pyridine (4-VP) and 2-hydroxyethylmethacrylate (HEMA) monomer
graft onto poly(ethylene terephthalate) (PET) fibers; 3 PyR resin: 4-vinylpyridine:divinylbenzene copolymer of gel
structure with 2-chloroacetamide; 4 SGE-10/12-en: functionalization of poly(glycidyl methacrylate-co-ethylene
glycol dimethacrylate) with ethylene diamine; 5 AFC-coated silica gel: aniline-formaldehyde-condensate-coated
silica gel; 6 SBA/SA: SBA-15 mesoporous materials modified with N-propylsalicylaldimine groups; 7 SBA-
TMPED: SBA-15 functionalized with N-[3-(trimethoxysilyl)propyl]-ethylenediamine (TMPED); 8 PPy/SBA-15:
monodisperse polypyrrole/SBA-15; 9 PD/MCM-41: MCM-41 silica coated on the processed diatomite.

To further study the practical applicability of CB18crown6/SBA-15, the adsorption
efficiency of the adsorbent for metal ions in the aqueous solutions containing seven metal
ions—chromium, zinc, lithium, cadmium, cobalt, strontium, and cesium ions—was mea-
sured. Competitive metal ion adsorption was performed in the pH range 2–6 in a batch
experiment with a mixture of all seven metal ions at concentrations of 0.5 mmol/L of
each metal ion at 25 ◦C. The removal efficiency of each metal ion from the mixed solution
is shown in Figure 8. Cr(VI) showed high adsorption at pH 2 and 3, while at pH 5–6,
Zn(II) adsorption was also detected. However, other metal ions such as Co, Cs, Cs, Sr,
and Li ions were not adsorbed or marginally adsorbed. In addition, above pH 7–8, it
was difficult to measure adsorption accurately, because the metal ions were precipitated
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(Figure 9b); for example, Zn2+, Cd2+, and Co2+ may form metal hydroxides or salts under
alkaline conditions.
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Figure 9. The optical images of the solution after selective adsorption at different pH levels
(a): Before and after adsorption (Separation of adsorbent and metal ions solution by centrifuga-
tion) at pH 2; (b): Metal ion solution was precipitated under alkaline conditions; (c): Multi-metal-ion
mixture after testing for the selective adsorption of metal ions under different pH conditions).

This experimental result indicates that CB18crown6/SBA-15 exhibits effectively se-
lective adsorption of Cr(VI) at pH 2. This may be attributable to the form of Cr(VI) at this
pH level. HCrO4

− and Cr2O7
2− are usually found at pH 2–6 [42]. According to previous

reports, when other crown ethers are used to adsorb Cr(VI), the adsorption of Cr(VI) can
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be effectively promoted under acidic conditions; the possible mechanism can be explained
by Equation (5) [43]. In addition, since the –NH– group still exists after the CB18crown6 is
attached, the –NH2

+– protonated from –NH– under acidic conditions may also promote
the adsorption of Cr(VI); the possible mechanism can be explained by Equation (6) [44,45].

H+ + Crown ether + HCrO4
− → (H crown ether+)(HCrO4

−) (5)

–NH2
+– + HCrO4

− → –NH2
+- . . . HCrO4

− (6)

As the pH increases, the H+ content in the solution decreases, and the surface charge
and properties of the adsorbent change, so the corresponding Cr(VI) adsorption capacity
decreases. The adsorption of metal ions was also checked using optical images (Figure 9a,c).
The image (Figure 9c) shows the multi-metal-ion mixture after testing for the selective
adsorption of metal ions, which displays a different color due to the difference in chromium
adsorption performance under different pH conditions.

In addition, when the pH increased, selective adsorption of zinc ions was also ob-
served. Deb et al. [46] reported that the poly(methyl acrylate) (PMA) resin functionalized
with dibenzo-18-crown-6 (DB18C6) showed the binding of zinc ions to the oxygen ring
of the crown ether. Thus, the CB18crown6/SBA-15 was able to adsorb zinc ions with the
same number of oxygen rings in the crown ether. The diameter of the CB18crown6 in this
work was ~2.6–3.2 Å [47]. The diameter of zinc ions is 1.48 Å, which is relatively smaller
than that of CB18crown6, and seems not to match with the latter. However, according
to previous reports, although zinc ions are too small to fit into a single cavity, there is a
tendency for Zn(II) ions to form a “sandwich”-type complex with adjacent crown units of
CB18crown6/SBA-15 [48]. After grafting CB18crown6 onto the surface of SBA-15-NH2, the
mesoporous surface contains a large number of crown ether groups—especially adjacent
crown ether groups—so that Zn(II) ions are complexed by CB18crown6 in a sandwich-
type complex and form the crown ether–metal ion complex with a 2:1 ratio, leading to
selective adsorption of zinc ions. The adsorption capacities of other metal ions were very
small or did not show adsorption performance, indicating that their diameter does not
matching the cavities of CB18crown6 (for example: the sizes of these ions are Cd2+ ~1.94 Å,
Li+ ~1.2 Å, Cs+ ~3.8 Å, and Sr2+ ~2.36 Å) [49]. Despite the diameter of Co2+ (1.44 Å)
being similar to that of Zn2+ ions, according to the previous research carried out in our
laboratory, Zn2+ is believed to diffuse in silicon mainly via an interstitial–substitutional
mechanism, where this interstitial–substitutional-diffusing Zn2+ regularly “kicks out” a Si
atom and assumes a substitutional position in the course of the diffusion process. Therefore,
it exhibits strong selective adsorption of Zn2+, even in multicomponent metal solutions
containing Ni2+, Li+, Co2+, Cd2+, and Zn2+ [50]. With regard to the adsorption selectivity
of CB18crown6/SBA-15 for Zn(II) metal ions, in addition to the extent to which the ion
size matches that of the CB18crown6 cavities, the binding energy and Gibbs free energy
difference of the hydration process for these ions also play a major role in the selectivity, and
this merits further investigation. As Deb et al. [46] reported, the substantial negative values
of binding energy as well as Gibbs free energy indicate that the crown-ether-appended
polymeric resin exhibits excellent adsorption performance for Zn(II) ions [51]. In addi-
tion, it may also be slightly negatively charged under roughly neutral pH conditions,
which is favorable for the removal of positively charged Zn(II), while under lower pH
conditions, H+ may compete with Zn(II); thus, as the pH decreases to 2, its adsorption
performance weakens. The possible mechanism of adsorption of Cr(VI) and Zn(II) by
CB18crown6/SBA-15 is illustrated in Scheme 2. CB18crown6/SBA-15 mainly shows the
removal of Cr(VI) and Zn(II) at different pH levels. At pH 6, CB18crown6/SBA-15 shows
a small amount of adsorption of Sr2+. The adsorption of Sr2+ onto CB18crown6/SBA-15
is also possible through complexation of the oxygen atom inside CB18crown6/SBA-15
with Sr2+. As discussed above, the diameter of Sr2+ is 2.36 Å—larger than that of Cd2+,
Co2+, and Li+—while the diameter of Cs+ is larger than that of CB18crown6. Therefore,
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Sr2+ is relatively easy to complex with CB18crown6 compared to the ions mentioned above,
leading to a display of marginal adsorption performance.
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In this work, we focused on the adsorption behavior of metal ions—including Cr(VI)
ions—in a multicomponent solution system. Though we used a multicomponent system
containing seven coexisting metal ions (cations: Zn2+, Cd2+, Co2+, Cs+, Sr2+, and Li+; and
anions: Cr6+), it would be necessary for future works to compare their adsorption with
other anions—such as Cl−, NO3

−, SO4
2−, and PO4

3−, etc.—or even to compare the cations
with other common ones present in water, such as Na+, K+, and Ca2+, etc., in order to better
understand the adsorption behavior of Cr(VI).

3.3. Reusability

The recyclability of the adsorbent is very important for the its practical application.
To test its recyclability, CB18crown6/SBA-15 was evaluated through Cr(VI) and Zn(II)
adsorption/desorption cycles. CB18crown6/SBA-15 was immersed in a 10 mL aqueous so-
lution of a single metal ion (0.5 mmol/L). After each adsorption step, the CB18crown6/SBA-
15 sample was regenerated by stirring Cr(VI)-loaded CB18crown6/SBA-15 in 0.1 mol/L
NaOH for 1 h and Zn(II)-loaded CB18crown6/SBA-15 in 0.1 mol/L HCl for 1 h. After
centrifugation and washing with deionized water, the samples were vacuum-dried at 70 ◦C
for 12 h. Regenerated CB18crown6/SBA-15 was then used for the next metal ion adsorption
cycle. The adsorption and regeneration cycles were repeated five times. Figure 10 shows
the results of recycling test, clearly showing that the adsorbent can still reach a recovery
efficiency of 71 and 76% for Cr(VI) and Zn(II), respectively, after being recycled five times.
The decrease in adsorption efficiency can be ascribed to the inescapable mass loss during
the adsorption–desorption processes and the partial, non-complete regeneration of the
adsorbent [52]. This result indicates that CB18crown6/SBA-15 is promising for the practical
removal of Cr(VI) and Zn(II).
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4. Conclusions

In this study, crown-ether-modified SBA-15 (CB18crown6/SBA-15) was facilely pre-
pared by introducing 4′-carboxybenzo-18-crown-6 (CB18crown6) onto a mesoporous silica
support (SBA-15) through covalent attachment. Physicochemical, surface, and morphologi-
cal characterizations revealed the successful preparation of the adsorbent. Batch adsorption
experiments showed that the optimal conditions for Cr(VI)-selective adsorption were
observed at pH 2, while the optimal conditions for Zn(II)-selective adsorption were ob-
served at pH 5, from the mixed aqueous solutions of chromium, zinc, lithium, cadmium,
cobalt, strontium, and cesium ions using CB18crown6/SBA-15. The process of adsorp-
tion of Cr(VI) by CB18crown6/SBA-15 was best explained by the Langmuir adsorption
isotherm. In addition, the recycling tests showed that the CB18crown6/SBA-15 was able
to achieve 71% reuse efficiency of Cr(VI) and 76% reuse efficiency of Zn(II), even after
five recycles, confirming that CB18crown6/SBA-15 can be used as a highly stable and
recyclable adsorbent. Therefore, it can be summarized that the development of novel
hybrid mesoporous-silica-based adsorbent materials such as CB18crown6/SBA-15, with
improved adsorption efficiency, is highly desirable.
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