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Abstract

The inference of gene co-expressions from microarray and RNA-sequencing data

has led to rich insights on biological processes and disease mechanisms. However, the

bulk samples analyzed in most studies are a mixture of different cell types. As a result,

the inferred co-expressions are confounded by varying cell type compositions across

samples and only offer an aggregated view of gene regulations that may be distinct

across different cell types. The advancement of single cell RNA-sequencing (scRNA-

seq) technology has enabled the direct inference of co-expressions in specific cell types,

facilitating our understanding of cell-type-specific biological functions. However, the

high sequencing depth variations and measurement errors in scRNA-seq data present

significant challenges in inferring cell-type-specific gene co-expressions, and these issues

have not been adequately addressed in the existing methods. We propose a statistical

approach, CS-CORE, for estimating and testing cell-type-specific co-expressions, built

on a general expression-measurement model that explicitly accounts for sequencing

depth variations and measurement errors in the observed single cell data. Systematic

evaluations show that most existing methods suffer from inflated false positives and

biased co-expression estimates and clustering analysis, whereas CS-CORE has appro-

priate false positive control, unbiased co-expression estimates, good statistical power

and satisfactory performance in downstream co-expression analysis. When applied

to analyze scRNA-seq data from postmortem brain samples from Alzheimer’s disease

patients and controls and blood samples from COVID-19 patients and controls, CS-

CORE identified cell-type-specific co-expressions and differential co-expressions that

were more reproducible and/or more enriched for relevant biological pathways than

those inferred from other methods.

Keywords: cell-type-specific analysis, expression-measurement model, gene co-expression

network, sequencing depth, single cell RNA-seq
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1 Introduction

The past two decades have seen great advances in gene co-expression studies using microar-

rays and RNA sequencing technologies, leading to rich insights on biological processes and

disease mechanisms (Zhang and Horvath, 2005; Mostafavi et al., 2018; Koplev et al., 2022).

To date, most co-expression analyses have been performed on bulk samples that are a mix-

ture of different cell types. As a result, the inferred networks are confounded with varying

cell type compositions across samples and limited to an aggregated view of gene regulations

that may differ considerably across cell types (Heintzman et al., 2009; Su et al., 2022). To

infer cell-type-specific networks from bulk samples, cell sorting can be performed, but the

techniques are tedious and subject to technical artifacts (Box et al., 2020).

With scRNA-seq technology such as droplet-based methods, gene expressions can now

be measured in individual cells with annotated cell types (Hao et al., 2021), offering a great

opportunity to construct cell-type-specific co-expression networks. However, such an ana-

lytical task is challenged by the unique characteristics of scRNA-seq data such as their high

sequencing depth variations and measurement errors. For scRNA-seq data, the expression

level of a specific gene is measured through the observed UMI (unique molecular identifier)

count for this gene, and the sequencing depth of a cell is the sum of UMI counts across

all genes. For a typical single cell experiment, there is substantial variation of sequencing

depths across cells (e.g., 400 - 20,000) (Hafemeister and Satija, 2019; Sarkar and Stephens,

2021). As a result, gene co-expressions measured via correlations of UMI counts across cells

can be seriously confounded by varying sequencing depths, resulting in inflated false positive

findings in detecting co-expressed gene pairs. This confounding issue cannot be addressed

using standard normalization strategies, as will be shown later. Besides varying sequencing

depths, measurement errors in the UMI count data pose an additional challenge in infer-
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ring co-expression levels as the errors tend to attenuate correlation estimates with different

degrees for genes with different expression levels.

Recent years have seen the developments of a number of methods to better capture co-

expressions from scRNA-seq data than a simple normalization-based approach, including

locCSN (Wang et al., 2021b), Noise Regularization (Zhang et al., 2021), Normalisr (Wang,

2021), propr (Quinn et al., 2017), and SpQN (Wang et al., 2022). These methods con-

sider novel association metrics or additional adjustments when inferring co-expressions from

scRNA-seq data. However, the proposed procedures do not have rigorous justifications as

they are not explicitly based on the underlying data generating mechanisms and do not

appropriately account for measurement errors and varying sequencing depths across cells.

Besides the above co-expression estimation methods, a recently proposed method called sc-

transform (Hafemeister and Satija, 2019) estimates gene expression levels from scRNA-seq

data by removing the effect of varying sequencing depths via negative binomial regressions.

Although sctransform was not developed for co-expression estimation, one sensible approach

is to calculate correlations of expression levels that have been adjusted for sequencing depths

by sctransform; we refer to this approach as ρ-sctransform in our following discussion. As

will be demonstrated later, the sequencing depth normalization in sctransform, designed to

infer expression levels, can be inadequate in removing biases from sequencing variation and

measurement errors when inferring co-expressions. In our systematic evaluations of differ-

ent methods based on simulated and permuted real scRNA-seq data, we found that all the

other methods, including ρ-sctransform, suffer from inflated type-I errors, varying degrees

of estimation biases, reduced accuracy in detecting co-expressions, and potentially mislead-

ing results in downstream co-expression analysis such as clustering and principal component

analysis.

Here, we present a statistical approach for estimating and testing co-expressions from
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scRNA-seq data, called CS-CORE (cell-type-specific co-expressions). Specifically, CS-CORE

models the unobserved true gene expression levels as latent variables, linked to the observed

UMI counts through a measurement model that accounts for both sequencing depth varia-

tions and measurement errors. Under this model, CS-CORE implements a fast and efficient

iteratively re-weighted least squares approach for estimating the true correlations between

underlying expression levels, together with a theoretically justified statistical test to assess

whether two genes are independent. The proposed model in CS-CORE does not impose any

distributional assumptions on the underlying expression levels and can flexibly accommo-

date single cell data generating mechanisms such as negative binomial distributed counts.

Through systematic evaluations based on simulated and permuted real scRNA-seq data, we

found that CS-CORE had proper type-I error control, unbiased co-expression estimates and

increased statistical power compared with other methods. CS-CORE also had satisfactory

performance in downstream co-expression analysis.

We evaluated the utility of CS-CORE by applying it to multiple scRNA-seq data sets

including postmortem brain samples from Alzheimer’s disease patients and controls (Lau

et al., 2020) and peripheral blood mononuclear cells (PBMC) of COVID-19 patients and

controls (Wilk et al., 2020). For both diseases, CS-CORE identified co-expressions that were

more reproducible across independent data sets and more enriched with known transcription

factor-target gene pairs than other methods. Clustering analysis using results from CS-

CORE extracted co-expressed and differentially co-expressed gene modules that were more

strongly enriched for relevant cell-type-specific biological functions than those inferred from

other methods, highlighting the potential of CS-CORE in characterizing cell-type-specific

biological functions and uncovering novel disease-related cell-type-specific pathways.
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2 Results

2.1 Overview of CS-CORE

We have n cells with the observation for cell i, i = 1, ..., n, denoted by a vector (xi1, . . . , xip)

corresponding to the observed UMI counts for p genes. We use si =
∑p

j=1 xij to denote

the sequencing depth of cell i, which is the sum of UMI counts across all genes in this cell.

Let (zi1, . . . , zip) denote the underlying expression levels from p genes in cell i, defined to be

the number of molecules from each gene relative to the total number of molecules in a cell

(Sarkar and Stephens, 2021). Assume that

(zi1, . . . , zip) ∼ Fp(µ,Σ), xij|zij ∼ Poisson(sizij), (1)

where Fp(µ,Σ) is an unknown nonnegative p-variate distribution with mean vector µ =

(µ1, . . . , µp),
∑p

j=1 µj = 1, and covariance matrix Σ = (σjj′)p×p. Here, xij is the UMI count

of gene j in cell i, assumed to follow a Poisson measurement model (Sarkar and Stephens,

2021) depending on the underlying expression level zij and sequencing depth si. This Poisson

measurement model explicitly accounts for the sequencing depths and measurement errors.

While a marginal expression-measurement model has been considered for modeling expres-

sion levels in bulk RNA-seq (Robinson et al., 2010; Love et al., 2014) and scRNA-seq data

(Wang et al., 2018; Hafemeister and Satija, 2019; Townes et al., 2019), a joint expression-

measurement model such as (1) is needed to infer co-expressions. Under (1), if zij follows a

Gamma distribution, then xij follows a negative binomial distribution marginally.

We measure gene co-expressions by Σp×p, which quantifies the correlation strength be-

tween the underlying expression levels. This definition of co-expression is precise and not

biased by sequencing depth variations and measurement errors. Specifically, for any gene

pair (j, j′), we measure co-expression via their correlation ρjj′ = σjj′/
√
σjjσj′j′ .
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Given UMI counts {xi1, . . . , xip}ni=1 and sequencing depths {si}ni=1, estimating the covari-

ance matrixΣp×p is a challenging task. Without placing distributional assumptions on Fp, we

propose a moment-based iteratively reweighted least squares (IRLS) estimation procedure,

that is fast to implement and statistically efficient. For each pair (j, j′), we also develop a

theoretically justified hypothesis testing procedure that evaluates the independence between

their expression levels zij and zij′ . The test statistic can be easily computed using IRLS

estimates, does not require any distributional assumptions on Fp, and follows a standard

normal distribution under the null.

Details of the above estimation and testing procedures are given in Section 4.1. In sum-

mary, CS-CORE takes UMI counts and sequencing depths across cells as input and estimates

correlations of the underlying expression levels as well as p-values for testing independence

between gene pairs, without needing parameter tuning. The procedure removes the con-

founding effects of varying sequencing depths and the bias from measurement errors when

inferring co-expressions, is theoretically justified and fast to implement.

2.2 CS-CORE has better control of false positive rates

To evaluate the performance of CS-CORE and illustrate the confounding effects from se-

quencing depth variations on other methods for independent gene pairs, we generated null

data sets, where genes are not expected to co-express, by permuting the single nucleus RNA-

seq (snRNA-seq) data from Lau et al. (2020) while making the sequencing depths across cells

either constant or varying. Specifically, we normalized gene expressions (UMI counts) within

each cell by its sequencing depth and, for each gene, we randomly permuted its normalized

expression levels across cells. Then, we obtained UMI counts for each gene based on pre-

specified sequencing depth of each cell (Section 4.3). To examine effects of sequencing depth

variations, we considered two settings with one set to observed sequencing depths in real
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Figure 1: Validation of CS-CORE using permuted snRNA-seq data from Lau et al. (2020).
Results from permuted data with varying and constant sequencing depths are colored with
light red and blue, respectively. (A) Scatter plots with fitted curves showing expression
(x-axis) and average co-expression (y-axis) of each gene with co-expression estimated using
locCSN, Noise Regularization, Normalisr, Pearson correlation, propr, ρ-sctransform, Spear-
man correlation, SpQN and CS-CORE. Average co-expressions are re-scaled by the maximum
value to aid comparison. (B) Q-Q plots comparing p-values for testing co-expressions of gene
pairs against Uniform(0,1) using six methods with statistical tests, including Noise Regular-
ization, Normalisr, Pearson correlation, ρ-sctransform, Spearman correlation and CS-CORE.
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data, which are highly variable, and one set to be constant across cells. This permutation

procedure de-correlated gene expressions such that the average co-expression for each gene

in the permuted data, calculated by averaging its co-expressions with all other genes, is

expected to center around zero, regardless of sequencing depth variations.

We compared CS-CORE to other approaches, including locCSN (Wang et al., 2021b),

Noise Regularization (Zhang et al., 2021), Normalisr (Wang, 2021), Pearson correlation,

propr (Quinn et al., 2017), ρ-sctransform (Hafemeister and Satija, 2019), Spearman cor-

relation and SpQN (Wang et al., 2022) (Section 4.2). Among these approaches, statistical

tests for co-expressions are possible for Noise Regularization, Normalisr, Pearson correlation,

ρ-sctransform and Spearman correlation.

For null data with high variations in sequencing depths, we found that co-expression

estimates from most methods were biased with estimated average gene co-expressions differ-

ent from zero (Figure 1A). The amount of bias varied with the expression level with distinct

patterns for different methods. Meanwhile, in null data with no sequencing depth variations,

there were minimal biases for these methods (Figure 1A), demonstrating that co-expression

estimates can be biased by sequencing depth variations. By contrast, average co-expressions

estimated by CS-CORE were unbiased and centered around zero, regardless of sequencing

depth variations (Figure 1A). We observed the same qualitative patterns in our experiments

with simulated data (Figure S2). One main cause of bias from other methods is no or inade-

quate adjustments of sequencing depth variations when measuring co-expressions, including

the standard log transformations (e.g., Pearson, locCSN) and post-hoc adjustments (e.g.,

SpQN). We further illustrate this with additional simulations in Figure S1.

We also considered statistical tests for co-expressions in the permuted data. As the null

hypothesis of no co-expression is expected to hold after permutation, p-values for testing in-

dependence of gene pairs should follow the Uniform[0,1] distribution. We found that in null
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data with no variations in sequencing depths, most methods had well-controlled type-I er-

rors as the Q-Q plots showed matching quantiles between empirical distributions of p-values

and the uniform distribution (Figure 1B). However, in null data with high variations in se-

quencing depths, Noise Regularization, Pearson and Spearman had inflated type I errors,

demonstrating the confounding effects of sequencing depth variations (Figure 1B). While

Normalisr and ρ-sctransform had controlled type-I errors with sequencing depth variations,

they had biases in estimating co-expressions (Figure 2A). We also found that these two meth-

ods had reduced power in detecting co-expressions when compared to CS-CORE (Appendix,

Figure S3).

2.3 CS-CORE has better co-expression estimation and detection

accuracy

We evaluated the accuracy of CS-CORE in estimating and detecting co-expressions and

illustrated another issue often referred to as the mean-correlation bias (Crow et al., 2016;

Wang et al., 2022) in co-expression estimation. The mean-correlation bias is a separate issue

from the confounding effect of varying sequencing depths. It arises, as measuring associations

of the observed UMI counts, which profile the underlying expressions with measurement

errors, tend to yield attenuated estimates due to the added errors. The amount of attenuation

bias tends to decrease as the expression level increases (see Section 4.4) and correlations tend

to be more accurately estimated for highly expressed genes. As a result, highly expressed

genes can appear more correlated as an artifact. This attenuation bias has also been noted

in analyzing bulk RNA-seq data (Saccenti et al., 2020; Wang et al., 2022), but it can be

exacerbated by the shallow sequencing depths frequently seen in scRNA-seq data.

To demonstrate this, we simulated expression data for gene pairs with varying expression

levels and a correlation of ρ = 0.5 following marginal negative binomial distributions (see Sec-
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Figure 2: Validation of CS-CORE using simulated data, compared to locSCN, Noise Regu-
larization, Normalisr, Pearson correlation, propr, ρ-sctransform, Spearman correlation and
SpQN. (A) Curve-fitted co-expression estimates against geometric mean expression levels
on gene pairs simulated with a true correlation of 0.5 (5,000 genes and 1,000 cells). (B)
Precision-recall curves evaluated using 500 genes, 5,000 cells and a sparse co-expression ma-
trix estimated from real data. Cut-off values are based on p-values for CS-CORE, Noise
Regularization, Normalisr, Pearson correlation, ρ-sctransform, Spearman correlation and
absolute values of co-expression estimates for propr and SpQN, as they are not equipped
with statistical tests; locCSN is excluded due to its extreme demand in computing time. (C)
Running times evaluated under the same setting as in (B). locCSN is evaluated using 0.2%
of the cells to reduce computing time. The simulations were run on an Intel Xeon Gold 6240
@ 2.60GHz with one node and 50GB memory. The error bars denote one standard deviation
across 100 replications.
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tion 4.5). For co-expressed gene pairs with a true correlation of 0.5, we found that correlation

estimates from all other methods were inaccurate (Figure 2A) with most methods severely

underestimating co-expressions for genes with low or moderate expression levels. The corre-

lation estimates also spuriously increased with expression levels for most methods. By con-

trast, CS-CORE could accurately estimate co-expressions (Figure 2A) and was not subject

to mean-correlation bias. This is because CS-CORE is based on an expression-measurement

model and explicitly measures co-expressions using correlations of the underlying expression

levels, free of measurement errors. The mean-correlation bias remained on data simulated

with no variations in sequencing depths (Figure S4), suggesting that the mean-correlation

bias is a separate source of bias from varying sequencing depths. We further evaluated the

co-expression detection accuracy in simulations with p = 500 where co-expressed pairs were

set to those inferred from real data (see Section 4.5). The precision-recall curves in Figure 2B

show that CS-CORE achieves the highest area-under-the-curve value.

Finally, we compared the computing time of different methods (Figure 2C) under the sim-

ulation setting considered in Figure 2B. It is seen that CS-CORE is highly computationally

efficient as it uses a least squares estimation procedure. Specifically, CS-CORE was faster to

implement than the state-of-the-art method, locCSN, which is based a local nonparametric

test and ρ-sctransform, which requires fitting marginal negative binomial regressions using

likelihood-based approaches. The computing time of CS-CORE is comparable to simple

procedures such as Pearson and Spearman, as they both include a normalization step (see

Section 4.2).
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Figure 3: Evaluation of CS-CORE in recovering clusters and principal components using
simulated data, compared to locCSN, Noise Regularization, Normalisr, Pearson correlation,
propr, ρ-sctransform, Spearman correlation and SpQN. (A) Heatmaps of true and estimated
co-expression networks from simulations. When plotting results from each method, genes
were ordered by applying hierarchical clustering to the estimated co-expression network and
color coded by their true cluster labels. (B) Adjusted Rand index (ARI) between true clusters
and clusters extracted from co-expression networks estimated using different methods. (C)
Accuracy in recovering principal components, calculated using subspace distance (Golub
and Van Loan, 2013) between the top four singular vectors of the true co-expression matrix
and those of the estimated co-expression matrix. (D) Spearman correlations between the
expression levels and estimated average co-expression levels of genes, with ground truth
calculated from simulation settings marked with a dashed line. (E) ARI between clusters
extracted from estimated co-expression networks and clusters extracted from clustering gene
expression levels, with the true ARI calculated from parameters used in simulation settings
marked with a dashed line. (B)-(E) were evaluated with 25 replications.

2.4 Other methods can lead to biased results in downstream co-

expression analysis

Bias in estimating co-expressions can negatively impact important downstream co-expression

analyses such as clustering and principal component analysis (PCA). To evaluate the perfor-
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mance of CS-CORE and other methods on such downstream analytical tasks, we simulated

n = 2, 000 cells for p = 100 genes with varying expression levels and a co-expression ma-

trix with four clusters (see Section 4.5 and S2). We estimated co-expression networks using

CS-CORE and other methods, and compared them to the true co-expression network (Fig-

ure 3A). In particular, when plotting the results from each method, we ordered the genes

by applying hierarchical clustering to the estimated co-expression network. We found that

CS-CORE was the only method that could accurately estimate co-expressions and be used to

recover true clusters. The estimated co-expression networks and inferred cluster labels from

other methods were strikingly inaccurate. These findings were further supported by eval-

uating the clustering accuracy (Figure 3B), measured using adjusted Rand index, and the

accuracy in estimating the top principal components (Figure 3C), measured using subspace

distance (Golub and Van Loan, 2013).

To highlight the mean-correlation bias, we computed the correlation between gene expres-

sion levels and estimated co-expression levels. As expression levels were randomly assigned

independent of correlation strengths, the true correlation between gene expression and co-

expression levels should be close to zero, as marked in Figure 3D. However, we found that the

co-expression levels estimated from locCSN, Pearson correlation, propr, ρ-sctransform and

Spearman correlation were spuriously correlated with the mean expression level. One impli-

cation of this mean-correlation bias is that, as highly expressed genes often appear highly

co-expressed with other genes as an artifact, clustering methods tend to incorrectly cluster

genes with similar expression levels in a co-expression cluster and expression levels become

falsely predictive of the network modules (Figure 3E). In another data example, we demon-

strated that this mean-correlation bias could also lead to spurious clustering structures on

null data where genes are not co-expressed (Figure S5).
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2.5 CS-CORE identified more reproducible and biologically rele-

vant co-expressions from AD and control brain samples

We applied CS-CORE to a snRNA-seq data set collected from the prefrontal cortical regions

of 12 Alzheimer’s disease (AD) patients and nine controls in Lau et al. (2020). In particular,

we focused our comparison with ρ-sctransform, as it gives the best overall performance in

Figure 1-3 and allows for statistical tests.

First, using samples from controls, we estimated the co-expression network among top

5,000 highly expressed genes in five major brain cell types including astrocyte (Ast), exci-

tatory neuron (Ex), inhibitory neuron (In), oligodendrocyte (Oli) and microglia (Mic), and

evaluated the reproducibility of identified co-expressions using two independent snRNA-seq

data sets on prefrontal cortex from Mathys et al. (2019) and Morabito et al. (2021) (Section

S3.3). Figure 4A shows that the co-expressed gene pairs inferred by CS-CORE were more

reproducible in Mathys et al. (2019) than those inferred by ρ-sctransform across different

p-value cutoffs and cell types, suggesting CS-CORE has greater statistical power to detect

true co-expression signals. We had similar observations for data from Morabito et al. (2021)

(Figure S6).

Next, by evaluating the overlap of co-expressed pairs with a database on known Tran-

scription Factor(TF)-target gene pairs (Han et al., 2018), we found CS-CORE recovered more

known TF-target pairs than ρ-sctransform from the inferred networks (Figure 4B). Addition-

ally, we extracted co-expressed gene modules by applying WGCNA (Langfelder and Horvath,

2008) on significantly co-expressed gene pairs, which were then evaluated using Gene Ontol-

ogy (GO) enrichment analysis (Wu et al., 2021) (see Section S3.1). Our enrichment analysis

used the 5,000 highly expressed genes as the background gene set, such that enrichment of

any module is not attributed to its high expression levels. For microglia, the innate immune

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 15, 2022. ; https://doi.org/10.1101/2022.12.13.520181doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.13.520181
http://creativecommons.org/licenses/by-nc-nd/4.0/


2

4

6

8

1.0 1.1 1.2 1.3 1.4
CS−CORE / ρ−sctransform

P 
va

lu
e 

(−
lo

g1
0)

Ratio of reproduced pairs
A

2

4

6

8

1.2 1.5 1.8
CS−CORE / ρ−sctransform

P 
va

lu
e 

(−
lo

g1
0)

Ratio of TF−target pairs
B

Cell type
Ast
Ex
In
Mic
Oli

−0.5
−1

0

0.5

1

GO functions Chemical synaptic transmission
Defense response

Cytoplasmic translation
Protein folding

C CS-CORE ρ−sctransform

1.0

Figure 4: Co-expression analysis using AD brain samples in Lau et al. (2020). We used
the cells in five major brain cell types from control subjects from Lau et al. (2020) to
estimate cell-type-specific co-expression networks. A. Ratio of the numbers of gene pairs
that were identified as significant in both Lau et al. (2020) and Mathys et al. (2019) at
specified p-value cutoffs between CS-CORE and ρ-sctransform. B. Ratio of the numbers
of gene pairs that were identified as significant and overlapped with known TF-target gene
pairs in the TRRUST database (Han et al., 2018) between CS-CORE and ρ-sctransform.
C. Heatmaps of microglia-specific co-expression network estimates on genes from four GO
terms on microglia’s functions with genes ordered by hierarchical clustering.
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brain cells with a central role in the AD neuroinflammation mechanism (Heneka et al., 2015),

clustering based on CS-CORE identified four modules strongly enriched for GO terms re-

lated to microglia’s functions, including defense response, chemical synaptic transmission,

cytoplasmic translation and protein folding, respectively, while only two of these four func-

tions were found enriched for modules inferred based on ρ-sctransform with less significant

p-values and lower gene ratios (Tables S2, S3). In particular, Figure 4C shows the estimated

co-expression networks, with genes ordered by hierarchical clustering, on a subset of genes

from the four GO terms. It is seen that CS-CORE accurately grouped genes into respective

biological functions, with genes in the same GO function densely connected. By contrast, ρ-

sctransform only partially recovered some gene modules and the estimated co-expressions are

generally much weaker. Besides microglia, CS-CORE also identified gene modules that were

enriched for cell-type-specific functions in astrocytes (synaptic signalling, protein folding,

cellular response to hypoxia), inhibitory neurons (synaptic membrane) and oligodendrocytes

(cell-cell signaling, cholesterol metabolic process), while these functions were either not or

much less enriched for modules inferred based on ρ-sctransform (Table S2, S3). This further

highlights the potential of CS-CORE in uncovering cell-type-specific biological pathways.

Finally, we constructed the differential co-expression network in microglia between AD

patients and controls from Lau et al. (2020) to investigate the biological pathways dysreg-

ulated in AD (see Section 4.6). We applied clustering analysis to the differential network

to extract gene modules that shared similar co-expression changes in AD and performed

GO enrichment analysis. Clustering based on CS-CORE identified three differentially co-

expressed gene modules enriched for cell-type-specific functional pathways that are implied

in AD disease mechanisms, including protein folding (Roychaudhuri et al., 2009), synapse

signaling transduction (Kamat et al., 2016), and protein kinase (toll-like receptors) signaling

pathways (Landreth and Reed-Geaghan, 2009) (Table S4). In comparison, ρ-sctransform did
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Figure 5: CS-CORE estimates in monocytes from control subjects and COVID-19 patients.
Known interferon-stimulated genes are colored in red. Genes in the SARS-CoV-2 infection
Reactome pathway are colored in brown. * is used to mark genes that belong to both gene
sets. We performed a differential co-expression analysis on top 1,000 highly expressed genes
in monocytes and obtained modules of genes that shared similar changes in co-expressions
between cells from COVID-19 patients and controls. For a differentially co-expressed gene
module enriched for the interferon signalling pathway, we focused on genes that had strong
differential signals (sum of absolute differential co-expressions greater than the median) and
visualized the co-expression network estimates in control subjects and COVID-19 patients.

not identify any differentially co-expressed module enriched with cell-type-specific biological

or disease-related functions (Table S5).

2.6 CS-CORE identified upregulated co-expressions in Interferon

signalling pathway from COVID-19 blood samples

We applied CS-CORE to a scRNA-seq data set from human peripheral blood mononuclear

cells (PBMC) of seven hospitalized patients with SARS-CoV-2 and six controls (Wilk et al.,

2020) to identify biological pathways differentially regulated in COVID-19 patients.

Using samples from controls, we estimated cell-type-specific co-expressions among the top
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5,000 highly expressed genes in five major immune cell types, including B cells, CD4 positive

T cells, CD8 positive T cells, monocytes and natural killer (NK) cells. Using an independent

scRNA-seq data set on PBMC (Unterman et al., 2022), we found that CS-CORE yielded

a larger number of reproducible co-expressed gene pairs than ρ-sctransform across different

p-value cutoffs and cell types (Figure S7A). CS-CORE also uncovered more gene pairs that

overlapped with known TF-target gene pairs and more gene modules with stronger cell-type-

specific functional enrichment than ρ-sctransform across cell types through GO enrichment

analysis (Figure S7B, Tables S6-S10). For example, CS-CORE identified three co-expression

modules enriched for the biological functions of B cells, including antigen processing via

MHC Class II, adaptive immune response and response to inteferon-alpha (Table S6). In

contrast, only one of these three functions was found enriched in a module inferred based on

ρ-sctransform with a less significant p-value and a lower gene ratio (Table S9). Our results on

PBMC again show that CS-CORE can recover biologically more meaningful co-expressions

than other methods.

We next investigated cell-type-specific responses to SARS-CoV-2 viral infection in mono-

cytes using a differential co-expression analysis similar to the one performed in the previous

section between AD patients and controls. Clustering analysis revealed gene modules that

share similar co-expression changes in monocytes in response to SARS-CoV-2. In particular,

three gene modules inferred using co-expression estimates from CS-CORE were significantly

enriched for immune responses based on GO enrichment analysis, including inflammatory

response, virus defense response, and cellular stress response (Table S11). In contrast, ρ-

sctransform only identified one gene module associated with virus defense response with

much weaker enrichment signals (Table S12). In Figure 5, we highlight a module identi-

fied by CS-CORE, which is enriched for the interferon signalling pathway (Table S13), a

key immune signature in COVID-19 patients that has been demonstrated in multiple studies
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(Acharya et al., 2020; Hadjadj et al., 2020; Lee and Shin, 2020). While it is known that the ex-

pression levels of interferon-stimulated genes are upregulated in monocytes from COVID-19

patients, by comparing the CS-CORE estimates in monocytes between COVID-19 patients

and controls, we identified upregulated co-expressions among interferon-stimulated genes,

suggesting increased gene coordination in the interferon signalling pathway upon viral infec-

tion. We also found stronger co-expressions between genes in the interferon signaling and

antigen presentation pathways among COVID-19 patients, suggesting stronger concerted im-

mune responses between these two pathways. Finally, we note that this gene module also

contains multiple known genes in the SARS-CoV-2 infection Reactome pathway, revealing

cell-type-specific changes in co-expressions among known disease-related genes.

3 Discussion

We developed a comprehensive statistical approach, CS-CORE, for estimating and testing

cell-type-specific co-expressions based on scRNA-seq data. CS-CORE adopts a multivariate

expression-measurement model for the observed UMI counts and a pair-wise IRLS method

for estimation and testing. It does not place distributional assumptions on the underlying

expression levels and can be implemented very efficiently to estimate and test co-expressions

in a large network. We demonstrated the better performance of CS-CORE than other

methods through both simulations and real data analyses.

Our work pointed to two potential sources of biases when inferring co-expressions from

UMI counts. The first one is the varying sequencing depths across cells, which can lead to

inflated false positive findings in detecting co-expressions, as a pair of independent genes may

appear co-expressed as a result of the sequencing depth variations across cells. The second

one is the error from the measurement process, causing the observed UMI counts to deviate
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from the underlying expression levels. Under the Poisson measurement model, this deviation

is a function of both the expression level and the sequencing depth. When estimating the

underlying co-expression level for a pair of genes, correlations between UMI counts tend to be

biased towards zero as a result of the measurement errors. In our experiments, we observed

such an attenuation bias in most methods we compared to, leading to inaccuracy and reduced

power in estimating and detecting co-expressions. These two distinct sources of biases, when

combined, cause serious issues in estimating and testing for co-expressions. As demonstrated

in our analysis, no other methods can adequately address both. Our approach CS-CORE

addresses them by explicitly modeling the measurement process, accounting for both varying

sequencing depths and measurement errors, and estimates the first and second moments of

the underlying multivariate expression model to produce estimates of co-expressions, without

any specific distributional assumptions.

There has been recent work that makes cell-type-specific inferences from bulk samples

leveraging cell type deconvolution techniques (Jin et al., 2021; Wang et al., 2021a). These

work often aims to estimate cell-type-specific expressions and compositions in bulk samples

(Wang et al., 2019; Newman et al., 2019; Jaakkola and Elo, 2021; Cai et al., 2022). In

particular, a recent method CSNet (Su et al., 2022) focuses on estimating cell-type-specific

co-expressions from bulk sample data. The rich bulk samples collected over past decades

and the increasingly available scRNA-seq data together offer a great opportunity to integrate

bulk samples and single cell data to draw cell-type-specific inferences of co-expressions. The

proposed method CS-CORE provides a useful tool in developing methods for such integrative

analyses.

In CS-CORE, we have assumed that gene expressions from cells of the same cell type

follow the same distribution. This assumption may not hold when the cells are collected from

individuals with different genetic, demographic and clinical characteristics. For example,
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there is a growing interest in studying the genetic basis of cell-type-specific gene expression

and co-expression differences across individuals using single cell data, and such population

level single cell data are becoming increasingly available (Young et al., 2021; Nathan et al.,

2022). As an important next step, we plan to extend the CS-CORE framework to infer

individualized cell-type-specific co-expression networks and to study the differences in gene

co-expressions across genotypes and conditions, shedding light on individualized and context-

specific biological functions and pathways.

In summary, the CS-CORE method introduced in this article is statistically sound

and computationally efficient. Compared to the other methods, it generates more repro-

ducible and biologically more relevant cell-type-specific co-expression networks across mul-

tiple scRNA-seq data sets. With the rapid increase of scRNA-seq studies, we believe that

CS-CORE offers a powerful and robust statistical tool to infer cell-type-specific co-expression

networks to characterize biological pathways and molecular mechanisms at the cell type level.

4 Methods

4.1 CS-CORE method

Under the expression-measurement model defined in (1), it holds that E(xij) = siµj, Var(xij) =

siµj + s2iσjj, and E [(xij − siµj)(xij′ − siµj′)] = s2iσjj′ . This motivates us to estimate µj’s

and (σjj′)p×p via the following set of regression equations:

xij = siµj + ϵij,

(xij − siµj)
2 = siµj + s2iσjj + ηij,

(xij − siµj)(xij′ − siµj′) = s2iσjj′ + ξijj′ ,

(2)

where ϵij, ηij, and ξijj′ are independent and mean-zero error variables for all i, j, j′. Specifi-

cally, given UMI counts xij’s and sequencing depths si’s, the mean parameter µj is estimated
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via minµ

∑n
i=1 wij(xij − siµ)

2, where wij is the weight for cell i to be determined. Given the

estimates µ̂j’s, we estimate σjj and σjj′ with minσ

∑n
i=1 hij[(xij − siµ̂j)

2 − siµ̂j − s2iσ]
2 and

minσ

∑n
i=1 gijj′ [(xij − siµ̂j)(xij′ − siµ̂j′)− s2iσ]

2, respectively, where hij and gijj′ are weights

to be determined. These weighted least squares can be computed very efficiently.

In CS-CORE, we carefully select and update the weights via an IRLS procedure, such that

the weighted least squares estimators are statistically efficient; see the detailed procedure

in Algorithm S1. The most ideal weights, in terms of statistical efficiency, should be the

reciprocal of the variances of the error variables in (2). Hence, we set wij = 1/Var(ϵij) =

1/(siµj + s2iσjj), which is updated in each step of the IRLS estimation. The analytical forms

of Var(ηij) and Var(ξijj′) are difficult to derive as we do not place distributional assumptions

on zij. Given weights wij’s for the mean parameter estimation, we set weights for variance

and covariance estimation as hij = w2
ij and gijj′ = wijwij′ , respectively, which yield good

performance in our experiments and the IRLS procedure typically converges within five

iterations. In practice, we add a regularization step to the variance parameters σjj’s used in

calculating the weights, as their estimates can be variable, leading to highly variable weights.

Next, we develop a statistical test to assess whether a gene pair have independent

expression levels. Under model (1) and when zij and zij′ are independent, Var(ξijj′) =

(siµj + s2iσjj)(siµj′ + s2iσj′j′) = 1/gijj′ . Letting σ̂jj′ be estimated with true µj’s, we define

the test statistic Tjj′ = σ̂jj′/
√
Var(σ̂jj′), which can be calculated as

Tjj′ =

∑
i s

2
i (xij − siµj)(xij′ − siµj′)gijj′√∑

i s
4
i (siµj + s2iσjj)(siµj′ + s2iσj′j′)g2ijj′

.

It then follows that Tjj′ ∼ N(0, 1) under the null hypothesis that zij and zij′ are independent.

This result allows us to directly compute p-values by plugging in IRLS estimated µj’s and

σjj’s, all of which are consistent weighted least squares estimators.
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4.2 Other co-expression estimation and testing methods using

scRNA-seq data

We compared CS-CORE with eight other methods for inferring gene co-expression from single

cell data, including locCSN (Wang et al., 2021b), Noise Regularization (Zhang et al., 2021),

Normalisr (Wang, 2021), Pearson correlation, propr (Quinn et al., 2017), ρ-sctransform,

Spearman correlation and SpQN (Wang et al., 2022). The method locCSN was applied on

log normalized data log(xij/si + 1) and computed with the Python implementation pro-

vided at https://github.com/xuranw/locCSN. While locCSN estimates one network per

cell, we followed the authors’ instructions to aggregate cell-specific co-expressions into cell-

type-specific co-expressions, as stated in Wang et al. (Wang et al., 2021b) that averaging

provides stable estimates of the network structure. The method propr refers to ρp in Quinn

et al. (2017) and was calculated with the R package ‘propR’ (v.4.2.6). For ρ-sctransform,

we computed the residuals of sctransform using R package Seurat (v.4.0.3) and evaluated

Pearson correlations between the residuals. The Spearman (Pearson) correlation was calcu-

lated on log normalized expression data using the R package ‘stats’ (v.4.1.3). Noise Regu-

larization (Zhang et al., 2021) was implemented from https://github.com/RuoyuZhang/

NoiseRegularization, Normalisr (Wang, 2021) was computed with the Python implementa-

tion from https://github.com/lingfeiwang/normalisr (v.1.0.0) and SpQN (Wang et al.,

2022) was computed with R package ‘SpQN’ (v.1.6.0).

Among the above eight methods, statistical tests for co-expressions are possible for Noise

Regularization, Normalisr, Pearson correlation, ρ-sctransform and Spearman correlation.

Specifically, test statistics for Noise regularization, Pearson, ρ-sctransform and Spearman

were calculated as t = r
√

(n− 2)/(1− r2) given the correlation estimate r, and two-sided

p-values were evaluated under the standard normal distribution. The p-values for Normalisr
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were computed using the online code provided for its implementation.

4.3 Experiments with permuted scRNA-seq data

To generate null data sets from a given scRNA-seq data set with co-expression levels at or

close to zero among all gene pairs while preserving gene expression levels, we first calculated

normalized expression level for each gene j in cell i, written as yij = xij/si. Then, for each

gene j, we randomly permuted the normalized expressions (yij)i=1,...,n across n cells. After

permutation, gene expressions were decorrelated and no gene pairs were expected to co-

express. Finally, the UMI count of gene j from cell i in the permuted data was calculated by

sampling from Poisson(tiy
p
ij), where ypij is the normalized expression level after permutation

and ti is the desired sequencing depth in cell i. For the varying and constant sequencing depth

settings in Figure 1, we set ti to the observed sequencing depth si and median(s1, . . . , sn),

respectively.

For numerical results in Figure 1 and Figure S2, we used the snRNA-seq data from Lau

et al. (2020) and selected excitatory neurons from control subjects. The distribution of

sequencing depths is long-tailed with a median of 5,833 (Figure S8). We randomly sampled

1,000 cells and sampled 500 genes from the top 5,000 highly expressed genes with probabilities

proportional to the inverse density of expression levels. This ensures that the sampled genes

could cover the range of expression levels. In the x-axis of Figure 1, we plotted expression

levels at the scale of log10(µj) + 3.

4.4 A simple illustration of the expression-level-dependent atten-

uation bias

To illustrate how errors from the Poisson measurement model in (1) can bias co-expression

estimates, we conduct a short analysis under a much simplified case that directly calculates
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Pearson correlations of UMI counts. The analysis is similar to that in Wang et al. (2022),

though si was not considered there. From (1) and for genes j, j′, we have

E ([(xij − E(xij)][xij′ − E(xij′)]) = ρjj′ × aijaij′ ,

aij =

√
siVar(zij)

Var(xij)
=

√
siCV

2
j

1/µj + siCV
2
j

,
(3)

where CVj is the coefficient of variation of gene j defined as
√
σjj/µj. To measure the true

correlation ρjj′ , the correlation based on UMI counts xij and xij′ is always biased towards

zero, as aijaij′ < 1 when µj, µ
′
j > 0. We refer to aij, derived under the Poisson measurement

model in (1), as the attenuation factor in this analysis.

When CVj’s are fixed, the attenuation factor aij is closer to 1 for highly expressed genes

with a larger µj. Correspondingly, correlations are more accurately estimated for highly

expressed genes and more attenuated for lowly expressed genes, assuming si’s do not vary

across cells. Based on a real snRNA-seq data set from Lau et al. (2020), we indeed observed

that the estimated aij approached 1 as the gene expression level increased (Figure S9). With

si’s varying across cells, the UMI counts for a pair of genes across cells are not identically

distributed. In this case, it is difficult to analytically demonstrate the combined effect of the

attenuation bias and the varying sequencing depths on co-expression estimation.

4.5 Simulating from the multivariate expression-measurement model

To simulate gene expression data from model (1), we combine a marginal negative binomial

model and a copula-based approach that can simulate multivariate count data following a

pre-specified co-expression matrix.

We specified the distribution of true expression level zij to be Gamma(αj, βj) where

µj = αjβj and σjj = αjβ
2
j correspond to the marginal mean and variance in (1). Conditional

on zij, we simulated counts xij from Poisson(sizij) independently for cell i and gene j.
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Marginally, this Poisson-Gamma mixture is equivalent to a negative binomial model on

xij, which is commonly used to model droplet-based single cell data (Risso et al., 2018;

Hafemeister and Satija, 2019; Svensson, 2020; He et al., 2021). In our simulations, µj, σjj

and si are estimated or sampled from real data (see Section S2). Next, given a p×p correlation

matrix R, we adopted a Gaussian copula to simulate correlated Gamma random variables

(Tian et al., 2021; Sun et al., 2021). In particular, we first simulated samples (vi1, . . . , vip)

from a multivariate normal distribution with mean 0 and correlation R and then computed

zij = F−1
j (Φ(vij)), where Φ(·) is the cumulative distribution function (CDF) of a standard

normal distribution and Fj(·) is the CDF of Gamma(αj, βj). In Figure 2B, the matrix R

was estimated from Lau et al. (2020) and in Figure 3A, the modular matrix R was generated

from a network model. These details can be found in Section S2.

4.6 Differential co-expression analysis

For differential co-expression analysis, we first estimated co-expression networks from the

disease and control groups separately. For the group with more cells, we randomly sampled

a subset of cells such that the two groups had the same number of cells when estimating co-

expressions. For each gene pair, we calculated the difference between co-expression estimates

and assessed the statistical significance using a permutation test, where we randomly per-

muted the group labels 100 times and built a null distribution of differences in co-expressions.

We then applied WGCNA (Langfelder and Horvath, 2008) to the significantly differentially

co-expressed pairs (BH-adjusted p-values<0.05) with the soft-thresholding power set to 1

and extracted differentially co-expressed modules.
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5 Data Availability

All data used in this work are publicly available, and the description, accession numbers

and links of each data set are in Table S1. Codes that implement CS-CORE are covered

by the MIT License and are available at GitHub: https://github.com/ChangSuBiostats/

CS-CORE.
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