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Abstract
This paper intends to introduce mathematical tools for aggregation of the generalized hesitant fuzzy numbers in order to
increase the use of them in the real world. The proposed operators, are based on general form of t-norm and t-conorm
functions, enable us to do some mathematical computations and aggregate the given generalized hesitant fuzzy numbers.
At first, some famous Archimedean t-norms and t-conorms, i.e., Algebraic, Einstein, Hamacher, and Frank t-norms and
t-conorms, and their properties, have been developed to be employed with generalized hesitant fuzzy numbers. Then, several
averaging and geometric-based aggregation operators for generalized hesitant fuzzy numbers have been proposed. Later on, a
decision-making algorithm has been defined based on such operators to address the problems. The necessity and application
of the proposed concepts have been explained by some numerical examples.

Keywords Generalized hesitant fuzzy numbers · Hesitant fuzzy numbers · Hesitant fuzzy sets · t-norm and t-conorm
functions · Hybrid assessment

1 Introduction

Today, uncertainty is an accepted scientific factor inmodeling
of real-world’ problems. Probability theory, belief function
theory, possibility theory, fuzzy sets theory, etc., are some
of the proposed tools to deal with the uncertainty (Weaver
1948; Smithson 1989; Selvachandran et al. 2019; Yilin et al.
2021; Giang et al. 2019; Bashir et al. 2018). As human soci-
eties grew, so did the complexity of their problems, and it
was necessary to develop appropriate solution tools to the
triple classification of problems (organized simplicity, orga-
nized complexity, and disorganized complexity problems)
(Weaver 1948). For example, fuzzy sets (FSs) theory (Zadeh
1965) and some of its generalizations, i.e., type-2 fuzzy sets
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(Karnik and Mendel 2001), intuitionistic fuzzy sets (IFSs)
(Atanassov 1983, 2022), Pythagorean fuzzy sets (Wang and
Garg 2020), Hesitant fuzzy sets (HFSs) (Torra 2010), intu-
itionisticHesitant fuzzy sets (Mahmood et al. 2021), Hesitant
fuzzy numbers (HFNs) (Keikha 2021), and generalized Hes-
itant fuzzy numbers (GHFNs) (Keikha 2021) are justifiable
from this perspective.

Most of the practical problems are composed of many
but a finite number of factors, and fall into the organized
complexity problems category (Weaver 1948). Recently, the
HFSs which deployed hesitant fuzzy elements (HFEs), i.e.,
a confined collection of several amounts between 0 and 1 as
unsureness grades, have received a lot of attention to be used
in different areas alone or in combination with some other
methods (Jin et al. 2022; Qin et al. 2022; Shen et al. 2021).
Due to various practical problems, the conventional model of
HFSs did not meet the needs of researchers, and as a result
they have been developed to interval-valued HFSs (Yahya
et al. 2021), generalized trapezoidal hesitant fuzzy numbers
(Deli 2020), HFNs with two completely different and sep-
arate definitions (Ranjbar et al. 2020; Keikha 2021), type-2
HFSs (Liu et al. 2018), interval type-2 HFSs (Hu et al. 2015),
generalized HFNs (Keikha 2021) to solve problems more
accurately. Considering that these are in fact kinds of quan-
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tification of non-quantitative/uncertain values, it is therefore
urgently necessary to invent methods which can be used to
carry out arithmetical operations, and aggregation operators
(Keikha 2021; Liao and Xu 2014b; Lobillo et al. July 2021;
Tan et al. 2015; Zhang 2016), etc. Therefore, mathemati-
cal formalization and calculus of HFSs, like operation laws
(Torra 2010; Liao and Xu 2014a), distance and similarity
measures (Xu and Xia 2011a, b; Tong and Yu 2016), corre-
lation coefficient (Xu and Xia 2011b; Tong and Yu 2016),
entropy measure (Xu and Xia 2012), and aggregation oper-
ators (Xia and Xu 2011; Wei 2012; Zhang 2013; Liao and
Xu 2014b), have been investigated simultaneously with their
usage in solving practical problems, very soon.

The calculus development of these uncertainty theories is
based on functions g : [0, 1]×[0, 1] → [0, 1], with associa-
tivity, commutativity, boundary condition, and monotonicity
properties, which are called t-norm and t-conorm (Klir and
Yuan 1995; Lobillo et al. July 2021). They are defined and
known in different forms as Frank t-norm and t-conorm,
Hamacher t-norm and t-conorm, Einstein t-norm and t-
conorm, Algebraic t-norm and t-conorm, etc., and extended
to be used with uncertain data. For instance, some of these
famous t-norms and t-conorms, such as Frank, Hamacher,
Einstein, Dombi, and Algebraic, have been applied as aggre-
gation operators of HFSs (Tang et al. 2018; Zhou et al. 2014;
Zhang 2016; Tan et al. 2015; Yahya et al. 2021; Mahmood
et al. 2021; Liu et al. 2020).

Althoughquantitativemodeling of the uncertainty of some
problems is possible with the help of some existing methods,
sometimes researchers have no choice but to generalize them
or invent a newmethod to increase the accuracy of modeling.
It should be noted that this process is unstoppable, because
despite the aforementioned three classifications of real prob-
lems remaining constant, their variety and the demand for
increasing accuracy modeling are unstoppable. From this
point of view, GHFNs can be rational, if they are used in
the right place.

It may be asked that, what are the GHFNs? and what is
the need for them? In answer must be said: the GHFNs have
been introduced to model discrete vague information, where
incorrectly transferred to continuous spaces, andmodeled via
other types of fuzzy numbers, i.e., an infinite set of values
along with an infinite set of membership degrees. The fol-
lowing examples show that this type of fuzzy numbers have
already been existed, but are incorrectly modeled by other
types of them.

(1) Suppose an astronomer estimates the distance of a celes-
tial body from Earth to be 18, 19, 20, 21, and at most 22
million light-years, and expresses the result with the lin-
guistic phrase “approximately 20 million light-years.”
Also, assume that the researcher avails a finite set of
amounts from [0,1] to express her/his degrees of skep-

ticism about the evaluation values. We can model it
by interval-number [18, 22], trapezoidal fuzzy number
[18,19,20,22], which are containing all values between
18 and 22, i.e., an infinite set of possible values.

(2) Suppose a farmer has a certain amount of farm, and is
willing to plan for the next crop year based on the rele-
vant information recorded in the last years. It is clear
that for the forward crop year, the climate changes,
the price and the amount of harvest are unknown, but
they may be close to the previous recorded values.
Applying the averaging-based methods, type-1/type-
2/intuitionistic fuzzy numbers, and probability-based
methods although common, cannot cover all require-
ments of such problems, or may add their complexity.
Because some past resultsmay have been achieved under
ideal conditions, some in very bad conditions, and some
innormal conditions,whichmay lead to different degrees
of satisfaction for the farmer. In other words, the harvest
in the past may be unfavorable in ideal weather condi-
tions and the farmer change it, albeit with some degree
of doubt. In other scenarios, such changes (incremental
or decreasing) may occur with a confined set of grades of
indecision/satisfaction. Generalized hesitant fuzzy num-
bers, in addition to being able to directly use the available
data without changing, or apply the farmer’s opinions,
for each of these conditions, also take into account the
farmer’s degree of skepticism/satisfaction about those
conditions and achievements.

In such cases, the use of interval numbers, trapezoidal
/triangular/intuitionistic/type-2 fuzzy numbers cause the
quantification space to be transformed from a discrete space
to a continuous space. That is, two finite sets of values along
with membership degrees are replaced by relevant infinite
sets. Although this transfer provides many analytical meth-
ods available to the researcher by unintentionally changing
the nature of the problem from the category of organized
complexity to the category of disorganized complexity (Klir
2006), but by solving a problem other than themain problem,
the main problem remains practically unresolved. Therefore,
improper use of modeling tools in some situations will add
to the inaccuracy of the problem. On the other hand, the use
of an infinite number of values, as is common in other types
of fuzzy numbers, conflicts with human mental structures.

A GHFN ˜̃PH = 〈{p1, p2, . . . , pm}; {λ1, λ2, . . . , λn}〉 is
a method for modeling situations where the decision maker
(DM) is faced with a finite set of non-rejectable/acceptable
real numbers {p1, p2, . . . , pm}, and expresses her/his doubt-
ness with a finite set of values between 0 and 1, i.e.,
{λ1, λ2, . . . , λn}. One of the important applications of these
numbers is in stock exchanges and future markets. Where
the trader, based on the knowledge she/he has gained from
the market, doubtfully reaches a finite set of amounts for
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the selling/buying each unit of an asset, and the doubtness
degrees are expressed as a HFE. Futurists, managers, and
decision makers will be another important users of GHFNs.
Economists, agricultural planners, development planners,
politicians, social scientists and archaeologists, deep learning
and machine learning researchers, etc., will be able to solve
many of their problemswith the help of GHFNs. Also, facing
new situations, such as group decision making, e-learning,
especially in COVID-19 pandemic, the best stock portfo-
lio selection, etc., Yilin et al. (2021), showed that existing
tools need to be developed, or new tools must be invented, to
increase modeling accuracy.

The establishment of mathematical computational instru-
ments is a vital step for anynewlyproposedmodeling concept
to extend its applications (Klir 2006). So, after any new con-
cept we encounter with many paper, where discussed and
researched mathematical computational methods (Deli and
Karaaslan 2021; Deli 2021). In order to expand the appli-
cations of GHFNs and gain the trust of researchers in other
scientific fields, they must have a strong methodology and
mathematical support. It will be discussed for GHFNs in this
article, to lead to the practical development of GHFNs, and
finally finding more accurate responses for real problems in
other research fields such as medical diagnosis, fair evalu-
ation, cosmology, artificial intelligence, robotics, decision
making, computer science, deep learning, machine learn-
ing, robotics, image processing, etc. Rodriguez et al. (2012),
Zhang et al. (2017, 2020).

Aggregation of partial given values is an important step
to solve a multi-criteria decision making problem. As we
know, Archimedean t-norm and t-conorm (ATT) are themost
useful mathematical tools in aggregation process. They are
the extensions of some other t-norms and t-conorms such
as Hamacher, Einstein, Frank, and algebraic t-norms and t-
conorms. They are defined based on an additive function
g(τ ), called generator function, and its dual f(τ ) = g(1−τ),
in which we can obtain the specific t-norm and t-conorm by
choosing the special form of additive function. The study
of ATT-based aggregation operators of GHFNs and their
usage to decision making problems under real hesitant fuzzy
environments is important in that they make it easier to
state/model the DMs’ opinions and unsureness in the deci-
sion process, and theATT supplymore flexibility than others.

In this paper, given the novelty of the GHFNs, based on
ATT functions, some mathematical and aggregation opera-
tors of GHFNs have been proposed. The objectives of the
study are listed as below:

(1) To explore the idea of the generalized hesitant fuzzy
numbers to demonstrate the uncertainties in the data.

(2) To define some mathematical operations between the
pairs of the GHFNs and studied their properties.

(3) To propose some weighted averaging and geometric
operators based on the ATT functions of GHFNs.

(4) To set up a decision-making algorithm based on the pro-
posed operators.

(5) To demonstrate the working of the algorithm with two
numerical examples and compare their results with the
existing algorithms.

It should be noted that the conditions of the problem and the
diagnosis of the user determine the need to use each of the
above operators. Therefore, none of them have priority in
nature, but their existence is mandatory.

In the following, the paper is structured as follows. Section
2 describes the basic preliminaries. In Sect. 3, we defined the
concepts of arithmetic operations of GHFNs, and some ATT-
based aggregation operators along with their properties. In
Sect. 4, we illustrate the proposed approach with numerical
example. Finally, some conclusion is given in Sect. 5.

2 Basic concepts and definitions

This section contains the concepts based on hesitant fuzzy
sets, required by the other Sections. Mathematical represen-
tation of aHFS is D = {< x, d(x) > |x ∈ X}, where d(x) =
{λ1, λ2, . . . , λn}, λi ∈ [0, 1] (Torra 2010; Xia andXu 2011).
Operational laws and calculus of HFSs, which have been dis-
cussed simultaneously with their practical applications, have
been defined based on bounded, commutated, associated, and
monotone functions h : [0, 1]×[0, 1] → [0, 1], named trian-
gular norm (t-norm) and triangular conorm (t-conorm) (Klir
and Yuan 1995; Nguyen and Walker 1997).

Definition 1 Klir and Yuan (1995) The t-norm T : [0, 1] ×
[0, 1] → [0, 1] and t-conorm S : [0, 1] × [0, 1] → [0, 1]
are two arbitrary functions, that ∀a, b, c ∈ [0, 1]:

(I ) T (1, a) = a, (I ′) S(0, a) = a

(I I ) T (a, b) = T (b, a), (I I ′) S(a, b) = S(b, a),

(I I I ) T (a, T (b, c)) = T (T (a, b), c), (I I I ′) S(a, S(b, c)) = S(S(a, b), c),

(I V ) a ≤ a′&b ≤ b′ ⇒ T (a, b) ≤ T (a′, b′), (I V ′) a ≤ a′&b ≤ b′ ⇒ S(a, b) ≤ S(a′, b′)
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If for all a ∈ [0, 1] : T (a, a) < a, and S(a, a) > a,
then T and S are called Archimedean. Consider an additive
generator g : [0, 1] → [0,+∞), and f (t) = g(1 − t).
Then, Archimedean t-norm T (x, y) = g−1(g(x) + g(y)),
and Archimedean t-conorm S(x, y) = f −1( f (x) + f (y)),
which are strictly increasing, are called strictly Archimedean
(Klement and Mesiar 2005). The t-norm T and t-conorm S
are called: Algebraic if g(t) = − log t , Einstein if g(t) =
log 2−t

t , and Hamacher if g(t) = log ν+(1−ν)t
t , ν > 0 (Klir

and Yuan 1995). Using these concepts, arithmetic operations
of any arbitrary HFEs d, d1, and d2, would be defined as
follows Zhang (2016):

(1)d1 ⊕ d2 =
⋃

λ1∈d1,λ2∈d2
{S(λ1, λ2)}

=
⋃

λ1∈d1,λ2∈d2

{
f −1( f (λ1) + f (λ2))

}
;

(2)d1 ⊗ d2 =
⋃

λ1∈d1,λ2∈d2
{T (λ1, λ2)}

=
⋃

λ1∈d1,λ2∈d2

{
g−1(g(λ1) + g(λ2))

}
;

(3)λd =
⋃

λ∈d

{
f −1(λ f (λ))

}
, λ > 0;

(4)dλ =
⋃

λ∈d

{
g−1(λg(λ))

}
, λ > 0;

where, λ is a positive real value.

Using these, and based on t-norm and t-conorm we can
define some Archimedean hesitant fuzzy (A-HF) operators
as follows.

Definition 2 Zhang (2016) Let di (i = 1, 2, . . . , n) be given
HFEs, that are weighted by 0 ≤ wi ≤ 1 with

∑n
i=1 wi = 1.

Then

(1) A-HF weighted averaging (A-HFWA) operator,

A-HFWA(d1, d2, . . . , dn) =
n⊕

i=1

(wi di )

=
⋃

λi∈di

{
f −1

(
n∑

i=1

wi f (λi )

)}
,

(2) A-HF weighted geometric (A-HFWG) operator,

A-HFWG(d1, d2, . . . , dn) =
n⊗

i=1

(dwi
i )

=
⋃

λi∈di

{
g−1

(
n∑

i=1

wi g(λi )

)}
,

(3) A-HForderedweighted averaging (A-HFOWA)operator

A-HFOWA(d1, d2, . . . , dn) =
n⊕

i=1

(wi dσ(i))

=
⋃

λσ(i)∈dσ(i)

{
f −1

(
n∑

i=1

wi f (λσ(i))

)}
,

(4) A-HF ordered weighted geometric (A-HFOWG) opera-
tor

A-HFOWG(d1, d2, . . . , dn) =
n⊗

i=1

(dwi
σ(i))

=
⋃

λσ(i)∈dσ(i)

{
g−1

(
n∑

i=1

wi g(λσ(i))

)}
,

in which dσ(i) i = 1, 2, . . . , n is a permutation of di , i =
1, 2, . . . , n such that dσ(1) ≤ dσ(2) ≤ · · · ≤ dσ(n).

In some tangible decision making problems, there may be
exist some pre-determined amounts that are not fully avowed
byDM, and should be considered in decisionmakingprocess.
HFNs, as the outreach of HFSs, are apt modeling such cases
(Keikha 2021).

Definition 3 Keikha (2021) Suppose x be a predetermined
positive real value about an element z of the reference set Z ,
which is hesitated by HFE

h(x) = {λ1, λ2, . . . , λn}, λi ∈ [0, 1]

A HFN X̃ H with mathematical representation 〈x; d(x)〉
merges these two separate information on element z ∈ Z ,
i.e., X̃ H = 〈x; {λ1, λ2, . . . , λn}〉.

It means that each HFN is an ordered pair that its first
component is a predetermined real value, and the second one
is a confined set of doubtness grades, called real part and
membership part, respectively. HFNs are called adjusted, if
their membership parts are adjusted HFEs.

Definition 4 Keikha (2021) Suppose X̃ H = 〈x; d(x)〉,
Ỹ H = 〈y; d(y)〉 be two adjusted HFNs. Then

(1) X̃ H ⊕ Ỹ H =
〈
x + y;

⋃

λ1(i)∈d(x),
λ2(i)∈d(y)

{
S(λ1(i), λ2(i))

}
〉

=
〈
x + y;

⋃

λ1(i)∈d(x),
λ2(i)∈d(y)

{
f−1(f(λ1(i)) + f(λ2(i)))

}〉
,

(2) X̃ H ⊗ Ỹ H
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=
〈
x .y;

⋃

λ1(i)∈d(x),
λ2(i)∈d(y)

{
T (λ1(i), λ2(i))

}
〉

=
〈
x .y;

⋃

λ1(i)∈h(x),
λ2(i)∈h(y)

{
g−1(g(λ1(i)) + g(λ2(i)))

}〉
,

(3) λX̃ H =
〈
λp;

⋃

λ∈d(x)

{
f−1(λf(λ))

}〉
,

(4) (X̃ H )λ =
〈
xλ;

⋃

λ∈d(x)

{
g−1(λg(λ))

}〉
,

where, λ ∈ R
≥0, {λl(1), λl(2), · · · } is a permutation of

{λl1, λl2, · · · } such that λl(1) ≤ λl(2) ≤ · · · .

In some cases, there may be different amounts reported on
a single subject, such as the inhabitants of an ancient site, the
victims of the pandemic in a particular state, the income of
individuals/companies, etc., which cannot be ruled out and
the degrees doubts about them can be expressed with a hes-
itant fuzzy set. Generalized hesitant fuzzy numbers, which
are defined as follows, are the most appropriate modeling
tools in such situations.

Definition 5 Keikha (2021) For the universal set R, positive
real numbers xl , l=1, 2, . . . ,m, and doubtness/membership
/satisfaction degrees λ j ∈ [0, 1], j = 1, 2, . . . , n, the gen-
eralized hesitant fuzzy number is defined as

˜̃XH = 〈{x1, x2, . . . , xm}; {λ1, λ2, . . . , λn}〉

As it is seen, a GHFN similar to a HFN contain two parts:
a real values part, and a hesitation degrees part. For any
two GHFNs, if cardinalities of their real values parts are
equal, and simultaneously the cardinalities of their hesita-
tion degrees parts are also the same, they are called adjusted
GHFNs (AGHFNs).

Definition 6 Keikha (2021) For each GHFNs as ˜̃XH =
〈{x1, x2, . . . , xm}; {λ1, λ2, . . . , λn}〉, its mean value, score,

and variance , displayed by M(
˜̃XH ), Score( ˜̃XH ), and

Var( ˜̃XH ), respectively, can be obtained as follows:

M(
˜̃XH ) = (x, λ) =

(∑m
l=1 xl
m

,

∑n
j=1 λ j

n

)
, (1)

Score( ˜̃XH ) = x × λ =
∑m

l=1 xl
m

×
∑n

j=1 λ j

n
, (2)

Var( ˜̃XH ) =
√√√√
∑m

l=1(xl − x)2

m
+
∑

i �= j

(λi − λ j )2. (3)

Definition 7 Keikha (2021)Let ˜̃XH = 〈{x1, x2, . . . , xm};{λ1
, λ2, . . . , λn}〉 and ˜̃Y H = 〈{y1, y2, . . . , yk}; {γ1, γ2, . . . , γl}〉
be two arbitrary GHFNs, withmean valuesM(

˜̃XH ) = (x, λ)

and M(
˜̃Y H ) = (y, γ ), respectively. Then, strongly superior

(s.s.), superior (s.), weakly superior (w.s.), and almost equal
(a.eq.) relations can be defined as follows:

(i) ˜̃XH is s.s. to ˜̃Y H ( ˜̃XH �s.s.
˜̃Y H ) ifM(

˜̃XH ) > M(
˜̃Y H ),

i.e., x > y & λ > γ .

(ii) ˜̃XH is s. to ˜̃Y H ( ˜̃XH �s.
˜̃Y H ), if Score( ˜̃XH ) >

Score( ˜̃Y H ), and

x = y & λ > γ ,

or

x > y & λ = γ .

(iii) ˜̃XH is w.s. to ˜̃Y H ( ˜̃XH �w.s.
˜̃Y H ), if

Score( ˜̃XH ) ≥ Score( ˜̃Y H ), & s > t & λ < γ

(x < y & λ > γ )

or

M(
˜̃XH ) = M(

˜̃Y H ) and Var( ˜̃XH ) < Var( ˜̃Y H )

(iv) ˜̃XH is a.eq. to ˜̃Y H (
˜̃XH ≡a.eq.

˜̃Y H ), if

M(
˜̃XH ) = M(

˜̃Y H ) and Var( ˜̃XH ) = Var( ˜̃Y H )

Definition 8 Keikha (2021) Let u > 0, ˜̃XH = 〈{x1, x2, . . . ,
xm}; {λ1, λ2, . . . , λn}〉 and ˜̃Y H = 〈{y1, y2, . . . , yk}; {γ1, γ2,
. . . , γl}〉 be two AGHFNs. Then

(i) u ˜̃XH = 〈{ux1, ux2, . . . , uxm}; {λ1, λ2, . . . , λn}〉
(i i)

( ˜̃XH
)u = 〈{(x1)u, (x2)u, . . . , (xm)u}; {λ1, λ2, . . . , λn}

〉

(i i i) ˜̃XH ⊕ ˜̃Y H =
〈
⋃

i

{x(i) + y(i)};
⋃

i

{λi , γi }
〉

(iv)
˜̃XH ⊗ ˜̃Y H =

〈
⋃

i

{x(i)y(i)};
⋃

i

min{λi , γi }
〉

where x(1), x(2), . . . , x(m) is a permutation of x1, x2, . . . , xm
such that x(1) ≤ x(2) ≤ . . . ≤ x(m), and y(1), y(2), . . . , y(m)

is a permutation of y1, y2, . . . , ym such that y(1) ≤ y(2) ≤
. . . ≤ y(m).
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Definition 9 Keikha (2021) Let U = (u1, u2, . . . , uk) with
ul ∈ [0, 1] and∑k

l=1 ul = 1 be the weight vector of GHFNs
˜̃XH
l = 〈h(Xl),mh(Xl)〉, l = 1, 2, . . . k, where h(Xl) =

{xl1, xl2, . . . , xlm},mh(Xl) = {λl1, λl2, . . . , λln}. Then

GHW AAu

( ˜̃XH
1 ,

˜̃XH
2 , . . . ,

˜̃XH
k

)

=
〈

m⋃

r=1

{
k∑

l=1

ul xl(r)

}
;

k⋃

l=1

mh(Xl)

〉
,

is called GHWAA operator.

TheGHWAAoperatorwill be namedGHAAoperator ifU =(
1

k
,
1

k
, . . . ,

1

k

)
.

Definition 10 Keikha (2021) For GHFNs ˜̃XH
l = 〈h(Xl),mh

(Xl)〉, l = 1, 2, . . . k which are weighted with ul ∈
[0, 1] and ∑k

l=1 ul = 1, GHWGA operator has been defined
as follows.

GHWGAu

( ˜̃XH
1 ,

˜̃XH
2 , . . . ,

˜̃XH
r

)

=
〈

m⋃

r=1

{
k∏

l=1

xull(r)

}
;

k⋂

l=1

mh(Xi )

〉
,

where,⋂k
l=1mh(Xl) =⋃λl∈h(Xl )

min{λ1, λ2, . . . , λk}.ForU =(
1

k
,
1

k
, . . . ,

1

k

)
, the GHWGA operator is called GHGA

operator.

Definition 11 Keikha (2021) Consider the weight vector
U = (u1, u2, . . . , uk) with ul ∈ [0, 1] and

∑k
l=1 ul =

1. Then GHOWA and GHOWG operators of the given

GHFNs ˜̃XH
l = 〈h(Xl),mh(Xl)〉, l = 1, 2, . . . , k, which

are ordered as ˜̃XH
(1) <

˜̃XH
(2) < . . . <

˜̃XH
(k), i.e.,

˜̃XH
(l) =

〈h(X(l)),mh(X(l))〉, l = 1, 2, . . . , k is the lth largest value
of them, can be defined as

GHOW Au

( ˜̃XH
1 ,

˜̃XH
2 , . . . ,

˜̃XH
k

)

=
〈

m⋃

r=1

{
k∑

l=1

ul x(l)(r)

}
;

k⋃

l=1

mh(X(l))

〉
,

and

GHOWGu

( ˜̃XH
1 ,

˜̃XH
2 , . . . ,

˜̃XH
k

)

=
〈

m⋃

r=1

{
k∏

l=1

xul(l)(r)

}
;

k⋂

l=1

mh(X(l))

〉
,

where,
⋂k

l=1mh(X(l)) =⋃λl∈h(p(l))
min{λ1, λ2, . . . , λn}.

Because GHFNs have just been introduced, like any new
theory, the development of computational tools can provide
strong scientific support for their applications in solving
real-world problems. Therefore, in the next section, we will
introduce several aggregationoperators (AOs) to beusedwith
GHFNs.

3 Mathematical development of GHFNs

In this section, we proposed some ATT -based operators
which enable us to employing GHFNs in solving practical
problems, or extending some other techniques by them.Also,
as an application of GHFNs, an algorithm has been proposed
to solve multi criteria group decision making problems.

3.1 Aggregation operators of GHFNs

The aim of this sub-section is to update some existing
Archimedean t-norms and t-conorms with GHFNs, and
based on them proposed several AOs for GHFNs.

Definition 12 Consider a positive real value η, and two

adjusted GHFNs as ˜̃XH = 〈{x1, x2, . . . , xm}; {λ1, λ2, . . . ,
λn}〉, ˜̃Y H = 〈{y1, y2, . . . , ym}; {γ1, γ2, . . . , γn}〉. Then

(1) ˜̃XH ⊕ ˜̃Y H

=
〈

m⋃

l=1

{x(l) + y(l)};
⋃

λ(r)∈h(X),

γ(r)∈h(Y )

{
S(λ(r), γ(r))

}
〉

=
〈

m⋃

l=1

{x(l) + y(l)};
⋃

λ(r)∈h(X),

γ(r)∈h(Y )

{
f −1( f (λ(r)) + f (γ(r)))

}
〉

,

(2) ˜̃XH ⊗ ˜̃Y H

=
〈

m⋃

l=1

{x(l).y(l)};
⋃

λ(r)∈h(X),

γ(r)∈h(Y )

{
T (λ(r), γ(r))

}
〉

=
〈

m⋃

l=1

{x(l).y(l)};
⋃

λ(r)∈h(X),

γ(r)∈h(Y )

{
g−1(g(λ(r)) + g(γ(r)))

}
〉

,

(3) η
˜̃XH =

〈
m⋃

l=1

{ηxl};
⋃

λ∈h(X)

{
f −1(η f (λ))

}
〉

,

(4) (
˜̃XH )η =

〈
m⋃

l=1

{xη
l };

⋃

λ∈h(X)

{
g−1(ηg(λ))

}
〉

,

where, {(1), (2), · · · } are permutations of {1, 2, · · · } such
that x(1) ≤ x(2) ≤ · · · ≤ x(m); λ(1) ≤ λ(2) ≤ · · · ≤
λ(n); y(1) ≤ y(2) ≤ · · · ≤ y(m); γ(1) ≤ γ(2) ≤ · · · ≤ γ(n).
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Theorem 1 For any GHFNs ˜̃XH = 〈x1, x2, . . . , xm};
{λ1, λ2, . . . , λn}〉, ˜̃Y H = 〈{y1, y2, . . . , ym}; {γ1, γ2, . . . , γn}〉,
and positive real numbers η, η1, η2, we have

(1) ˜̃XH ⊕ ˜̃Y H = ˜̃Y H ⊕ ˜̃XH

(2) ˜̃XH ⊗ ˜̃Y H = ˜̃Y H ⊗ ˜̃XH

(3) η(
˜̃XH ⊕ ˜̃YH ) = η

˜̃XH ⊕ η
˜̃YH

(4) (
˜̃XH ⊗ ˜̃Y H )η = (

˜̃XH )η ⊗ (
˜̃YH )η

(5) (η1 + η2)
˜̃XH = η1

˜̃XH + η2
˜̃XH

(6) (
˜̃XH )η1+η2 = (

˜̃XH )η1 ⊗ (
˜̃XH )η2

Proof Due to the commutative property of t-norms and
t-conorms, and also multiplication and addition of real num-
bers, the proof of the theorem is done simply. ��

Some special Archimedean t-norms and t-conorms have
been defined based on special cases of additive generator
g as follows:
(i) For g(t) = − log t , we have Algebraic t-norm and t-
conorm:

(i1) ˜̃XH ⊕ ˜̃Y H =
〈
⋃

l

{x(l) + y(l)};
⋃

λ1(r)∈h(X),

λ2(r)∈h(Y )
{
λ1(r) + λ2(r) − λ1(r).λ2(r)

}〉
,

(i2) ˜̃XH ⊗ ˜̃Y H =
〈
⋃

l

{x(l).y(l)};
⋃

λ1(r)∈h(X),

λ2(r)∈h(Y )

{
λ1(r).λ2(r)

}
〉

,

(i3) η
˜̃XH =

〈
⋃

l

{ηxl};
⋃

λ∈h(X)

{
1 − (1 − λ)η

}
〉

,

(i4) (
˜̃XH )η =

〈
⋃

l

{xη
l };

⋃

λ∈h(X)

{
λη
}
〉

.

(i i) With g(t) = log 2−t
t , we have Einstein t-norm and t-

conorm, i.e.,

(i i1) ˜̃XH ⊕ ˜̃Y H

=
〈
⋃

l

{x(l) + y(l)};
⋃

λ1(r)∈h(X),

λ2(r)∈h(Y )

{
λ1(r) + λ2(r)

1 + λ1(r).λ2(r)

}〉
,

(i i2) ˜̃XH ⊗ ˜̃Y H

=
〈
⋃

l

{x(l).y(l)};
⋃

λ(1)∈h(X),

λ2(r)∈h(Y )

{
λ1(r).λ2(r)

1 − (1 − λ1(r))(1 − λ(2))

}〉
,

(i i3) η
˜̃XH =

〈
⋃

l

{ηxl};
⋃

λ∈h(X)

{
(1 + λ)η − (1 − λ)η

(1 + λ)η + (1 − λ)η

}〉
,

(i i4) (
˜̃XH )η =

〈
⋃

l

{xη
l };

⋃

λ∈h(X)

{
2λη

(2 − λ)η + λη

}〉
.

(i i i) Hamacher t-norm and t-conorm is the result of putting

g(t) =
{ 1−t

t ν = 0
log ν+(1−ν)t

t 0 < ν ≤ +∞ , i.e.,

(i i i1) ˜̃XH ⊕ ˜̃Y H =
〈
⋃

l

{x(l) + y(l)};

⋃

λ1(r)∈h(X),

λ2(r)∈h(Y )

{
λ1(r) + λ2(r) − λ1(r).λ2(r) − (1 − ν)λ1(r).λ2(r)

1 − (1 − ν)λ1(r).λ2(r)

}〉
,

(i i i2) ˜̃XH ⊗ ˜̃Y H =
〈
⋃

l

{x(l).y(l)};

⋃

λ(1)∈h(X),

λ2(r)∈h(Y )

{
λ1(r).λ2(r)

ν + (1 − ν)(λ1(r) + λ2(r) − λ1(r).λ2(r))

}〉
,

(i i i3) η
˜̃XH =

〈
⋃

l

{ηxl};

⋃

λ∈h(X)

{
(1 + (ν − 1)λ)η − (1 − λ)η

(1 + (ν − 1)λ)η + (ν − 1)(1 − λ)η

}〉
,

(i i i4) (
˜̃XH )η =

〈
⋃

l

{xη
l };

⋃

λ∈h(X)

{
νλη

(1 + (ν − 1)(1 − λ))η + (ν − 1)λη

}〉
.

(iv) Frank t-norm and t-conorm is the result of putting

g(t) =
⎧
⎨

⎩

− log t ν = 1
1 − t ν = +∞
log ν−1

νt−1 otherwise
, i.e.,

(iv1) ˜̃XH ⊕ ˜̃Y H =
〈
⋃

l

{x(l) + y(l)};

⋃

λ1(r)∈h(X),

λ2(r)∈h(Y )

{
1 − logν

(
1 + (ν1−λ1(r) − 1)(ν1−λ2(r) − 1)

ν − 1

)}〉
,

(iv2) ˜̃XH ⊗ ˜̃Y H =
〈
⋃

i

{x(l).y(l)};

⋃

λ1(r)∈h(X),

λ2(r)∈h(Y )

{
logν

(
1 + (νλ1(r) − 1)(νλ2(r) − 1)

ν − 1

)〉
,

(iv3) η
˜̃XH =

〈
⋃

l

{ηxl};

⋃

λ∈h(X)

{
1 − logν

(
1 + (ν1−λ − 1)η

(ν − 1)η−1

)}〉
,
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(iv4) (
˜̃XH )η =

〈
⋃

l

{xη
l };

⋃

λ∈h(X)

{
logν

(
1 + (νλ − 1)η

(ν − 1)η−1

)}〉
.

Notice that the Hamacher t-norm and t-conorm is the gen-
eralized form of Algebraic t-norm and t-conorm, and also
Einstein t-norm and t-conorm. In other words, (i i i1) −
(i i i4) reducing to (i i1) − (i i4) by replacing ν = 1, and
(i i i1) − (i i i4) reducing to (i1) − (i4) by replacing ν =
2. In the Frank t-norm and t-conorm, if ν → 1, then
(iv1) − (iv4) reducing to (i1) − (i4), respectively. The
given operators in Definition 2, i.e., A − HFW A, A −
HFWG, A − HFOW A and A − HFOWG would be
developed to be applied with GHFNs, which are called
A−GHFNW A, A−GHFNWG, A−GHFNOW A and
A − GHFNOWG operators, respectively.

Definition 13 Let ˜̃XH
i = 〈h(Xl),mh(Xl)〉, l = 1, 2, . . . k,

where h(Xl) = {xl1, xl2, . . . , xlm},mh(Xl) = {λl1, λl2,
. . . , λln} be a collection of GHFNs, and 0 ≤ ul ≤ 1 with∑k

l=1 ul = 1 be the weight vector of given GHFNs. Then

(1) ATT-based GHFN weighted averaging (A-GHFNWA)
operator

A − GHFNW A(
˜̃XH
1 ,

˜̃XH
2 , . . . ,

˜̃XH
k ) =

k⊕

l=1

(
ul

˜̃XH
l

)

=
〈

m⋃

r=1

{
k∑

l=1

ul xl(r)

}
;

n⋃

j=1

{
f−1

(
k∑

l=1

ul f(λl( j))

)
|λl( j) ∈ mh(Xl)

}〉
, (4)

(2) ATT-based GHFN weighted geometric (A-GHFNWG)
operator

A − GHFNWG(
˜̃XH
1 ,

˜̃XH
2 , . . . ,

˜̃XH
k ) =

k⊗

l=1

(
(
˜̃XH
l )ul

)

=
〈

m⋃

r=1

{
k∏

l=1

pull(r)

}
;

n⋃

j=1

{
g−1

(
k∑

l=1

ulg(λl( j)

)
|λl( j) ∈ mh(Xl)

}〉
, (5)

(3) ATT-based GHFN ordered weighted averaging (A-
GHFNOWA) operator

A − GHFNOW A(
˜̃XH
1 ,

˜̃XH
2 , . . . ,

˜̃XH
k ) =

k⊕

l=1

(ul
˜̃XH
(l))

=
〈

m⋃

r=1

{
k∑

l=1

ul x(l)(r)

}
;

n⋃

j=1

{
f−1

(
k∑

l=1

ul f(λσ(l)( j))

)}
|λσ(l)( j) ∈ mh(Xσ(l))

〉
,

(6)

(4) ATT-based GHFN ordered weighted geometric (A-
GHFNOWG) operator

A − GHFNOWG(
˜̃XH
1 ,

˜̃XH
2 , . . . ,

˜̃XH
k ) =

k⊗

l=1

(
(
˜̃XH
(l))

ul
)

=
〈

m⋃

r=1

{
k∏

l=1

xul(l)(r)

}
;

n⋃

j=1

{
g−1

(
k∑

l=1

ulg(λσ(l)( j))

)
|λσ(l)( j) ∈ mh(Xσ(l))

}〉
,

(7)

where ˜̃XH
σ(l) (l = 1, 2, . . . , k) is a permutation of

˜̃XH
l (l = 1, 2, . . . , k), such that ˜̃XH

σ(1) ≤ ˜̃XH
σ(2) ≤ · · · ≤

˜̃XH
σ(k).

Theorem 2 Consider weighted GHFNs ˜̃XH
l = 〈h(Xl),

mh(Xl)〉, l = 1, 2, . . . k, with weight vector U = (u1, u2,
. . . , uk), where h(Xl) = {xl1, xl2, . . . , xlm}, mh(Xl) =
{λl1, λl2, . . . , λln}, and 0 ≤ ul ≤ 1 that

∑k
l=1 ul = 1.

Then, the aggregated values using any of the operators
A−GHFNW A, A−GHFNWG, A−GHFNOW A and
A − GHFNOWG are GHFNs.

Proof The Theoremwill be proved only for A−GHFNW A
operator. The others can be proved in a similar manner. As
in Definition 13, let

A − GHFNW A(
˜̃XH
1 ,

˜̃XH
2 , . . . ,

˜̃XH
k )

=
〈

m⋃

r=1

{
k∑

l=1

ul xl(r)

}
;

n⋃

j=1

{
f−1

(
k∑

l=1

ul f(λl( j))

)
|λl( j) ∈ mh(Xl)

}〉
= ˜̃XH .

We know that a GHFN has two parts: a real value part, and a

membership part. Thus, it is enough to see that ˜̃XH is a gen-
eralized hesitant fuzzy number, i.e.,

⋃m
r=1{
∑k

l=1 ul xl(r)} is a
finite set of real values, and also

⋃n
j=1

{
f−1
(∑k

l=1 ul f(λl( j))
)

|λl( j) ∈ mh(Xl)

}
is a finite set of membership degrees

in [0, 1]. Based on properties of real values, it is obvious
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that
∑k

l=1 ul xl(r) ∈ R
+, and

⋃m
r=1{
∑k

l=1 ul xl(r)} ⊂ R
+.

Furthermore, f : [0, 1] → [0,+∞] is a strictly increas-
ing function, then it is reversible, and there exist f−1 :
[0,+∞] → [0, 1]. That is f−1

(∑k
l=1 ul f(λl( j))

)
∈ [0, 1],

and
⋃n

j=1

{
f−1
(∑k

l=1 ul f(λl( j))
)

|λl( j) ∈ mh(Xl)
}

⊂ [0, 1]
is a finite set of membership degrees. ��

3.2 A group decision-making algorithm

We summarize the steps of the proposed decision-making
algorithm as follows.

– Step 1 Determine the sets of criteria/attributes C , deci-
sion makers M , and options/alternatives O .

– Step 2 Determine the weight vectors of DMs (W ), and
criteria (ν), if it is necessary.

– Step 3 Make a GHFNs matrix (called decision matrix
˜̃D = [ ˜̃di j ]|O|×|C|) whose number of rows is equal to
the number of options and its columns are equal to the
number of criteria.

– Step 4 Muster the evaluation values of all DMs on i th
option against j th criterion as i j th element of GHFNS

matrix ˜̃D, in which the real part of ˜̃di j shows the direct
scores of the evaluators and the membership part shows
their levels of satisfaction/ambiguity with the evaluation
amounts/conditions.

– Step 5 Pick the r th row of the GHFNs matrix ˜̃D, r =
1, 2, . . . , |O|, and aggregate its elements by choosing one
of the appropriate proposed operators in this article.

– Step 6 Set the i th obtained values in Step 5 as the score
of i th option, i = 1, 2, . . . , |O|. Then, rank the options
similar to the ranking of their scores.

The flowchart of the algorithm is shown in Fig. 1.

4 Numerical examples

Example 1 Consider three students A, B and C with courses
in Mathematics, Chemistry, Physics, and Literature, to be
ranked via hybrid assessment at the end of the semester.
Suppose in addition to the monthly exams (4 exams), the
professors’ qualitative assessments based on their academic
readiness and classroom activities during the semester are
also included in final assessment. Let the results of the eval-
uations have been merged to construct generalized hesitant
fuzzy numbers as in Table 1, in which the real part contains
the results of the monthly exams, and the degree of doubt
includes the qualitative evaluations.

Assuming that the courses have the same weight, we
will calculate the average of each student using one of the

Fig. 1 Flowchart of the proposed algorithm

proposed average-based operators in this article. Using the
Hamacher t-norm and t-conorm with A-GHFNWA operator
(Eq. 4), and ν = 2, we get Table 2, in which the average
score of each student is a GHFN. The students can be ranked
based on their total corresponding GHFNs marks, are given
in Table 2:

A �s C �w.s B.

Example 2 Usually in the planting season, farmers try to have
the highest income by estimating the harvest per unit area of
each agricultural item(Ton/Hectare), aswell as estimating the
price (Dollar/Ton) of those products in the future, by diver-
sifying the cultivated items. We classify the estimates into
three general categories: optimistic, normal, and pessimistic,
according to the influence of many factors on crop yields and
their prices. Let the estimated values for each product in any
of the above three cases are determined using the recorded
values in recent years. In fact, the historical values have been
ranked in ascending order, firstly. Then, as in Table 3, the
lower ones have been classified in pessimistic class, the best
ones in optimistic class, and the intermediate values in nor-
mal class. It is natural for the farmer or consulting firm to be
skeptical of achieving any of the above values, and be free to
use them directly or change. Secondly, suppose the given val-
ues in Table 3 are evaluated, and the degrees of doubt about
them are expressed with HFEs, as in Table 4. Finally, with
the merging of these two data sets, GHFNs will be obtained
(see Tables 5 and 6).
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Table 1 The students’ marks in hybrid assessments as GHFNs

Students Mathematics Chemistry Physics Literature

A 〈{88, 95, 92, 97}; 〈{78, 92, 97, 98}; 〈{83, 92, 96, 91}; 〈{97, 99, 98, 97};
{0.6, 0.2, 0.7, 0.9, 0.4, 0.9}〉 {0.1, 0.7, 0.8, 0.5, 0.9, 0.9}〉 {0.8, 0.3, 0.7, 0.8, 0.9, 0.3}〉 {0.1, 0.2, 1, 0.9, 0.9, 1}〉

B 〈{87, 96, 94, 96}; 〈{78, 94, 95, 98}; 〈{87, 95, 92, 93}; 〈{98, 99, 100, 97};
{0.3, 0.8, 0.6, 0.5, 0.4, 0.5}〉 {0.2, 0.1, 0.7, 0.5, 0.4, 0.4}〉 {0.3, 0.5, 0.6, 0.2, 0.7, 0.6}〉 {0.3, 0.1, 0.6, 0.4, 0.2, 0.5}〉

C 〈{89, 96, 94, 95}; 〈{80, 94, 92, 96}; 〈{84, 94, 92, 90}; 〈{96, 100, 100, 98};
{0.6, 0.5, 0.9, 0.7, 0.4, 0.4}〉 {0.3, 0.3, 0.6, 0.6, 0.4, 0.4}〉 {0.3, 0.7, 0.5, 0.4, 0.9, 0.6}〉 {0.1, 0.8, 0.2, 0.6, 0.3, 0.5}〉

Table 2 The average marks of students

Students GHFNs Final score Rank

A 〈{86.5, 93, 95.5, 97.5}; {0.176, 0.5, 0.909, 0.990, 1, 1}〉 (93.125, 0.762) 1

B 〈{87.25, 94.5, 95.75, 97.5}; {0.176, 0.432, 0.726, 0.894, 0.968, 0.994}〉 (93.75, 0.693) 3

C 〈{87.25, 93.5, 95.25, 96.5}; {0.278, 0.555, 0.794, 0.932, 0.985, 0.999}〉 (93.125, 0.757) 2

Table 3 The predicted harvest values in three scenarios

Item Optimistic Normal Pessimistic

A {10, 11, 13} {7, 8, 9} {4, 5, 6}
Harvest B {14, 15, 16} {10, 12, 13} {8.5, 9, 9.5}

C {25, 27, 30} {15, 17, 18} {10, 12, 13}
A {100, 120, 115} {85, 88, 90} {65, 70, 77}

Price B {110, 100, 95} {80, 85, 88} {75, 80, 82}
C {80, 90, 95} {68, 70, 75} {48, 55, 60}

Now, we are able to determine the total income of the
farmer in three levels, by aggregating of given GHFNs in
each column in Tables 5 and 6. To do it, we can choose
one of the proposed aggregation operators in this article. For
example, Algebraic t-norm and t-conorm gives us:

– Optimistic mode:

〈{10, 11, 13}; {0.6, 0.7, 0.9}〉 ⊗ 〈{100, 120, 115}; {0.5, 0.7, 0.9}〉
⊕〈{14, 15, 16}; {0.6, 0.8, 1}〉 ⊗ 〈{110, 100, 95}{0.4, 0.6, 0.9}〉
⊕〈{25, 27, 30}; {0.7, 0.8, 0.9}〉 ⊗ 〈{80, 90, 95}; {0.4, 0.6, 0.9}〉

= 〈{4330, 5195, 6170}; {0.505, 0.883, 0.996}〉;

– Normal mode:

〈{2415, 2914, 3304}; {0.569, 0.909, 0.989}〉;

– Pessimistic mode:

〈{1377.5, 1730, 2021}; {0.187, 0.545, 0.765}〉.

4.1 Numerical analysis

In this subsection, the above two examples will be analyzed.

– Consider Example 1 to be analyzed. In the current meth-
ods, first, the average score of each course is calculated,
and the result is considered as the final score of the stu-
dent in the relevant course. Then, the average of the final
scores of the student’s semester courses expresses its
grade point average in the semester. With these expla-
nations, and using the simple additive weighted (SAW)
method, the results of quantitative evaluation of students
are summarized in Table 7.
Now, if we consider only the class evaluations of each
course as a HFE. After aligning these HFEs with the help
of the Hamacher operator, wewill have a single HFE cor-
responding to each student, which will be compared and
the students’ ranking will be determined as in Table 8.
Comparing the results of these two methods shows a
completely different ranking, which of course is natu-
ral because the natures of the usage data are different.
We can compute the similarity coefficients (Salabun and
Urbaniak 2020) of the ranking orders with what obtained
in the case of GHFNs. Then, this parameter for monthly
evaluations and hybrid evaluation is 0.25, and for HFEs
assessment values and hybrid evaluation is 1. It means
that continuous assessments are much more similar to
hybrid assessments than monthly exams.

– Let us aggregate the given GHFNs in Table 1 by some
other ATT-based operators and compare the resulting
orders.

– Using Algebraic operator and based on Table 9 we
get A �s C �w.s B.
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Table 4 The hesitant degrees of
achieving predicted harvest

Item Optimistic Normal Pessimistic

A {0.6, 0.7, 0.9} {0.7, 0.8, 0.9} {0.3, 0.2, 0.5}

Harvest B {0.6, 0.8,1} {0.5, 0.7, 0.8} {0.4, 0.5, 0.7}

C {0.7, 0.8, 0.9} {0.8, 0.9,1} {0.1, 0.2, 0.3}

A {0.5, 0.7, 0.9} {0.3, 0.6, 0.9} {0.2, 0.3, 0.25}

Price B {0.4, 0.6, 0.9} {0.7, 0.75, 0.9} {0.9, 0.8, 0.2}

C {0.1, 0.8, 0.9} {0.7, 0.8, 0.2} {0.8, 0.9,1}

Table 5 The predicted harvest
values as GHFNs

Item Optimistic Normal Pessimistic

A 〈{10, 11, 13}; 〈{7, 8, 9}; 〈{4, 5, 6};
{0.6, 0.7, 0.9}〉 {0.7, 0.8, 0.9}〉 {0.3, 0.2, 0.5}〉

Harvest B 〈{14, 15, 16}; 〈{10, 12, 13}; 〈{8.5, 9, 9.5};
{0.6, 0.8, 1}〉 {0.5, 0.7, 0.8}〉 {0.4, 0.5, 0.7}〉

C 〈{25, 27, 30}; 〈{15, 17, 18}; 〈{10, 12, 13};
{0.7, 0.8, 0.9}〉 {0.8, 0.9, 1}〉 {0.1, 0.2, 0.3}〉

Table 6 The predicted price
values as GHFNs

Item Optimistic Normal Pessimistic

A 〈{100, 120, 115}; 〈{85, 88, 90}; 〈{65, 70, 77};
{0.5, 0.7, 0.9}〉 {0.3, 0.6, 0.9}〉 {0.2, 0.3, 0.25}〉

Price B 〈{110, 100, 95}; 〈{80, 85, 88}; 〈{75, 80, 82};
{0.4, 0.6, 0.9}〉 {0.7, 0.75, 0.9}〉 {0.9, 0.8, 0.2}〉

C 〈{80, 90, 95}; 〈{68, 70, 75}; 〈{48, 55, 60};
{0.1, 0.8, 0.9}〉 {0.7, 0.8, 0.2}〉 {0.8, 0.9, 1}〉

– ByEinstein operatorwehaveTable 10, and then A �s

C �w.s B.

Although using different aggregation operators resulted
the same ranking orders in this special problem, but this
not means it may be happen always. Because, the mem-
bership part of obtainedGHFN fromaggregation of given
GHFNs will change due to the use of different operators
(with their own properties).

– To analyze Example 2, suppose we use type-1 triangular
fuzzy numbers, as in Table 11, for modeling. The cal-
culated farmer’ income will then be a triangular fuzzy
number which are given in Table 12, in each of the three
scenarios. That is, infinite amounts and, consequently,
infinite degrees of membership are the introduced candi-
dates as the final incomes, which increased the ambiguity
of the problem.

Generalized hesitant fuzzy numbers, by combining both
types of data, have the advantages of both types of evaluation
and the results will be closer to the reality. For example, in the
case of education, hybrid assessments, i.e., qualitative eval-
uation along with the formal quantitative tests, would help
improving its real quality. Because, the student is required to

Table 7 The average of students’ marks by SAW method

Students Math. Chem. Phy. Lit. Average Rank

A 93 91.25 90.5 97.75 93.125 2

B 93.25 91.25 91.75 98.5 93.687 1

C 93.5 90.5 90 98.5 93.125 2

participate in the teaching process in addition to the cross-
sectional activities of the exams season, while maintaining
scientific readiness. In the field of agriculture, in addition to
the recorded data, attention has also been paid to the indi-
vidual experiences of the exploiter. In reviewing the results
of a medical test, not only the recorded values are relied on,
but also the physician’s experiences and his personal analysis
will be effective in the diagnosis and treatment of diseases.

5 Conclusion

Generalized hesitant fuzzy numbers have the capability of
modeling positions in which the DMs are hesitant between a
finite set of real values about a special thing, and expressed
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Table 8 The final students’
marks as HFE

Students Aggregated HFE Score Rank

A {0.176, 0.5, 0.909, 0.990, 1, 1} 0.762 1

B {0.176, 0.432, 0.726, 0.894, 0.968, 0.994} 0.698 3

C {0.278, 0.555, 0.794, 0.932, 0.985, 0.999} 0.757 2

Table 9 The Algebraic ATT-based operator average marks

Students GHFNs Final score Rank

A 〈{86.5, 93, 95.5, 97.5}; {0.179, 0.36, 0.748, 0.822, 1, 1}〉 (93.125, 0.685) 1

B 〈{87.25, 94.5, 95.75, 97.5}; {0.179, 0.280, 0.431, 0.482, 0.553, 0.712}〉 (93.75, 0.439) 3

C 〈{87.25, 93.5, 95.25, 96.5}; {0.282, 0.395, 0.431, 0.532, 0.653, 0.832}〉 (93.125, 0.521) 2

Table 10 The Einstein ATT-based operator average marks

Students GHFNs Final score Rank

A 〈{86.5, 93, 95.5, 97.5}; {0.176, 0.355, 0.751, 0.818, 1, 1}〉 (93.125, 0.683) 1

B 〈{87.25, 94.5, 95.75, 97.5}; {0.176, 0.277, 0.428, 0.480, 0.552, 0.703}〉 (93.75, 0.436) 3

C 〈{87.25, 93.5, 95.25, 96.5}; {0.278, 0.327, 0.428, 0.530, 0.653, 0.968}〉 (93.125, 0.531) 2

Table 11 The predicted harvest and price values in three scenarios

Item Optimistic Normal Pessimistic

A (10, 11, 13) (7, 8, 9) (4, 5, 6)

Harvest B (14, 15, 16) (10, 12, 13) (8.5, 9, 9.5)

C (25, 27, 30) (15, 17, 18) (10, 12, 13)

A (100, 115, 120) (85, 88, 90) (65, 70, 77)

Price B (95, 100, 110) (80, 85, 88) (75, 80, 82)

C (80, 90, 95) (68, 70, 75) (48, 55, 60)

their hesitation/satisfaction degrees as a HFE. As they are
at the beginning of a hard way including application and
theoretical extension, development of mathematical compu-
tation tools will make navigation easier. In this paper, we
focused on Archimedean t-norm and t-conorm functions,
and then we proposed the general form of arithmetic opera-
tions ofGHFNs. In the following, the arithmetic operations of
GHFNs have been defined based on the Algebraic, Einstein,
Hamacher, Frank t-norms and t-conorms, as the special cases
ofATT. Finally, some averaging-based aggregation operators
using the ATT functions have been proposed to aggregate a
finite set of given GHFNs to a single GHFNs. These opera-
tors are called briefly A-GHFNWA operator, A-GHFNWG
operator, A-GHFNOWA operator, and A-GHFNOWG oper-
ator.

A lot of research should be done in the future, both in
the field of computational development and in the field of
application, because the newly proposed generalized hesitant
fuzzy numbers are at the starting point of an important scien-

Table 12 The farmer’s incomes as triangular fuzzy number

Scenario Income

Optimistic (4330, 5195, 6170)

Normal (2415, 2914, 3304)

Pessimistic (1377.5, 1730, 2021)

tificway. For example, we need to define severalmeasures, as
similarity, entropy, distance, etc., for GHFNs, to solve multi-
attribute decision making problems. It will be required to
update some existing methods such as Best-Worst Method
(BWM), TOPSIS, VIKOR, ELECTREE, ORESTE, aggre-
gation operators (Maleki et al. 2022; Xu and Zhang 2012;
Wu and Liao 2018), etc., in the future, too.

Also, GHFNs can be used in solving linear programming
problems, data envelopment analysis, medical image pro-
cessing, medical decision making, cognitive science, future
studies, spatial planning, social networking, graph theory,
etc. Liu et al. (2022), De Souza et al. (2021).
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