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Although hyperlipidemia is traditionally considered a risk
factor for type 2 diabetes (T2D), evidence has emerged
from statin trials and candidate gene investigations sug-
gesting that lower LDL cholesterol (LDL-C) increases
T2D risk. We thus sought to more comprehensively
examine the phenotypic and genotypic relationships of
LDL-C with T2D. Using data from the UK Biobank, we
found that levels of circulating LDL-C were negatively
associated with T2D prevalence (odds ratio 0.41 [95% CI
0.39, 0.43] per mmol/L unit of LDL-C), despite positive
associations of circulating LDL-C with HbA1c and BMI.
We then performed the first genome-wide exploration of
variants simultaneously associated with lower circulat-
ing LDL-C and increased T2D risk, using data on LDL-C
from the UK Biobank (n 5 431,167) and the Global Lipids
Genetics Consortium (n 5 188,577), and data on T2D
from the Diabetes Genetics Replication and Meta-
Analysis consortium (n 5 898,130). We identified 31 loci
associated with lower circulating LDL-C and increased
T2D, capturing several potential mechanisms. Seven of
these loci have previously been identified for this dual
phenotype, and nine have previously been implicated in
nonalcoholic fatty liver disease. These findings extend
our current understanding of the higher T2D risk among
individuals with low circulating LDL-C and of the un-
derlying mechanisms, including those responsible for
the diabetogenic effect of LDL-C–lowering medications.

Rates of cardiovascular disease (CVD) and type 2 diabetes
(T2D) are among the most pressing health concerns world-
wide. These two diseases share many risk factors and tend
to co-occur, because there is an excess of CVD among
individuals with T2D (1,2). Yet, controversy remains over
whether all risk factors exert similar effects on the de-
velopment of these two conditions. LDL cholesterol (LDL-C)
is a class of highly atherogenic particles, and circulating
levels of LDL-C are a causal risk factor for CVD across the
life span (3). However, several lines of evidence suggest that
decreased levels of circulating LDL-C are associated with an
increased T2D risk.

Lipid-lowering medications, in particular from the sta-
tin drug class, are effective at lowering levels of circulating
LDL-C and rates of adverse cardiovascular events (4) but
convey an increased T2D risk (odds ratio [OR] 1.09) (5,6)
in a dose-dependent manner (7). This increased risk,
however, is outweighed at a population level by the car-
diovascular event rate reduction. An increased T2D risk
has also been reported in observational studies. Individ-
uals with low levels of circulating LDL-C (e.g.,,60 mg/dL)
exhibit a higher risk of prevalent and incident T2D (8,9),
and among individuals with coronary disease, LDL-C and
T2D are inversely related (10). In addition, individuals
with familial hypercholesterolemia exhibit a decreased risk
of T2D as well as lower BMI and triglyceride (TG)
levels (11).
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Genetic studies have lent further support to inverse
phenotypic associations between LDL-C and T2D, with
recent studies pointing to genetic loci that harbor variants
exerting opposing effects on LDL-C and T2D. These in-
clude loci containing theHMGCR (12), APOE (13,14), PCSK9
(12,14,15), NPC1L1 (12,14), PNPLA3 (14), TM6SF2 (14),
GCKR (14), and HNF4A (14) genes. Furthermore, Fall et al.
(16) and White et al. (17) have both found that geneti-
cally predicted higher circulating LDL-C was associated
with a lower risk of T2D. Yet, genetic findings show that
not all variants have opposing effects on circulating
LDL-C levels and T2D risk. LDL-C–lowering variants in
ABCG5/G8 and LDLR genes were not shown to alter T2D
risk (12), and subsets of LDL-C–lowering alleles pose
a stronger risk for T2D than the full gamut (16). Cir-
culating LDL-C levels, like T2D, are reflective of a num-
ber of physiological processes. The findings outlined
above suggest that there is heterogeneity in T2D out-
comes, depending on which pathways are the primary
LDL-C–lowering mechanisms, and that genetic studies
may give us insights into these pathways. For example, it
is not clear whether these associations are driven by
changes in circulating levels of LDL-C or by changes in
intracellular levels of cholesterol. A better understand-
ing of which genetic loci lower circulating levels of
LDL-C and increase T2D risk may yield mechanistic
insights that could help develop therapeutic options
that lower lipid levels without raising the risk of T2D and
help identify individuals at greater risk for T2D with statin
use.

Here, we first examined the relationship of directly
measured circulating LDL-C levels with prevalent T2D,
HbA1c, and BMI. We then sought to identify, for the first
time on a genome-wide scale, loci simultaneously asso-
ciated with lower LDL-C and increased T2D (and vice
versa). Upon identifying variants, we sought to generate
additional mechanistic insights by testing of associations
with seven other traits in the UK Biobank related to T2D,
LDL-C, and nonalcoholic fatty liver disease (NAFLD).

RESEARCH DESIGN AND METHODS

UK Biobank
Data from the UK Biobank were used for 1) phenotypic
data analysis, which examined the associations of circu-
lating levels of LDL-C and TG with T2D, HbA1c, and BMI,
and 2) discovery genome-wide association study (GWAS)
for variants that are associated with lower circulating
levels of LDL-C and higher T2D. The UK Biobank is
a prospective cohort study of ;500,000 individuals be-
tween the ages of 39 and 72 years living throughout the
U.K. Participants attended 1 of 21 assessment centers in
the U.K. and had their blood drawn for biomarker and
genetic analysis and weight and height measured to de-
rive BMI (kg/m2). Directly measured circulating LDL-C,
HbA1c, HDL-C, TG, alanine aminotransferase (ALT), and
AST were obtained from all UK Biobank participants at
the baseline visit between 2006 and 2010 in a nonfasting

state. LDL-C was assessed by enzymatic protective selec-
tion analysis on a Beckman Coulter AU5800.

To define prevalent T2D case and control subjects, we
used criteria previously used by Yaghootkar et al. (18)
and Eastwood et al. (19). We first excluded individuals
with a missing age of T2D diagnosis, reporting a T2D
diagnosis within 1 year of the baseline examination,
those self-reporting type 1 diabetes in the verbal in-
terview, and women reporting only gestational diabetes
on the touchscreen or verbal interview. Prevalent T2D
was defined using the following criteria: 1) self-reported
diabetes diagnosed by a doctor during the touchscreen, or
self-reported T2D or generic diabetes in verbal inter-
views; 2) having a nonmissing age of diagnosis and an
age of diagnosis .35 years of age (.30 years of age for
participants reporting an ethnicity of South Asian or
African Caribbean); and 3) not using insulin within
1 year of diagnosis to exclude possible type 1 diabetes
case subjects. Control subjects were participants with no
self-reported diabetes of any type from the touchscreen or
verbal interview, no self-reported insulin use in the
touchscreen or verbal interview, those not excluded accord-
ing to the aforementioned criteria, and those not reporting
nonmetformin T2D medication (see the list in Supplemen-
tary Table 2).

UK Biobank Genotypes
Genotypes in the UK Biobank were obtained with the
Affymetrix UK Biobank Axiom Array (Santa Clara, CA),
whereas 10% of participants were genotyped with the
Affymetrix UK BiLEVE Axiom Array. Details regarding
imputation, principal components analysis, and quality
control procedures are described elsewhere (20). The
analysis excluded individuals with unusually high hetero-
zygosity, with a high (.5%) missing rate, or with a mis-
match between self-reported and genetically inferred sex.
Single nucleotide polymorphisms (SNPs) out of Hardy-
Weinberg equilibrium (P, 13 1026), with a high missing
rate (.1.5%), with a low minor allele frequency (,0.1%),
or with a low imputation accuracy (info ,0.4) were
excluded from analyses. This resulted in the availability
of ;15 million SNPs for analysis.

Diabetes Genetics Replication and Meta-Analysis
and Global Lipids Genetics Consortium GWAS
Meta-Analysis Summary Statistics
The latest GWASmeta-analysis summary statistics for T2D
(unadjusted for BMI) were obtained from the Diabetes
Genetics Replication and Meta-Analysis consortium
(DIAGRAM), which includes data on up to 898,130 indi-
viduals (74,124 case and 824,006 control subjects), in-
cluding UK Biobank individuals (21). We used the results
of our GWAS of circulating LDL-C in UK Biobank, along
with the aforementioned DIAGRAM-T2D results, for the
discovery of inverse association signals. We then repli-
cated LDL-C associations of our top hits with an inde-
pendent GWAS meta-analysis of LDL-C from the Global
Lipids Genetics Consortium (GLGC) (22) (n 5 188,577);
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this meta-analysis does not include the UK Biobank study.
Across the UK Biobank, DIAGRAM, and GLGC summary
statistics, we aligned all SNP alleles and their correspond-
ing effects by using the harmonize function in the Two-
SampleMR package in R software (23).

Statistical Analyses
To evaluate and plot the prevalence of T2D and of BMI and
HbA1c by decile of circulating LDL-C and TG in the UK
Biobank, we excluded all participants who self-reported (at
baseline) use of cholesterol-lowering medications during
the touchscreen survey, or cholesterol-lowering medica-
tion during the verbal interview (see Supplementary Table
1 for list of medications). Approximately 91% of individ-
uals taking cholesterol-lowering medications were taking
statins. To examine levels of HbA1c by decile of circulating
LDL-C, we excluded participants defined as T2D cases (see
above). We further excluded individuals with outlier val-
ues of HbA1c .4 SDs from the mean. Deciles were
calculated using the “quantcut” function in the “gtools
v3.5.0” library in R software. Once decile were established,
T2D prevalence by LDL-C/TG decile was calculated and
plotted with CIs determined by the Clopper-Pearson
interval (24). Mean HbA1c and BMI and their distri-
butions are shown in boxplots for each decile of circu-
lating LDL-C. We further examined T2D prevalence by
circulating LDL-C decile separately in men and women,
and in different age-groups (40–49 years, 50–59 years,
and 60–69 years).

To statistically evaluate these phenotypic associations,
we performed logistic regression with T2D prevalence as
the outcome and linear regression with HbA1c and BMI
as outcomes. As mentioned above, all individuals on
cholesterol-lowering medication were excluded. To normalize
residuals, we transformed circulating LDL-C, TG, HbA1c,
and BMI by inverse normalization for all linear regression
analyses. For each analysis, we used the same exclusion
criteria as those mentioned above and adjusted for “last
eating” time (excluding individuals reporting extreme
values, .16 h), age, sex, and center. We considered an
expanded model with additional covariates: education
(college/university degree or not), Townsend Deprivation
Index, BMI, hypertension status (self-reported status or
hypertension medication), ethnicity (white/European or
not), family history of T2D (at least one first-degree family
member), smoking status (never, past, current), and alco-
hol consumption (never or only special occasions, one to
three times per month, one to two times per week, three to
four times per week, daily/almost daily). In analyzing the
association of circulating LDL-C with T2D, we also tested
for interactions with sex and age and provided stratified
analyses accordingly. Finally, we also examined the asso-
ciation of LDL-C with T2D among only the individuals
taking cholesterol-lowering medication.

To address possible ascertainment bias of prevalent T2D
case subjects due to exclusion of people taking cholesterol-
lowering medication, we performed a sensitivity analysis

using propensity score matching to remove bias between
the two groups due to observed covariates (25). We used the
propensity score to match on the probability of taking
cholesterol-lowering medication given the set of baseline
characteristics listed in Supplementary Table 3. All cova-
riates were selected based on previous literature or if
considered potential significant confounders for cholesterol-
lowering medication use or T2D (26–28). Matching anal-
yses were performed using R software and the package
MatchIt v3.0.2 with 1:1 nearest-neighbor matching and
a caliper width equal to 0.1 to achieve balanced covariates
between the two groups (29). Standardized mean differ-
ences were used to assess covariate balance before and
after matching. Standardized mean differences ,0.1 were
considered adequately balanced to reduce significant dif-
ferences between the two groups (30). Subsequent anal-
yses were conducted among all individuals, regardless of
cholesterol-lowering medication use, using logistic regres-
sion for T2D as the outcome and linear regression for
HbA1c as the outcome. Model 1 was adjusted for time
since eating, age, sex, and center. Model 2 was addition-
ally adjusted for BMI and use of cholesterol-lowering
medication. BMI was included as a covariate because
the addition of BMI to the unadjusted model in the
matched sample changed the regression coefficient for
LDL-C by.10%. Although cholesterol medication use did
not result in this magnitude of change, we adjusted for
cholesterol medication use in model 2 to address any
potential confounding. The only covariates considered in
these regression analyses were those used in the main
analyses stratified by cholesterol-lowering medication (see
above and model 2 in Supplementary Tables 6 and 7). To
meet the assumptions of linear regression, HbA1c, LDL-C,
and BMI were inverse normalized in all linear regression
models of HbA1c regressed on LDL-C. We used complete
case analysis to address missing data. As a result of greater
missingness for HDL-C (n 5 35,382), analyses were re-
peated excluding HDL-C from the matching covariates.
However, the regression results were not attenuated, and
only results including HDL-C were reported.

For the GWAS of LDL-C in the UK Biobank, the circu-
lating LDL-C level of individuals on cholesterol-lowering
medication was corrected by dividing it by a correction
factor of 0.63 (31). We also ran a GWAS only on individuals
not taking cholesterol-lowering medication. We trans-
formed LDL-C by inverse normalization. We used BOLT-
LMM software (32) to perform GWAS on individuals of
European descent (n 5 431,167) and included “last eating”
time (see above), sex, age, age2, center, genotyping chip, and
the first 10 principal components as covariates. BOLT-LMM
performs a linear mixed model regression that includes
a random effect of all SNP genotypes other than the
one being tested. We aligned effect sizes across the GWAS
summary statistics of each trait to the same effect allele
using the harmonize function, as mentioned above. We
used metaCCA v1.12.0 (33) to perform a multivariate
GWAS with the LDL-C and T2D GWAS summary
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statistics. Briefly, metaCCA implements a canonical cor-
relation analysis on GWAS summary statistic data in
which the phenotype correlation structure was esti-
mated from the univariate GWAS summary statistics.
We first selected only those SNPs that exhibited opposite
directions of univariate effects for LDL-C and T2D and
having a metaCCA P, 53 1028. To further minimize the
potential of selecting false-positive loci, we selected
among these SNPs only those with a univariate associ-
ation P , 5 3 1025 for each of LDL-C and T2D. At this
univariate P-value threshold, the prior probability of
a given SNP associated with two traits and with dis-
cordant direction of effect under the null hypothesis
corresponds to 0.00005 3 0.000025 5 1.25 3 1029 (34).
SNPs within ,500 kb of each other or in linkage disequi-
librium of r2 . 0.05 were clumped together, and the SNP
with the lowest metaCCA P value was reported.

For the replication of the 44 discovered loci, we con-
sidered both the univariate results for LDL-C from GLGC

and multivariate results from metaCCA using the GLGC
LDL-C and DIAGRAM T2D. Because of incomplete over-
lap of SNPs in GLGC with those in the UK Biobank and
DIAGRAM and differences in population composition, we
examined all SNPs within each locus identified in the
discovery stage (i.e., the base pair range at a given locus
for which all SNPs satisfied the above univariate and
multivariate criteria in the discovery analysis). After further
restricting to only variants for which the effect size for
(GLGC) LDL-C and T2D exhibited opposite directions of
effect, we chose the SNPwith the lowestmetaCCA P value. A
locus was considered to be successfully replicated if this top
SNP had a univariate LDL-C P, 53 1023 and a metaCCA
P , 5 3 1025. Among the replicated loci, we tested for
colocalization using the DIAGRAM T2D and UK Biobank
LDL-C results to determine whether, at a given locus, the
two traits are likely to be affected by the same causal variant.
Specifically at each of the replicated loci, we used the coloc
v3.2-1 package in R software (35) to test for colocalization

Figure 1—T2D prevalence, HbA1c, and BMI by circulating LDL-C deciles in the UK Biobank. T2D prevalence is shown as a percentage, with
error bars corresponding to the Clopper-PearsonCI.Whisker plots show themedian value (horizontal line in box), the 25th and 75th percentile
delimited by the box, and the vertical lines extending to the 5th and 95th percentile.
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using all SNPs within 250 kb of the SNP with the lowest
metaCCA P value. We used default parameters and priors.
We considered that there was evidence for colocalization if
the posterior probability for a shared causal variant hy-
pothesis 4 (PP.H4) was .80%.

To test the association of the 31 SNPs (T2D increasing
allele) that we identified with a range of other cardio-
metabolic traits that are known to be related to LDL-C and
T2D and are available in the UK Biobank, we used similar
methods described above for the circulating LDL-C GWAS.
For TG and HDL-C, we excluded individuals reporting
cholesterol-lowering medication. For ALT and AST, we
excluded 15,138 individuals with medical conditions,
other than NAFLD, that could affect liver enzyme levels
(36). For HbA1c, we excluded individuals with prevalent
T2D (see above). For the waist-to-hip ratio, we addition-
ally adjusted for BMI before inverse normalization and
subsequent GWAS. We inverse normalized all traits be-
fore the GWAS. We tested the association of each of the
31 SNPs with each of these seven additional phenotypes. We
then normalized the effect sizes by dividing theb-coefficients
by the corresponding SEs and dividing by the square root of
the respective sample size. We used hierarchical clustering to
group the identified variants according to their pattern of
association with all nine traits, including T2D and circulating
LDL-C. Clustering was performed with the hclust v3.6.2
function in R, with the Euclidianmetric to calculate distances,
and the Ward clustering method (37). Cluster stability was
assessed by using the clValid v0.6-6 package in R software,
evaluating the hierarchical, k-means, and partitioning
around medoids methods, and evaluating 2–10 clusters
(38). Finally, using UK Biobank individual-level data, we
used a multivariate approach, MultiPhen v2.0.3 (39),

which uses ordinal regression to model each SNP as the
outcome and includes all traits as covariates (except
for T2D) in addition to age and sex. We present only
b-coefficients from these models because the P values are
nearly all .0.05, possibly due to the inclusion of many
correlated phenotypes into each model.

Data and Resource Availability
The data that support the findings of this study are available
to researchers, upon application, from the UK Biobank, but
restrictions apply to the availability of these data, which
were used under license for the current study. Data from the
DIAGRAM and GLGC consortia are publically available at
their respective websites: https://www.diagram-consortium
.org/ and http://lipidgenetics.org/.

RESULTS

Participant Characteristics
In a sample size of 375,783 individuals after exclusion of
individuals on lipid-lowering medication, T2D prevalence
was 0.8% and was higher in men (1.15%) than in women
(0.54%). Individuals with prevalent T2D had lower circu-
lating LDL-C and HDL-C, higher circulating TG, higher
HbA1c, and higher BMI (Supplementary Table 4). Among
individuals on cholesterol-lowering medication (n5 78,626),
T2D prevalence was 18.2%, and individuals with T2D had
lower circulating LDL-C and HDL-C, and higher circulating
TG, HbA1c, and BMI (Supplementary Table 5).

Association of Circulating LDL-C With T2D
We observed an inverse relationship between circulating
LDL-C and T2D prevalence (OR 0.41 [95% CI 0.39, 0.43]

Figure 2—Plot of b-coefficients for circulating LDL-C vs. T2D for SNPs with opposite directions of effect on these two traits. b-Coefficients
correspond to log-ORs for T2D, and SDs for circulating LDL-C. Shaded area corresponds to the 95% CI for the best fit regression line.
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per mmol/L unit of LDL-C, P 5 1.26 3 102263). Individ-
uals in the lowest decile of circulating LDL-C exhibited the
highest prevalence of T2D, and a consistent decrease in
T2D prevalence was observed with increasing circulating
LDL-C (Fig. 1). We found a very similar negative association
of circulating LDL-C with T2D among only the individuals
reporting the use of cholesterol-lowering medication. We
found a significant interaction of circulating LDL-C with sex
(P 5 1.52 3 10213), whereby the association of circulating
LDL-C with T2D prevalence was stronger among men (OR
0.35 [95% CI 0.32, 0.37] per mmol/L unit of LDL-C, P 5
7.37 3 102215) than among women (OR 0.51 [0.47, 0.55]
per mmol/L unit of LDL-C, P 5 3.63 3 10262) (Supplemen-
tary Table 6 and Supplementary Fig. 1). We also observed
a stronger inverse association between circulating LDL-C
and T2D prevalence among older individuals (Pinteraction 5
3.54 3 10213) (Supplementary Table 6 and Supplemen-
tary Fig. 3). Positive associations were found between
circulating LDL-C and both HbA1c (after exclusion of indi-
viduals with T2D; b 5 0.14, SE 5 0.0017, P , 5.0 3
102300) and BMI (b 5 0.16, SE 5 0.0016, P , 5.0 3
102300) (Fig. 1 and Supplementary Table 6). We also
observed a positive association between circulating TG

and T2D prevalence (OR 1.34 [95% CI 1.31, 1.38], P 5
8.033 102109) (Supplementary Table 6 and Supplemen-
tary Fig. 4). Among individuals on cholesterol-lowering
medications, we found a nearly identical negative asso-
ciation of circulating LDL-C and T2D prevalence but a much
weaker positive association with HbA1c, and a negative as-
sociation with BMI (Supplementary Table 7 and Supplemen-
tary Fig. 1). In models including additional covariates, the
results remained very similar (Supplementary Tables 6 and 7).
Results were also very similar in propensity score–matching
analyses. In a total sample size of ;70,000 individuals, the
T2D prevalence was 6.69%, and these analyses showed
similar negative associations of circulating LDL-C with
T2D (OR 0.51 [95% CI 0.49, 0.54] in model 2) and positive
associations of circulating LDL-C with HbA1c (Supplementary
Tables 3 and 8).

Loci Associated Inversely With LDL-C and T2D
We identified 44 loci associated in opposite directions with
circulating LDL-C and T2D using the UK Biobank LDL-C
and the DIAGRAM T2D results (Supplementary Table 9).
In an analysis in which we used a GWAS of circulat-
ing LDL-C excluding individuals on cholesterol-lowering

Figure 3—Association of T2D-increasing allele at 31 identified SNPs with nine cardiometabolic traits, based on univariate analyses, and
hierarchical clustering dendogram based on corresponding standardized effect sizes. WHR, waist-to-hip ratio.
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medication, we observed nearly identical results (Supple-
mentary Table 10). Among these 44 loci, 31 replicated with
respect to LDL-C association when using the GLGC LDL-C
GWAS results instead of UK Biobank (Table 1). Several loci
are previously known or suspected to be inversely associated
with circulating LDL-C and T2D (HMGCR, APOE, NPC1L1,
PNPLA3, TM6SF2, GCKR, and HNF4A). However, most of
the loci are novel for this LDL-C–T2D trait. Of these novel
loci, 12 have previously been identified for LDL-C in the
GLGC GWAS, 14 were previously identified in T2D GWAS,
and 14 have not been identified previously with either
trait. The loci with the strongest degree of opposing effects
include FNDC7-STXBP3, SORT1-PSMA5, HMGCR-POC5,
PPP1R3B, and GCKR (Fig. 2). Colocalization analyses sug-
gest that of the 31 loci, GCKR, PPP1R3B, TM6SF2, HNF4A,
MICAL3, and PNPLA3 have the same causal variant(s)
influencing circulating LDL-C and T2D (PP.H4 . 0.8).
Although most SNPs showed colocalization at shared or
distinct causal variants, a few loci showed no evidence of
colocalization (Supplementary Table 11).

The variants that we have identified can be linked with
genes that affect de novo fatty acid synthesis, hepatic lipid
uptake, hepatic lipid export, peripheral tissue lipid balance,
fatty liver of unknown origin, insulin secretion, and insulin
action (Supplementary Table 12). They are associated in
distinct patterns across a range of cardiometabolic traits
(Fig. 3). At these loci, the T2D-increasing alleles are
generally associated with higher HbA1c levels and lower
HDL-C levels, although this pattern is not entirely con-
sistent across all 31 SNPs. According to cluster stability
evaluation, two clusters were optimally identified by hier-
archical clustering (Supplementary Table 13). However, it
is difficult to discern any consistent trait association
patterns that differentiate the two sets of loci. In Supple-
mentary Fig. 6 we present the trait-specific b-coefficients
based on MultiPhen, some of which are substantially
different from the univariate results.

DISCUSSION

We used the largest sample to date to examine the asso-
ciation of circulating LDL-C with T2D prevalence and
found that individuals with low circulating LDL-C exhibit
a higher prevalence of T2D. Then, in the first genome-wide
analysis aimed at identifying variants associated with both
lower circulating LDL-C and higher T2D risk, we identified
24 novel loci exerting opposite-direction effects on these
traits. Our analyses lend weight to the notion that the
association between lower circulating LDL-C and increased
T2D risk is driven, at least in part, by a specific group of
genetic variants that may be implicated via diverse mech-
anisms, including hepatic lipid synthesis, export, and
uptake, as well as insulin secretion and action. These
variants provide insight into the heterogeneous outcomes
for different lipid and glucose metabolism pathways.

We found that low circulating LDL-C is associated with
greater T2D prevalence, which is consistent with two
previous studies examining T2D prevalence (8) and

incidence (9). In addition, we found that lower levels of
circulating LDL-C are associated with lower HbA1c (among
individuals without T2D) and lower BMI. Our finding that
lower circulating LDL-C is associated with increased T2D
prevalence but lower HbA1c appears counterintuitive. It is
important to note that the latter association was performed
in a slightly different subset than the first association (i.e.,
excluding thosewith T2D).Wemay be observing a threshold
effect, whereby the etiology of “normal” HbA1c variation is
somewhat distinct from the etiology of crossing into overt
T2D (e.g., 37). It is also possible that our results could be
affected by collider bias because individuals on cholesterol-
lowering medications are excluded from our main analysis.
However, we observed a similar inverse relationship of circu-
lating LDL-C with T2D in the set of people on cholesterol-
lowering medication and in a propensity score–matching
analysis. We also find that unlike LDL-C, TG levels are
positively associated with T2D prevalence. This opposing
relationship of circulating LDL-C and TG with T2D preva-
lence may suggest that LDL particles are being overfilled in
individuals with T2D.

Previous research into loci that jointly alter the risk for
circulating LDL-C and T2D has focused on the genomic
targets of lipid-lowering medications in the hope that
these analyses will give specific insights into associated
T2D risk. On one hand, our analyses confirmed that
variants in HMGCR (41) and NPC1L1 (14) are associated
with lower circulating LDL-C and increased T2D risk. On
the other hand, our analyses did not identify variants at
PCSK9. The lowest T2D P value was 0.003 in this region
for a SNP with opposite direction coefficient. However,
our analyses identified a fourth target of lipid-lowering
medications: variants in the peroxisome proliferator–
activated receptor (PPARG) gene, the target of fibrates
and thiazolidinediones.

We observed nine variants previously identified as
being associated with NAFLD: PNPLA3, GCKR, TM6SF2,
PPP1R3B, ERLIN1-CWF19L1, REEP3, HNF1A, SLC2A2,
and MICAL3 (42–44). Furthermore, five of the seven
colocalizing loci are among these nine. This enrichment
for NAFLD-related genes may reflect increased synthesis
and storage of TG and reduced export/secretion of VLDL,
leading to reduced circulating LDL-C. Indeed, the LDL-C–
decreasing alleles at most of these loci are associated
with increased liver enzymes, indicative of hepatic stea-
tosis, with the exception of GCKR and SLC2A2, consis-
tent with a previous finding (45). In turn, lower levels of
circulating LDL-C along with increased liver enzymes would
be expected to indicate increased NAFLD and T2D. A recent
bidirectional Mendelian randomization study provides sup-
port for this hypothesized causal effect of NAFLD on T2D
(46). Our findings that liver fat may be an important
mediator of the effect of cholesterol lowering on T2D is
consistent with a report showing that liver fat may help
identify statin-taking individuals at risk for T2D (47).
Finally, it is noteworthy that the HMGCR variant that
lowers circulating LDL-C is not associated with any
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significant change in liver enzymes, potentially reflecting
the lack of an increase in NAFLD incidence seen with
statin medications (48).

Our analyses identified a number of variants previ-
ously implicated in lipid and glucose metabolism. Sor-
tilin 1 (SORT1) is highly expressed in adipocytes, and
the sortilin gene product facilitates the formation and
export of VLDL from the liver (49,50). The role of
SORT1 in T2D risk is not well understood. Sortilin
1 is required for insulin-dependent glucose uptake
(51–53), yet Sort1-knockout mice may show reduced
glucose and glycolic intermediates in the fasted state
(54). This highlights again the potential for heteroge-
neous paths in T2D risk and the dependence on mul-
tiple pathways of lipid and glucose metabolism to
explain our findings.

Several loci were also identified that are known to be
related to T2D, without known associations with circulat-
ing LDL-C. These include THADA, C2CD4A, CENPW, and
SLC12A8 (21). In addition, we identified several variants
associated with lower circulating LDL-C but increased T2D
risk with no known biological pathways linking these loci
to either trait. SLC2A2, which encodes GLUT2, has not
previously been associated with circulating LDL-C or T2D
in the large respective GWAS consortia. However, GLUT2
is key to hepatic glucose uptake after a meal and the
associated hepatic de novo lipogenesis (55). In fact, liver-
specific GLUT2 knockout decreases liver TG concentra-
tions. Importantly, GLUT2 expression in the b-cell is
required for the glucose-stimulated insulin response (56).
In turn, a locus that decreases GLUT2 expression would
be expected to limit serum insulin, increase HbA1c, and
decrease circulating LDL-C.

Our approach is subject to several limitations. We used
prevalent T2D in the UK Biobank, which limits inferences
related to the direction of causality. As incident T2D cases
develop in the UK Biobank, it will be important to examine
the association of circulating LDL-C at baseline with in-
cident T2D. The risk of a false-positive finding (i.e., a SNP
that is associated with two traits in opposite directions,
each with P , 5 3 1025, and with a genome-wide
significant metaCCA P value) is extremely low. However,
a limitation of our study is that the replication is limited to
a replication of the LDL-C effect estimates of these SNPs.
This could lead to an increased risk of false-positive signals
with respect to the associations of the SNPs with T2D. It is
also difficult to identify the causal gene at identified loci.
Although we annotated these loci according to nearby
genes and/or previous annotation, the listed and men-
tioned genes may not necessarily be directly implicated, if
at all. Our identification of loci associated with both LDL-C
and T2D does not necessarily imply that in each case, the
effects of the genetic variant on each trait are linked by
a common pathway or mechanism. In other words, it is
possible that the way in which a variant causes a lowering
of LDL-C could be distinct (different tissue and/or path-
way) from the way in which it increases T2D. It is thus

possible that some of the variants identified are not having
effects on a common pathway. Furthermore, because we
are not necessarily identifying a single causal variant, it is
possible that within a locus, multiple different variants
affect each trait. Results from colocalization do suggest
that in many cases, there are different causal variants.
However, differences in patterns of linkage disequilibrium
between the UK Biobank and DIAGRAM consortium stud-
ies could reduce our ability to colocalize causal variants. If
there was not a shared pathway, we might expect that the
effect size of LDL-C would be directly proportional to the
effect on T2D across all LDL-C–lowering alleles. However,
there are many variants that are known to be strongly
associated with LDL-C that are not identified in this
analysis (e.g., LDLR, APOB, ABCG5/8).

In conclusion, our results suggest that low circulating
LDL-C may be a risk factor for T2D, although further study
is warranted. We have identified a collection of genetic
variants that may provide insight into the mechanisms
underlying the diabetogenic risk of low circulating LDL-C
and of lipid-lowering medications, and the decreased T2D
risk among individuals with familial hypercholesterolemia.
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