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Surface localized magnetism 
in transition metal doped alumina
Erik C. Nykwest1*, Dennis Trujillo2 & S. Pamir Alpay2,3 

Alumina is a structural ceramic that finds many uses in a broad range of applications. It is widely 
employed in the aerospace and biomedical sectors due to its stability at high temperatures and in 
harsh chemical environments. Here, we show that magnetism can be induced at alumina surfaces 
by doping with 3d transition metals. We analyze the electronic structure, spin magnetic moments, 
and spin density of α-Al

2
O
3
 as a function of both dopant species (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu) and 

depth using first principles calculations. Our results show that all dopants, with the exception of Sc, 
produce magnetic moments that are concentrated to the surface of alumina with varying degrees 
of delocalization. It is seen that all of the dopants are at least meta-stable on the surface and must 
overcome an energy barrier of 0.19–1.14 eV in order to diffuse from the surface into the bulk. As 
a result of judiciously doping with select 3d transition metals the surface of alumina can be made 
magnetic. This could lead to novel applications in data storage, catalysis, and biomedical engineering 
through an added surface functionality.

Magnetic semiconducting materials exhibit a large range of electronic and magnetic functionalities which have 
been exploited in fields as diverse as data storage1, catalysis2–5, photovoltaics6, and medicine7. Aluminum oxide 
(Al2O3 ), in particular, is an extremely technologically relevant material and has been studied extensively due 
to its low thermal conductivity8, high chemical stability9, lasing ability10, and relative low degree of lattice mis-
match relative to a large number of semiconducting insulators11. The further enhancement of the electronic 
and magnetic properties of Al2O3 is of great interest where doping and geometric alterations (strain, surface 
enhancement) are the most promising means of improving the material response.

It has been demonstrated that substituting a transition metal dopant could produce alumina that possesses 
both unpaired electrons and a net magnetic moment12. In addition, it was also determined that the delocaliza-
tion of these unpaired electrons varied greatly between dopants13, which may affect the final magnetic proper-
ties of the doped system14. Previous work in metallic systems15–17 has pointed toward enhanced magnetism 
near surfaces, where a transition in spin density from the bulk to the surface region was observed. Likewise, 
the presence of spin density waves (SDW) have been evaluated via ab initio simulations and experiments for 
multiple metal18–22 and metal oxide materials23–26. Changes in the magnetic order have been observed in doped 
topological insulators27,28, indicating a bulk-surface transition in the spin density wave for insulating materials. 
Considering alumina is a wide bandgap ceramic which has been used in many applications, an observed surface 
localized magnetization and change in magnetic behavior has implications for developing novel magnetic data 
storage devices, photovoltaics and catalysis.

This work focuses on demonstrating surface localized magnetic behavior of 3d transition metal (Sc, Ti, V, 
Cr, Mn, Fe, Co, Ni, Cu) doped alumina. These elements were chosen due to their exhibited magnetic proper-
ties (Fe, Co, Ni, Cr, Mn) and potential to alter the electronic behavior of alumina based on previous dopant 
effect studies29–31. The (0001) surface of α-alumina, terminated with a single atomic layer of Al, is both the most 
stable (lowest energy) and most commonly studied surface32–35. Along the 〈0001〉 direction of the α-alumina 
unit cell, each layer is comprised either of a single Al atom, or three O atoms. These layers can be grouped into 
stoichiometric balanced trilayers containing 2 Al atoms and 3 O atoms. From these trilayers α-alumina slabs of 
arbitrary thickness can be constructed. Density functional theory was used to determine the magnetic behavior 
of transition metal doped α-alumina slabs as a function of dopant depth from the surface. The preference for a 
dopant to be placed at the surface or in the bulk was determined via defect formation energy calculations. The 
total magnetic moment, and the degree of its delocalization from the dopant atom is reported in both a visual 
and numerical format.
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After extensive convergence testing it was observed that a slab five trilayers thick (fifteen atomic layers) could 
accurately represent both the bulk and the (0001) surface of α-alumina. This five trilayer slab unit cell is shown 
in Fig. 1. A 2× 2× 1 super cell of these slab unit cells with periodic boundary conditions was utilized for all 
calculations with a 20 Å vacuum gap introduced along the 〈0001〉 direction to prevent interactions between 
periodic images. While five trilayers are thicker than most previous research regarding α-alumina, those stud-
ies have focused on examining only the surface of alumina (e.g. surface energy and adatoms32–35). This work, 
however, is concerned with the tendency of dopants to segregate either towards the surface or into the bulk, and 
as such must represent both the bulk and surface accurately.

Density functional theory (DFT) was utilized to determine the defect formation energy and the magnetic 
behavior of transition metal doped α-alumina in the R ̄3 c trigonal crystal system where a (0001) orientated slab 
model was considered. Many factors were taken into consideration during convergence testing: slab thickness, 
vacuum spacing, surface energy, interlayer spacing, the bond lengths of the bulk-like environment aluminum 
atoms, and the total energy of the un-doped slab. In particular, the surface energy was converged to better than 
0.002 J/m2 , and the interlayer spacing and bulk-like environment aluminum bond lengths better than 1%. The 
settings used in these calculations are similar to the ones that were rigorously tested and used in our previous 
studies12,13 which involved an examination of bulk alumina doped with transition metals (Sc-Cu). First principles 
studies were performed within the general gradient approximation36 (GGA) with Perdew–Burke–Ernzerhof37, 
(PBE) parameterization, utilizing the projector-augmented plane wave (PAW) pseudopotentials, as implemented 
in the Vienna Ab Initio Simulation Package (VASP)38–40, using 0.005 Gaussian smearing. The atomic positions of 
each doped alumina super cell were relaxed simultaneously via damped molecular dynamics with a plane wave 
cut off energy of 500 eV and a 2× 2× 1 gamma centered Monkhorst–Pack K-mesh until the forces on each atom 
were less than 1× 10−6 eV/Å. After the super cell was relaxed the wave functions and charge density were recal-
culated with a plane wave cut off of 800 eV without further relaxation. It was seen previously that the total energy 
is converged to less than 6 meV/atom at a cutoff of 500 eV and less than 0.1 meV/atom at a cutoff of 800 eV. 
The ground state energy for isolated atoms were calculated using a 800 eV cut off with the gamma point only 
along with a Gaussian smearing of 0.001 through an asymmetric simulation cell of dimension 20× 21× 22 Å 3.

To evaluate the tendency of each dopant to segregate either towards the surface or into the bulk the Defect 
Formation Energy (DFE) was calculated for each dopant, at each unique Al substitutional doping site (labeled 1–5 
in Fig. 1), using Eq. (1) below. The energetically preferred doping depth may then be determined by identifying 
the doping site with the minimum defect formation energy.

Figure 1.   Five trilayer slab unit cell of α-alumina. The larger (blue) atoms are Al and the smaller (red) are O. 
The unique substitutional Al doping sites have been labeled 1–5 where 1 is surface like and 5 is bulk like.
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The defect formation energy may also be used to check the convergence of the model system as DFE of the 
deepest bulk-like layer in the slab should equal to that of the periodic bulk system, if the slab is well converged. 
We define the DFE as:

where E Doped is the total energy of the doped alumina, E Al is the energy of an isolated aluminum atom, E Pure is 
the energy of undoped bulk alumina, and E TM is the energy of the isolated dopant atom. While this work strives 
to report accurate defect formation energies, it is important to note that the absolute value of the defect formation 
energy (which is a function of slab thickness) is not as important as the change in the defect formation energy 
between doping sites. The DFE values for each respective dopant are listed in Table 1. Accordingly, the differ-
ence in the defect formation energy relative to the deepest bulk-like doping site (RDFE) is also calculated via,

where RDFE(i) is the relative increase/decrease in the defect formation energy DFE(i) when a dopant is placed 
in doping site i instead of the bulk-like doping site i=5.

The defect formation energy was calculated for each dopant at each unique Al substitutional doping site. 
The defect formation energy as a function of the dopant is shown in Fig. 2. The trend is in agreement with our 
past work on bulk doped alumina13, with scandium and titanium being the most energetically favorable dopants 
introduced to the system overall, and nickel and copper the least favorable dopants for each respective aluminum 
substitutional site. This can be explained by the preference of Sc ([Ar]3d14s2 ) and Ti ([Ar]3d24s2 ) to donate 
3 electrons to the octahedrally coordinated oxygen atoms, bringing their valency closer to Ar than the other 
considered dopants. More details on the trends of defect formation energy can be found in13.

While the defect formation energy allows us to make inferences about relative difficultly of embedding each 
dopant atom into an alumina slab, the relative defect formation energies may be used to draw conclusions about 
the stability of the doped systems once the atom is already embedded. It can be seen from Fig. 3 that most of the 
dopants have a global minimum RDFE at position 1 and thus prefer placement at the surface, with the exception 
of chromium which prefers to be inside the slab and away from the surface. Similarly, most of the dopants exhibit 
a global maximum RDFE at position 2, with the notable exceptions of iron and cobalt which do not possess an 
energy barrier. In order for an atom to migrate from the surface (position 1) to the “bulk” (position 5), or vice 

(1)DFE = (EDoped + EAl)− (EPure + ETM)

(2)RDFE(i) = DFE(i)− DFE(5)

Table 1.   Defect formation energy for the considered dopants at positions 1–5 in the slab (see Fig. 1).

DFE (eV) Sc Ti V Cr Mn Fe Co Ni Cu

Bulk − 1.19 − 0.41 0.70 2.17 3.62 3.82 3.66 4.94 7.06

Bulk-Like − 1.39 − 0.58 0.58 2.09 3.45 3.79 3.64 4.86 6.95

Difference 0.20 0.17 0.13 0.08 0.17 0.03 0.01 0.08 0.11

Figure 2.   Defect formation energy of transition metal doped alumina as a function of dopant species and 
surface depth (1–5 as illustrated in Fig. 1). Position 6 shows the defect formation energy of bulk doped α
-alumina reported in references12,13.
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versa, it would have to overcome this energy barrier. Accordingly, the global maximum RDFE is reported as an 
energy barrier in Table 2.

When considered in tandem, the segregation energy and the energy barrier can be used to categorize the 
long-term stability of the doped systems against diffusion into the bulk. The total energy required for a dopant to 
segregate from the surface into the bulk is the sum of the segregation energy and this energy barrier. The larger 
this sum, the more difficult it is for a dopant to segregate into the bulk. For example, of the dopants examined, 
Sc is the most robust element against diffusion into the bulk. In order for a Sc atom to migrate from the surface 
into the bulk, it would require an energy of 1.14 eV. On the other end of the spectrum, Co is the least resistant 
against diffusion and would only require 0.19 eV of energy to migrate into the bulk. The dopants from highest 
to lowest predicted long-term stability are: Sc, Ti, Fe, Cu, Mn, V, Ni, Cr, Co.

The magnetic and electronic properties of transition metal doped alumina, with the dopants placed at various 
distances from the surface, was also determined. Undoped alumina is diamagnetic and contains no unpaired 
electrons. Doping alumina with transition metal elements adds unpaired electrons into the system which induce 
a net magnetic moment. The presence of unpaired electrons in the system, and an asymmetric Density of States 
(DOS), signals that it is no longer diamagnetic. Our previous work found that some dopants induce a net mag-
netic moment that is localized near the dopant atom (e.g. iron), while other dopants (e.g. copper) introduce 
unpaired electrons that delocalize and induce a net magnetic moment on neighboring oxygen atoms12,13. This 
work finds an additional unexpected functional property of transition metal doped alumina. When doped into 

Figure 3.   Defect formation energy, in eV, relative to bulk-like doping (position 5) for each respective dopant. 
Negative energies suggest the doping site is more stable than bulk-like doping, while positive energies suggest 
the doping site is less stable than bulk-like doping.

Table 2.   Relative defect formation energy for the considered dopants at positions 1–5 in the slab (see Fig. 1).

RDFE (eV) Sc Ti V Cr Mn Fe Co Ni Cu

1 (Surface) − 0.30 − 0.93 − 0.26 0.12 − 0.33 − 0.96 − 0.30 − 0.16 − 0.50

2 0.84 0.16 0.43 0.31 0.45 0.01 − 0.11 0.12 0.33

3 0.12 − 0.03 − 0.07 − 0.01 0.09 − 0.06 0.00 0.08 0.16

4 0.34 0.07 0.15 0.04 0.14 0.01 − 0.10 − 0.01 0.05

5 (Bulk-Like) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Segregation Energy (eV) − 0.30 − 0.93 − 0.26 0.12 − 0.33 − 0.96 − 0.30 − 0.16 − 0.50

Energy Barrier (eV) 0.84 0.16 0.43 0.31 0.45 0.01 0.00 0.12 0.33
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the top-most surface layer (position 1) of alumina, the induced magnetic moment is confined almost entirely 
to the surface.

The total magnetic moment in each doped slab as a function of doping site was calculated. For doping sites 
2–5, both the total magnetic moment and the magnetic moment distribution (localized vs delocalized) are 
consistent with bulk calculations12,13. The total magnetic moment and the magnetic moment distribution for 
atoms doped into the surface layer (position 1) are quite different from bulk predictions due to a change in the 
coordination environment and are reported in Table 3. With regards to surface doping, the dopants exhibiting the 
highest total magnetic moment are iron and cobalt with a calculated value of 4.60 µ B and 3.73 µ B respectively. 
The dopants exhibiting the highest localized magnetic moment are iron and manganese with a reported value 
of 3.81 µ B and 3.31 µ B respectively. Finally, the dopants exhibiting the highest delocalized magnetic moment 
are copper and nickel with 1.01 µ B, cobalt with 0.94 µ B, and iron with 0.79 µB.

The pronounced difference between the different dopants in magnetic delocalization and magnetic behavior at 
the surface is evident when you examine the spin density distribution. The spin density is the difference between 
the charge density for the spin up electrons and the spin down electrons and identifies regions of space where 
unpaired electrons are likely to be found. The spin density for manganese, iron, and copper doped alumina slabs 
in position 1 and 5 can be seen in Fig. 5a–c and d–f respectively. The spin densities for position 5 are in agreement 
with spin densities predicted by bulk calculations12,13.

The spin densities for most of the examined dopants can be placed into two broad categories, localized like 
Mn, or delocalized like Cu. A high degree of localization is observed where the spin density is concentrated on 
the dopant atom and the nearest neighboring oxygen atoms (Fig. 5a). Spin localization is preserved for Mn in 
the bulk configuration (Fig. 5d). The elements that generate similar spin densities to Mn, but with smaller total 
magnetic moments, are Ti, V, and Cr.

In contrast to manganese, the spin density generated by copper is widely delocalized across the surface of the 
alumina slab, but is still highly concentrated in the first few atomic layers (Fig. 5c). A large degree of delocaliza-
tion is also observed for copper in bulk, consistent with its behavior at the surface. Surface localized magnetism 
is technologically relevant to developing novel magnetic storage media in addition to influencing catalytic reac-
tions. The elements that generate similar spin densities to copper are nickel and cobalt.

Iron is a notable exception to these two groups. Fe represents a transition between the localized dopants (Ti, 
V, Cr, Mn) and the delocalized dopants (Co, Ni, Cu). Fe generates both the largest total magnetic moment of 
all the dopants when doped into position 1, which is represented by the large spin density distribution centered 
directly on the Fe atom (Fig. 5b). However, Fe also induces a delocalized magnetic moment of 0.8µB that spreads 
across the surface and is concentrated in the first few atomic layers. In the bulk configuration the spin density 
is localized near the dopant atom (Fig. 5).

The differences between the bulk and surface spin densities are due to differences in the local coordination 
environment. In bulk doped α-alumina the transition metal d-states undergo octahedral crystal field splitting as 
they are octahedrally coordinated by six oxygen atoms12, causing the orbital loading to deviate from Hund’s rule. 
When doped into the surface of α-alumina however, there are only three nearest neighboring oxygen atoms so 
the dopants are no longer octahedrally coordinated and the d-states undergo a different crystal field splitting. The 
surface crystal field splitting is not large enough to cause the orbital loading to deviate from Hund’s rule, which 
leads to differences between the surface doped spin density and the bulk doped spin density.

In bulk doped α-alumna it has been shown that the high energy t2g states are responsible for the delocalized 
spin density13. When these high energy t2g states are unoccupied, the spin density is localized to the dopant atom, 
but when they are occupied the spin density is delocalized onto the neighboring oxygen atoms. We present the 
element resolved density of states (DOS) in Fig. 4, illustrating the contribution of each atomic species to the 
total density of states for the surface doped configuration. Comparing the DOS of each doped system to its spin 
density, it can be seen that the mechanism of spin delocalization for surface doping is the same as in the bulk. 
When the two highest energy spin up transition metal d states (analogous to the t2g state for bulk doped α-alu-
mina) are occupied, then the spin density delocalizes from the dopant atom onto the neighboring oxygen atoms.

Asymmetries in the DOS are observed between the spin up and down states for each of the dopant cases 
presented here, with the with the only symmetric DOS being scandium doped α-alumina. This is most visible in 
the existence of unpaired defect states in the band gap. The DOS for Cu doping is asymmetric, but it is harder to 
identify visually as most of the transition metal d states have hybridized with valence band. These unpaired spin 
states allow for the existence of stable ground state with a net spin and the emergence of magnetic behavior. We 
do not attempt to categorize these materials as ferromagnetic or anti-ferromagnetic as we only introduced one 
dopant atom into the simulation cell and thus can only produce ferromagnetic ordering, as all periodic images 
of this defect have the same spin. However, due to the presence of unpaired electrons in the system and the 
asymmetry of the DOS, we can state that the system is no longer diamagnetic.

In conclusion, cross referencing the magnetic results with the previously discussed predicted stability against 
diffusion, the most promising dopants in our data set can determined. Iron was observed to exhibit strong 
preferential placement at the surface of alumina slabs compared to placement in the bulk. In addition, strong 
localization and a high total magnetic moment likewise make iron an ideal candidate for surface doping in 
alumina. Compared to iron, all of the other dopants either produce a smaller total magnetic moment or are less 
stable against migration from the surface into the interior of the slab.

For applications where delocalization of the magnetic moment is more important than the total magnetic 
moment, copper is a suitable alternative to iron. The delocalized portion of the magnetic moment induced by 
copper is one of the largest of the elements examined and it predicted to be significantly more resilient against 
migration into the bulk than cobalt or nickle. Given these considerations there is a high potential for utilizing 
iron and copper dopants in surface sensitive devices for potential applications in data storage or catalysis.
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While this work was constrained to examining α-alumina, it is important to note that many of the metastable 
phases of alumina are characterized by high porosity and large surface-area to volume ratios41,42. In the future, it 

Figure 4.   Element resolved density of states of pure and surface doped α-alumina illustrating the introduction 
of defect states in the band gap and spin asymmetries for the doped configurations. The pristine case (a) is 
compared to Co (b), Cr (c), Cu (d), and Fe (e), Mn (f), Ni (g), Sc (h), Ti (i), and V (j) dopants in the surface 
dopant configuration illustrated as position 1 in Fig. 1. The fermi level is indicated by a vertical dashed line.
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may be worthwhile to examine how surface doping changes the surface energy as a function of dopant concen-
tration, as this may have a (de)stabilizing effect on the meta-stable phases relative to the α-phase. The methods 
presented in this manuscript would provide an excellent starting point for such future work regarding surface 
enhanced magnetism in alumina and other ceramics.

Received: 24 November 2020; Accepted: 2 March 2021
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