
ARTICLE

Robust whole slide image analysis for cervical
cancer screening using deep learning
Shenghua Cheng1,2,7, Sibo Liu1,2,7, Jingya Yu1,2,7, Gong Rao1,2, Yuwei Xiao1,2, Wei Han1,2, Wenjie Zhu3,

Xiaohua Lv1,2, Ning Li1,2, Jing Cai4, Zehua Wang 4, Xi Feng5, Fei Yang5, Xiebo Geng1,2, Jiabo Ma1,2, Xu Li1,2,

Ziquan Wei 1,2, Xueying Zhang1,2, Tingwei Quan1,2, Shaoqun Zeng1,2, Li Chen6✉, Junbo Hu3✉ & Xiuli Liu 1,2✉

Computer-assisted diagnosis is key for scaling up cervical cancer screening. However, current

recognition algorithms perform poorly on whole slide image (WSI) analysis, fail to generalize

for diverse staining and imaging, and show sub-optimal clinical-level verification. Here, we

develop a progressive lesion cell recognition method combining low- and high-resolution

WSIs to recommend lesion cells and a recurrent neural network-based WSI classification

model to evaluate the lesion degree of WSIs. We train and validate our WSI analysis system

on 3,545 patient-wise WSIs with 79,911 annotations from multiple hospitals and several

imaging instruments. On multi-center independent test sets of 1,170 patient-wise WSIs, we

achieve 93.5% Specificity and 95.1% Sensitivity for classifying slides, comparing favourably to

the average performance of three independent cytopathologists, and obtain 88.5% true

positive rate for highlighting the top 10 lesion cells on 447 positive slides. After deployment,

our system recognizes a one giga-pixel WSI in about 1.5 min.
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Cervical cancer is one of the most common cancers in
women. In 2020, there were about 604,127 women diag-
nosed with cervical cancer worldwide, and 341,831 died of

the disease1. Many studies show that periodic inspection can
reduce the incidence and mortality of cervical cancer2–5. Tradi-
tional smear tests require doctors to read the slides under
microscopes, and usually each slide has tens of thousands of cells.
During the diagnosis process, the cytopathology staff need to
spend a lot of time traversing all the cells and diagnosing the
suspicious cells among them6. Therefore, the manual screening is
very labor-intensive and experience-dependent, possibly resulting
in low sensitivity and false negatives7,8. With the progresses of
digital whole-slide image-scanning instruments9 and computer
image processing technologies10, a lot of automated lesion cell
recognition methods11 are developed and bring hope for accurate
and efficient computer-aided cervical cancer screening.

Traditional methods, mainly based on morphological and
textural characteristics12, generally consist of image segmentation,
feature extraction, and cell classification. The image segmentation
is used to segment the nucleus or cytoplasm through image his-
togram threshold, optical density measuring, and image
gradient13–16. The feature extraction primarily focuses on the
shape features and textural information of nuclei. Cervical cells
are then classified by random forest, support vector machine, and
artificial neural network17,18. The performance of such methods
is highly dependent on the segmentation effect and feature
engineering. Subject to the principles, traditional methods have
low accuracy for distinguishing lesion cells with fuzzy classifica-
tion boundaries and limited generalization for diverse cytology
slides derived from staining and imaging. In order to solve this
problem, some commercial systems such as BD FocalPoint Slide
Profiler19 and Hologic ThinPrep Imaging System20 adopted a
closed-loop strategy that integrates slide preparation, staining,
imaging, and recognizing to ensure the accuracy and stability of
the systems. In fact, they circumvented the generalization pro-
blem without solving it, which limits the wide use of the products
especially in impoverished areas.

With the development of deep learning21, convolutional net-
works (CNNs) have been applied to the identification of cervical
lesion cells. Some studies have shown that CNNs improve the
effect of nucleus segmentation22,23, and others utilize image
classification and object detection CNNs to directly identify lesion
cells without traditional segmentation process24–29. Compared
with traditional methods, CNN-based methods learn feature
representations automatically and have better generalization
potential. However, current CNN-based computer-assisted diag-
nosis algorithms are insufficient in WSI-level analysis, general-
ization for diverse staining and imaging, and clinical-level
verification. Most of the methods mainly focus on the recognition
of local lesion cells, lacking WSI-level diagnostic analysis. Even a
few methods30,31 analyzed the whole-slide cervical images on
large-scale datasets, but they still did not solve the generalization
problem in practical applications and clinical-level verification.
The image volume and annotation number of existing public
datasets are small, such as Herlev32, ISBI1433, ISBI1534, and
CERVIX9335, and most of them are provided with image tiles
instead of WSIs, which hinders the progress of WSI-level diag-
nosis analysis. In addition, inference speed of CNNs on giga-pixel
WSIs is challenging. Consequently, it is still difficult to apply
current CNN-based methods in clinical cervical cancer screening
scenes.

To address the above challenges in terms of WSI analysis
accuracy, generalization, and speed, here we propose a computer-
aided diagnosis system for cervical cancer screening based on
deep learning and massive WSIs. In the cytopathologists’ diag-
nosis process, they usually scan the slides under a low-power

microscope to find suspicious cells, and then further confirm
them under a high-power microscope. Inspired by the strategy
and considering the accuracy and speed, we design a progressive
recognition method combining the low- and high-resolution
WSIs. First, a CNN screens WSIs at low resolution (LR) to
quickly locate the suspicious areas, and then these areas are
further identified at high resolution (HR) by another CNN.
Finally, the system recommends the 10 most suspicious lesion
areas in each slide for further reviewing by cytopathologists.
Besides recommending suspicious lesion areas, our system also
evaluates the lesion degree of WSIs and gives a probability
through developing a recurrent neural network (RNN)-based
WSI classification model. The CNN image features of the top 10
areas are extracted and input to the RNN model to get the
positive probability of WSIs. We integrate designed data aug-
mentation in HSV color space, diverse data learning with group
and category balancing, and hard sample mining to achieve high
accuracy and good generalization of our system. We train and
validate our system on patient-wise 3,545 WSIs and 79,911
annotations from five hospitals and five kinds of scanners. On
multi-center independent test sets of 1,170 patient-wise WSIs, we
achieve 93.5% specificity and 95.1% sensitivity for classifying
slides. For the most confusing 121 WSIs of them, we achieve
50.0% specificity and 74.6% sensitivity, closely equivalent to the
average level of three independent cytopathologists. The recom-
mended top 10 lesion cells on 447 positive slides have an average
true positive rate (TPR) of 88.5%. Compared with the current
Hologic ThinPrep Imaging System, our system has a higher TPR
of recommended cells and is more robust to staining and imaging
style. When deploying the system with C++, multi-threading
and TensorRt36 are used to accelerate image processing and
forward inference. Our system recognizes one giga-pixel WSI in
about 1.5 min using one Nvidia 1080Ti GPU. This speed ensures
a good user experience in clinical applications and provides the
possibility of real-time augmented reality under microscopes.

In short, our work establishes a WSI-level analysis system for
cytopathology screening according to cervical slide characteristics
of sparsely-distributed and tiny-scale lesion cells and gives an
effective demonstration of using deep learning to solve the bot-
tleneck problems of current cervical screening methods. The
extensive validation experiments demonstrate that our system can
be used for effectively grading slides and recommending top-
ranked lesion cells and reducing the workload of cytology
screening staff. We believe our robust WSI analysis system would
act as an effective cytology screening assist and help accelerate the
popularization of cervical cancer screening.

Results
System architecture. Our progressive recognition system consists
of the LR model, HR model, and WSI classification model, as
shown in Fig. 1. The LR model is designed to quickly locate
suspicious lesion areas at LR. The HR model is to identify the
lesion cells and recommend the top 10 lesion cells at HR. The
WSI classification model uses an RNN to integrate the CNN
image features of the top 10 lesion cells, and outputs the positive
confidence of WSIs. The LR model and HR model are both based
on ResNet5037. For the LR model, we modify the fully connected
layer of original ResNet50 and add a semantic segmentation
branch for generating a rough location mask (Supplementary
Fig. 1). Thus, the LR model can screen WSIs and locate the
suspicious lesion areas. The semantic segmentation branch is
constructed with residual blocks of dilated convolutions. The LR
model accepts an image tile of 512 × 512 pixels (0.486 μm/pixel)
as input and outputs a lesion probability and a location heatmap
(Supplementary Fig. 2). Afterwards, for the areas with a
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probability higher than 0.5 predicted by the LR model, we per-
form some morphological operations on the corresponding
location heatmap to generate the location mask. A cropped image
tile of 256 × 256 (0.243 μm/pixel) according to the location mask
is input to the HR model and a new lesion probability is obtained.
Finally, all identified lesion cells in WSIs are sorted by lesion
probabilities, and the top 10 typical lesion cells are recommended
for cytopathologist reviewing. Further, the RNN model integrates
the CNN image features of the recommended top 10 lesion cells
to classify WSIs. For each lesion cell tile, 2,048-dimensional fea-
tures are extracted by the HR model. Then the total 10 × 2,048-
dimensional features are input to the RNN model, and positive
probabilities of WSIs are output.

Multi-center WSI datasets. To assess the robustness and clinical
applicability of our system, we collected 12 groups of datasets
from five hospitals and five kinds of imaging instruments (see
“Dataset sources” in “Methods”), which are referred to as groups
A–L (Fig. 2a). These 12 datasets include 1,467 (41.4%) positive
WSIs and 2,073 (58.6%) negative WSIs with 79,911 annotated
lesion cells by a consensus of three cytopathologists. Each WSI
represents one unique patient. The 12 datasets show completely
different image styles of staining and imaging characteristics
(Fig. 2b) and we quantified the difference in their numerical
distributions (Fig. 2c). Groups A–D are used for training our
system. Groups E–L are treated as a completely independent test
set to evaluate the generalization of our system. Groups A–D are
randomly divided into training set, validation set, and test set
with a slide-wise ratio of 8:1:1 (Fig. 2d). WSIs of all groups are
scanned under ×20 or ×40 magnification microscopes. We

uniformly interpolate them to 0.243 μm/pixel in data preproces-
sing, since the different resolutions of various imaging
instruments.

In order to verify the effect of our recognition system in
practical applications, we invited three cytopathologists to
evaluate the prediction results of 1,170 slides in groups E and
F. Groups E and F are independent from the training data with
new styles and thus are suitable for clinical-level experiments. We
performed the below assessments: slide level accuracy, tile level
accuracy, and true positive rate of recommended top 10 lesion
cells. All the skilled cytopathologists for annotation have been
trained and certified by the Chinese Society for Colposcopy and
Cervical Pathology.

Assessment at the slide level. To assess the effectiveness of our
system at the slide level, we compared the RNN classifier and
cytopathologists in classifying WSIs on the independent groups E
and F of 1,170 slides. Figure 3a shows the ROC (receiver oper-
ating characteristic) curve of our system for classifying positive
and negative slides, achieving 93.5% specificity and 95.1% sensi-
tivity with 0.979 AUC (the area under ROC). The most confusing
121 slides of the slides were classified by the RNN and the three
cytopathologists. Each red dot in Fig. 3b refers to 1-specificity and
sensitivity of a cytopathologist’s interpretation result. Our system
achieves 50.0% specificity and 74.6% sensitivity with 0.647 AUC,
which is comparable with the average level of cytopathologists. In
addition, our system processes one giga-pixel WSI in about
1.5 min after deploying on a single GPU card, much faster than
manual slide reading time.
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Fig. 1 The proposed cervical cancer aided screening system. Our system consists of WSI redundant division, LR model, HR model, and RNN model. The
LR model takes a divided image tile of 512 × 512 pixels (0.486 μm/pixel) as input and outputs a lesion probability and a location heatmap to identify and
locate the suspicious lesion areas on WSIs. The HR model takes an image tile of 256 × 256 (0.243 μm/pixel) cropped according to the location heatmap as
input and outputs a new lesion probability. The RNN model integrates the HR model image features of the top 10 lesion cells and outputs positive
probabilities of WSIs. The clinical dataset images in this figure were created by us.
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To test the performance of our system in the case of HPV
testing first or in combination with cytology, we further analyzed
the cervical cell slides from 395 HPV-positive patients (cytology
positive 169, negative 226). We achieved 81.9% specificity and
79.3% sensitivity with 0.890 AUC (Supplementary Fig. 3). The
main reason for the decrease is that many of these HPV-positive
and cytology-negative samples are accompanied by bacterial
infections, which may increase the classification difficulty. Our
system was designed for the general population of women, and
there was no special training for HPV-positive slides. We
conducted the trial with the read-made networks without
retraining. Although the preliminary results are interesting, the
classification effect is not enough. If the HPV-positive samples are
trained purposefully in the future, the classification effect is
expected to be improved.

Analysis of false-positive and false-negative slides. From the
frequency histogram of slide classification scores of groups E and
F (Fig. 4), our system produces 0.8% false-negative slides (the
slide score threshold value is 0.5), all of which were confirmed as
ASC-US slides (atypical squamous cells of undetermined sig-
nificance). As we know that cervical cytology ASC-US slides and
part hard negative slides are confusable; thus, it is acceptable to
misjudge a small number of ASC-US slides. Meanwhile, our
system produces 26.3% false-positive slides, which is in line with
the original intention of cervical cytology computer-aided diag-
nosis. These false positives will be further reviewed by cyto-
pathologists. Further, our system achieves 49.3% specificity while
retaining 100% sensitivity, indicating that 49.3% negative slides in
the test groups E–F can be excluded. For different test groups, this
ratio value may vary since that it depends on the lowest score of
positive slides. The results indicate that our WSI analysis system
can be applied for prescreening part completely normal slides and
reducing the workload of cytotechnologists.

Assessment at the tile level. To evaluate the difference between
our system and three cytopathologists at the tile level, we ran-
domly selected 1,018 positive tiles and 3,047 negative tiles with a
size of 256 × 256 (0.243 μm/pixel) from the test data of groups E
and F. As shown in Fig. 3c, the ROC curve describes the per-
formance of our system, and each red dot represents 1-specificity
and sensitivity of a cytopathologist’s classification result. Our
system achieves 95.3% specificity and 92.8% sensitivity with 0.979
AUC better than the average level of cytopathologists.

Assessment on the recommended top 10 lesion cells. Three
cytopathologists evaluated the recommended top 10 lesion cells
on 447 positive slides in groups E and F. The average true positive
rates of top 10 recommended cells evaluated separately by three
cytopathologists are 96.8%, 88.0%, and 80.6% (Fig. 3d), with an
average value of 88.5%, and the average true positive rate of top
20 recommended cells is 85.0%. For some atypical positive slides
with a few lesion cells, such as ASC-US, the recommended true
positive cell number may be very low as shown in the box plot
(Fig. 3d). In this case, our system employs voting the evaluated
results of three cytopathologists, and the final result shows we do
not miss any positive slide, i.e., positive slides at least have one
true lesion cell in the recommended top 10 or top 20 cells. Fig-
ure 4 shows the recommended cells of slides with different clas-
sification scores. For high-risk slides, our system recommended
typical lesion cells such as koilocytotic cells or hyperchromatic
cells with large nucleus and irregular nuclear membrane. For
medium-risk slides, some suspicious cells with slightly large or
deep-stained nucleus were recommended. No typical lesion cells
were recommended on low-risk slides. Our system can accurately
recommend a few top-ranked lesion cells, allowing cytopatholo-
gists to focus on these suspicious areas.

Comparison of our system and Hologic ThinPrep Imaging
System on recommending top lesion cells. To further verify the

A B C D

E F G H

I J K L

a b

d

Total

Labels

31,978

11,211

7,127

11,954

12,669

4,972

0

79,911

Negative  
slides
106

307

94

879

159

500

33

2,078

Positive 
slides
105

160

240

424

226

285

27

1,467

Groups

A

B

C

D

E

F

G-L

Total

train val test train val test

A 83/25,208 11/2,991 11/3,779 84 11 11

B 130/8,728 15/1,100 15/1,383 247 30 30

C 192/4,863 24/936 24/1,328 76 9 9

D 340/6,901 42/1,452 42/3,601 703 88 88

745/45,700 92/6,479 92/10,091 1,110 138 138

Positive slides Negative  slides
Groups

100 µm

c

0 50 100 150 200 250
0.00

0.05

0.10

0.15

Intensity

Fr
eq

ue
nc

y

Fig. 2 Overview of multi-center WSI datasets. a The collected 12 groups of WSI datasets from five hospitals and five kinds of scanners. There are in total
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effectiveness of our aided screening system, we compared it
with the Hologic ThinPrep Imaging System (referred to as TIS).
The test data are cervical cytology samples from 58 positive
patients in Maternal and Child Hospital of Hubei Province
equipped with TIS. First, 58 glass slides were prepared from the
58 samples, stained, imaged, and identified by TIS in the hos-
pital. Twenty-two suspicious fields of view were recommended
by TIS on each slide. Then, we used another instrument
(Shenzhen Shengqiang Technology Ltd with 0.180 μm/pixel
under ×40 magnification) to scan the 58 glass slides, and we
used our system to recommend the top 20 suspicious cell
regions (about 60 × 60 μm2, far smaller than TIS’ fields of view)
for each slide. We asked three cytopathologists to evaluate the
results recommended by TIS and our system at the same time.
The statistical results in Fig. 5 show that the true positive rate of
our system is higher than that of TIS. Notably, TIS can only
work under the closed-loop strategy of preparation, staining,
imaging, and recognition, while our system is robust to staining
and imaging of various sources.

Importance of designed data enhancement, hard sample
mining, and diverse data learning. We conducted a set of
ablation experiments to demonstrate the importance of designed
data enhancement in HSV color space, hard sample mining, and
diverse data learning with group and category balancing (see
“Methods”). We used the three learning strategies to train a series
of control high-resolution models step by step, and gave the
classification accuracies on the test sets of groups A–F. Notably,
the ratio of positive and negative tiles in the test set is 1:1. The
ablation experimental model configs and results are provided in
Fig. 6a. To evaluate model generalization, we treated groups E–F
as the independent test data and showed the ROC curves of these
control models on groups E–F in Fig. 6b. According to the results,
with the designed data enhancement and hard sample mining,
performance of the enhanced and mined models on groups E–F
made great progress with the AUC value increase of 0.138 and
0.072. The results indicate that our designed data enhancement
and hard sample mining strategies are effective for improving
model generalization and accuracy. Further, as more groups of
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training datasets were used, the AUC values of the mined, base-
line, and HR models increased gradually from 0.808 to 0.983. The
results indicate that the diverse data learning of multiple groups
with different styles is important for model generalization.

Generalized and rich feature representations of our models.
We analyzed the alignment of the features of high-resolution
models between different groups of data by feature visualization.
The dimension-reduced features of the original, enhanced, mined,
and baseline models by t-SNE38 on groups A, B, E, and F are shown
in Fig. 7a. For the models, groups E and F are independent test data.
From the original model to the baseline model, features of positive
and negative tiles are gradually separated. Further, the features are
gradually aligned between groups A-B and groups E-F. The results
indicate that the designed data enhancement, hard sample mining,
and diverse data learning strategies improve the discrimination and
alignment of features on unseen groups E-F.

We further analyzed the feature representations of the HR
model on groups A–L in Fig. 7b. The tiles with high and low
lesion probabilities from the 12 groups are clustered and well
separated. Tiles corresponding to the far-right points are the
typical lesion cells, including koilocytotic cells and hyperchro-
matic cells with a large nucleus and an irregular nuclear
membrane. These lesion cells with different staining and imaging
characteristics are clustered together and share similar features.
Normal cells from different groups are clustered on the left
points. At the junction regions are the suspicious cells with about
0.5 lesion probabilities. The suspicious cells generally contain a
slightly large nucleus or deep-stained nucleus, but the degree is
not enough. In addition, artifacts from staining and imaging may
cause the suspicious cells. The results indicate that the learned
features represent cervical lesion cell morphology well and the
features are aligned between datasets with different staining and
imaging characteristics. This is the key reason why our system has
good generalization for unseen datasets of new styles.
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Discussion
In this paper, we propose a clinical-level-aided diagnosis system
for cervical cancer screening based on deep learning and massive
WSIs. Compared with the existing methods, our system has the
following key advantages: (a) WSI-level analysis system rather
than tile-level evaluation; (b) the integrated strategy of low- and
high-resolution combination, data augmentation, diverse data
learning, and hard sample mining for achieving high accuracy,
good generalization, and fast speed of our system; (c) the

human–computer comparison verification at both tile and WSI
levels to prove the effectiveness of our system; (d) the practical
deployment with C++, processing a giga-pixel WSI in as short as
about 1.5 min with one GPU.

The mean reported positive rates of cervical cytology screening are
less than 10%39,40, and that of the physical examination population is
even lower. Therefore, if some negative samples can be distinguished,
it should be a great aid to cytotechnology. In our study, the dis-
tribution of slide positive scores (0.8% false-negative slides) indicates
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that our system has potential to exclude a considerable number of
negative slides and reduce a lot of cytotechnologists’ workloads. The
10/20 most suspicious areas on each slide with relatively high 88.5%/
85.0% TPRs are given, which would help free doctors from the task
of traversing and searching for suspicious targets and concentrate on
the task of identifying recommended suspicious cells. For under-
developed areas lacking cytopathology stuff, our system has impor-
tant clinical and social significance for accelerating the popularization
of cervical cancer screening.

In recent years, WSI analysis has been widely studied in various
histopathology subspecialties41–45. These algorithms generally
follow the below principle: first extract classification features or
confidences of local tiles, then aggregate the local information to
construct WSI-level feature descriptors, and finally classify the
slides. The lesions of histopathology slides are region-level and
have overall background information. Cytopathology slides show
sparsely-distributed and tiny-scale lesion cells, and the cells are
independent and short of overall information. These character-
istics of cytopathology have brought challenges to accurate WSI
analysis when directly transferring the histopathology methods.
In this work, we propose a WSI-level analysis system for cyto-
pathology screening according to cervical slide characteristics,
and demonstrate its effectiveness in classifying cytology slides by
the extensive validation experiments.

The diversities of slide staining and imaging in different hos-
pitals greatly limit the utility of current automated cervical cell
recognition algorithms; thus, model generalization is a key factor
in the practicality. Our multi-center independent test datasets
include differences in slide preparation (liquid-based preparation
methods: membrane-based and sedimentation), dyeing schemes
(fixing, clearing, and dehydrating), imaging magnification (×20
and ×40), imaging resolution (0.180–0.293 μm/pixel), and ima-
ging color characteristics (Fig. 2b, c). The good results on these
diverse data prove the generalization of our system and lay a
foundation for the practicability in diverse data scenarios.

We consider that the basic task of the aided screening system is to
reduce the workload of cytology staff by excluding low-risk slides and
recommending a limited number of suspicious cells on high-risk
slides for cytopathologist reviewing. The final precise diagnosis is up
to cytopathology doctors, and this human–machine combination
mode can reduce possible errors of artificial intelligence and ensure
the accuracy of diagnosis19,20. Therefore, unlike the works of Lin
et al.30 and Zhu et al.46, our system focuses on distinguishing positive
and negative classes instead of fine subclasses at both cell and slide
levels, such as ASC-US, ASC-H (atypical squamous cells cannot
exclude high-grade squamous intraepithelial lesion (HSIL)), LSIL
(low-grade squamous intraepithelial lesion), HSIL, and SCC (squa-
mous cell carcinoma)6. Moreover, the definition of the subclasses is
based on cell morphology and the boundaries are often fuzzy espe-
cially at the cell level, which will produce a lot of noises in the actual
manual annotations and inconsistency between different
cytopathologists.

In the future, we will focus on research about AI-enhanced
portable microscopy and augmented reality microscopy to further
expand our system. At present, professional but expensive scan-
ners are still required, preventing the spread of cervical cancer
screening in remote and underdeveloped areas. Thus, developing
portable microscope-based cervical cancer computer-aided diag-
nosis is necessary. In addition, developing real-time augmented
reality microscopes can provide friendly human–computer
interaction for AI-assisted slide screening without changing the
conventional working mode of cytopathologists.

Methods
Dataset sources. All 12 groups of glass slides are provided by Maternal and Child
Hospital of Hubei Province (referred as H1), Tongji Hospital of Huazhong

University of Science and Technology (referred as H2), Wuhan Union Hospital of
Huazhong University of Science and Technology (referred as H3), Hubei Cancer
Hospital (referred as H4), and KingMed Diagnostics Ltd (referred as H5). The slide
acquisition is performed in accordance with the guidelines of the Medical Ethics
Committee of Tongji Medical College at Huazhong University of Science and
Technology. These glass slides are scanned into WSIs by the instruments from
3DHisTech Ltd with 0.243 μm/pixel under ×20 magnification (referred as S1),
Shenzhen Shengqiang Technology Ltd with 0.180 μm/pixel under ×40 magnifica-
tion (referred as S2), Wuhan National Laboratory for Optoelectronics-Huazhong
University of Science and Technology with 0.293 μm/pixel under ×20 magnifica-
tion (referred as S3), Huaiguang Intelligent Technology Ltd with 0.238 μm/pixel
under ×20 magnification (referred as S4), and Konfoong Biotech Information Ltd
with 0.238 μm/pixel under ×40 magnification (referred as S5). The details are
shown in Table 1. Notably, version 1 and version 2 of the scanner S1 are different
generations of instruments, and they have different imaging color characteristics.
Version 1, version 2, and version 3 of the hospital H2 are different in slide pre-
paration and staining scheme.

Data annotating and screening. Based on the TBS criteria6, the cervical slides are
annotated by six cytopathologists using Qupath47 (v0.2.0) and a home-made semi-
automatic online annotation software. Considering that it is a standard operating
procedure in cytopathology when the diagnoses of the two pathologists are
inconsistent, ask a senior doctor to make an interpretation48,49. In this work, the
final annotations were produced by a consensus of three cytopathologists. We
abandoned questionable annotations. Based on the TBS criteria6, we classify all
kinds of squamous epithelial cell abnormalities (including atypical squamous cells
(ASC), squamous intraepithelial lesion (SIL), and SCC), and glandular epithelial
cell abnormalities (including atypical endocervical/glandular cell, endocervical
adenocarcinoma in situ (AIS), and adenocarcinoma) as positive labels, and classify
various normal cellular elements, nonneoplastic findings such as nonneoplastic
cellular variations, reactive cellular changes, and glandular cells' status post hys-
terectomy as negative label NILM (negative for intraepithelial lesion or malig-
nancy). During the iterative learning of our system, we collected massive false
negatives of various morphologies as negative annotations.

Designed data enhancement. Data enhancement is a common technique to
expand the diversity of data distributions and improve the generalization ability of
models. Based on the characteristics of cervical cell images, we designed a series of
specific data enhancement in HSV and RGB color spaces to imitate the color
distribution of various image styles derived from diverse staining and imaging. The
data enhancement includes transformations on hue, saturation, brightness, con-
trast, flipping, and shifting, as well as adding noise such as blurring and sharpening.
We determined the enhancement parameters to ensure that the recognition of
cervical cells will not be affected.

Diverse data learning. Diverse data learning on different groups of data was
employed to improve the robustness of feature representations. We first trained the
LR model and HR model on groups A and B with a large number of annotations to
obtain baseline models. The pre-training weights on ImageNet50 were used as the
initial weights. Then we incorporated groups C and D of different styles as extra
training data. Based on the baseline models, we learned more robust models on
mixed data of groups A–D. The key point of our diverse data learning is the group-
and category-balancing strategy. Since there are multiple groups and each group
has unbalanced annotations of several subtypes, we resample the sample number of
all groups and categories to make them as balanced as possible.

Hard sample mining. Hard sample mining was adopted to improve the accuracy
of our models. For training samples that fail to be successfully classified, we con-
ducted a second round of learning on the hard samples. The proportion of hard

Table 1 Dataset sources of the 12 groups of datasets.

Groups Hospital Scanner

A H1 S1—version 1
B H1 S1—version 2
C H1 S3
D H2—version 1 S2
E H1 S2
F H2—version 2 S2
G H2—version 1 S1—version 2
H H4 S4
I H2—version 3 S4
J H3 S4
K H5 S5
L H1 S2
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samples in the entire training samples affected the tendency of models. The LR
model of our recognition system was designed to find all possible lesion cells
quickly and coarsely, while the HR model aimed to distinguish the true lesion cells
from those candidates found by the LR model. Therefore, we used a small pro-
portion of hard samples to train the LR model to ensure a high recall rate and a
large proportion to train the HR model to ensure a high precision.

Training details. We employed the above three training strategies to enhance the
generalization ability and recognition accuracy of the LR and HR models.
According to the datasets of groups A–D in Fig. 1d, we used the train set to
optimize the LR and HR models, the validation set to adjust the hyper-parameters,
and then tested the performance on the test set. Groups E and F were used as
independent datasets for evaluating model generalization. The positive samples
were cropped around the annotations of positive slides and the negative samples
were randomly cropped from negative slides. The LR and HR models used Adam51

as the optimizer with an initial learning rate of 10−3. The strategy of learning rate
decay was adopted during training.

We used a simple RNN with one hidden layer of 512 units for classifying WSIs.
The RNN model was trained and validated on groups A–D and evaluated on
independent groups E and F. We trained three kinds of RNNs with different inputs:
the HR model features of the recommended top 10, top 20, and top 30 lesion cells.
For each kind, we trained two RNNs, and then integrated the total six RNNs as our
WSI classifier. In the training process, we used data augmentation to improve the
varieties of the input features of the RNNs, including enhancement and
rearrangement of the top k lesion cell images. These strategies of model integration
and data augmentation improved the robustness of the RNNs, since the limited
number of slides (<104). Similarly, Adam51 with an initial learning rate of 10−3 and
the learning rate decay strategy were adopted during training the RNNs.

We deployed our system with C++ and utilized multi-threading to accelerate
image processing. Our system processes one WSI under ×20 magnification in about
3.0 min using one Nvidia 1080Ti GPU. Further, we used TensorRt36 to accelerate
network model forward inference, and achieved a speed of about 1.5 min per slide.
The processing speed in practice would be influenced by pixel number of slides,
disk reading speed, and WSI format.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The LR model and HR model of our progressive lesion cell recognition method were
initialized with the pre-training weights of ImageNet (https://www.image-net.org). We
further provided the source codes, the C++ software and some test WSIs to facilitate the
reproducibility. The original WSI and annotation data are private and are not publicly
available since the protection of patients’ privacy in cooperative hospitals. All data
supporting the findings of this study are available on requests for non-commercial and
academic purposes from the primary corresponding author (xlliu@mail.hust.edu.cn)
within 10 working days. We do not require to sign a data use agreement. Source data are
provided with this paper.

Code availability
The source codes of this paper are available at https://github.com/ShenghuaCheng/
Aided-Diagnosis-System-for-Cervical-Cancer-Screening. We also provide a C++
software and a user manual of our system with some test slides at Baidu Cloud (https://
pan.baidu.com/s/1UmQzASwvlpKLO7hbwaDc_A, extracting code is cyto) or at Google
Drive (https://drive.google.com/drive/folders/19rE9atLryIaBR8shqAlc4Sf8tn62o7ky?
usp= sharing, no extracting code).
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