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Abstract

Motivation: Traditionally, gene phylogenies have been reconstructed solely on the basis of mo-

lecular sequences; this, however, often does not provide enough information to distinguish be-

tween statistically equivalent relationships. To address this problem, several recent methods have

incorporated information on the species phylogeny in gene tree reconstruction, leading to dramatic

improvements in accuracy. Although probabilistic methods are able to estimate all model param-

eters but are computationally expensive, parsimony methods—generally computationally more ef-

ficient—require a prior estimate of parameters and of the statistical support.

Results: Here, we present the Tree Estimation using Reconciliation (TERA) algorithm, a parsimony

based, species tree aware method for gene tree reconstruction based on a scoring scheme combin-

ing duplication, transfer and loss costs with an estimate of the sequence likelihood. TERA explores

all reconciled gene trees that can be amalgamated from a sample of gene trees. Using a large scale

simulated dataset, we demonstrate that TERA achieves the same accuracy as the corresponding

probabilistic method while being faster, and outperforms other parsimony-based methods in both

accuracy and speed. Running TERA on a set of 1099 homologous gene families from complete

cyanobacterial genomes, we find that incorporating knowledge of the species tree results in a two

thirds reduction in the number of apparent transfer events.

Availability and implementation: The algorithm is implemented in our program TERA, which is

freely available from http://mbb.univ-montp2.fr/MBB/download_sources/16__TERA.

Contact: celine.scornavacca@univ-montp2.fr, ssolo@angel.elte.hu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Molecular phylogenetics infers gene trees based on the information

contained in molecular sequences. Unfortunately, individual

sequences may contain limited signal, and, as a result, phylogenetic

reconstruction often involves choosing between statistically equiva-

lent or weakly distinguishable evolutionary relationships.

Although each homologous gene family has its own unique

story, these are all related by a shared species history—which can be

helpful for gene tree inference (Maddison, 1997; Szöllo†si et al.,

2014). In the past decade, several methods have been developed that

model the evolutionary processes that generate gene trees within the

species tree (Akerborg et al., 2009; Arvestad, 2003; Hallett and

Lagergren, 2001; Rannala and Yang, 2003; Rasmussen and Kellis,

2007, 2012; Sjöstrand et al., 2014; Suchard, 2005; Szöllo†si et al.,

2012, 2013a; Than and Nakhleh, 2009). From an inference perspec-

tive, these methods attempt to find the optimal way to explain the

phylogenetic signal in extant sequences—represented as a gene

tree—given the species tree. They explore the set of possible recon-

ciliations, i.e. different ways to draw the gene tree into the species

tree given some combination of macro evolutionary events, such as
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gene duplications, gene transfers, gene losses and incomplete lineage

sorting. Studies that incorporate such events into gene tree inference

have shown that information on the species phylogeny significantly

improves the accuracy of gene tree inference (Akerborg et al., 2009;

Boussau et al., 2013; Rasmussen and Kellis, 2010; Szöllo†si et al.,

2013b). To design such species tree aware methods for reconstruct-

ing gene phylogenies, the space of reconciled gene trees must be

explored using information from both a model of sequence evolu-

tion and a reconciliation model, in order to optimize a joint se-

quence-reconciliation score. Such exploration is computationally

expensive with traditional optimization approaches that rely on the

local search of the space of gene trees.

To circumvent this problem, David and Alm (2010) introduced

the amalgamation algorithm, described in detail in Section 2.3

below and illustrated in Figure 1. Furthermore, Szöllo†si et al.

(2013b) recently developed an approach to exhaustively explore all

reconciled gene trees that can be amalgamated from a sample of

gene trees, i.e. obtainable by combining clades observed in the sam-

ple. Additionally, their method—ALE, for Amalgamated Likelihood

Estimation—combines the amalgamation algorithm of David and

Alm (2010) with conditional clade probabilities (CCPs) introduced

by Höhna and Drummond (2012) and reconstructs the gene phylog-

enies by optimizing a joint sequence-reconciliation likelihood score,

resulting in gene trees that are dramatically more accurate than

those reconstructed using molecular sequences alone.

ALE overcomes a fundamental limitation of recent parsimony

based methods that improve gene trees given a putative species tree

(David and Alm, 2010; Nguyen et al., 2012; Wu et al., 2013).

Unlike those methods, it does not require the user to specify a cost

for each type of event or a threshold on statistical supports.

However, ALE faces the drawbacks associated with probabilistic

methods. In particular: (i) when computing the reconciliation score,

ALE has an increased computational cost compared with a parsi-

mony algorithm (e.g. Conow et al., 2010; Doyon et al., 2010),

which is due to a potentially large constant factor resulting from the

numerical integration of the likelihood; (ii) ALE’s results are contin-

gent on difficult to estimate time-like branch lengths of the species

tree, while parsimony methods can reconcile gene trees relying only

on the order of speciations in time (e.g. Doyon et al., 2010), and

even deal with undated species trees (e.g. Bansal et al., 2012).

Parsimony methods in general, despite lacking an explicit connec-

tion to a generative probabilistic model and relying on other heuris-

tics, have been shown to be highly accurate, comparable to

sophisticated probabilistic reconciliation methods, with reduced

runtime (Wu et al., 2013, 2014).

Here we present the TERA algorithm (Tree Estimation using

Reconciliation and Amalgamation) that amalgamates the most par-

simonious reconciled gene tree from a set of gene trees reconstructed

from a unique gene alignment, according to a joint sequence-recon-

ciliation score. Although TERA, like other parsimony based meth-

ods, requires the prior specification of the costs associated with

duplication, transfer and loss (DTL) events, it does not require prior

assumptions about a statistical support threshold, as it estimates a

self-consistent support threshold from its input. Furthermore, TERA

considers explicitly the possibility of transfer from extinct or

unsampled branches of the species tree, which is expected to be

the case for practically all transfers (Szöllo†si et al., 2013a).

TERA does not, however, consider incomplete lineage sorting.

Fig. 1. CCPs can be used to estimate the posterior probability of any tree that can be amalgamated from clades present in a sample of gene trees (David and Alm,

2010; Höhna and Drummond, 2012). Conditional clade frequencies can be used to approximate CCPs and are computed as the proportion of occurrences of a par-

ticular split of a clade according to a tripartition p, e.g. (abc j de) among all trees in which the clade, e.g. (abcde), is found. Estimates based on the sample of trees

on the left are shown as fractions for two different gene trees that can be amalgamated. The estimate for a gene tree is given by the sum of the reconciliation

score and the logarithm of the tree CCPs. Based on the sample on the left, the tree with the highest posterior probability is the third tree (blue online). Reconciling

it with the species tree requires one transfer and one loss event. It is, however, possible to combine clades present in the second (green online) and third (blue on-

line) trees to produce a gene tree that is not present in the original sample but is identical to the species tree, i.e. it requires no events to draw it into the species

tree. Depending on the costs of transfer and loss events, and the self-consistently estimated cA parameter, the scenario without transfer might be optimal for the

joint score
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The self-consistent score estimation scheme used by TERA,

introduced in Section 2.4, should be applicable to other parsimony

methods, while amalgamation is in theory compatible with any rec-

onciliation algorithm that assumes branches of the gene tree to be

independent.

2 Materials and methods

2.1 Preliminaries
Given a binary rooted tree T, we respectively denote by V(T), E(T),

L(T) and r(T), its node, edge, leaf node sets and root node. The label

of each leaf u is denoted by LðuÞ, while the set of labels of leaves of

T is denoted by LðTÞ. Given a node u 2 VðTÞ, we denote respect-

ively by up, us and ful; urg the father, the sibling and the children of

u (if they are defined). Note that in this article all trees are con-

sidered as unordered, so ul and ur are interchangeable. For a node u

of T, Tu denotes the subtree of T rooted at u. Given two nodes u and

v of T, u� Tv (u<Tv, respectively) if and only if v is on the unique

path from u to r(T) (respectively, and u 6¼ v); in such a case, u is said

to be a (strict) descendant of v. Given a node u of T, we define the

clade associated with u, denoted by C(u), as the set LðTuÞ. If u is an

internal node, we define the tripartition associated with u, denoted

by PðuÞ, as the triple (LðTuÞ; LðTul
Þ; LðTur

Þ). For leaf nodes, the

trivial tripartition PðuÞ is defined as the triple (LðuÞ; ;; ;). Finally,

the height of T is denoted by h(T).

In this article, unless stated otherwise, we assume that gene and

species trees are rooted, binary and uniquely leaf labeled, i.e. within

each tree there is a bijection between leaves and labels. Due to this

bijectivity we will refer to leaves and labels interchangeably.

We define a gene tree G as a tree where each leaf represents an

extant gene. Similarly, a species tree S is defined as a tree in which

each leaf represents a distinct extant species. Note that several leaves

of a gene tree can be associated to the same species due to gene birth

corresponding to duplication and transfer events. Formally, we indi-

cate this by a surjective function s : LðGÞ ! LðSÞ, called the species

labeling of G. The set of species labels of the leaves of G is denoted

SðGÞ.
A tree T is said to be time ordered when it is associated with a

time function hT : VðTÞ ! R
þ that associates each of its nodes with

a non-negative value so that, for any two nodes x; x0 2 VðTÞ, if x0 is

a strict descendant of x then hTðx0Þ < hTðxÞ. Moreover, 8x 2 LðTÞ,
we have that hSðxÞ ¼ 0. A subdivision T0 of a time-ordered tree T is

the tree obtained from T by adding a new node y with hT0 ðyÞ on

each edge ðxp;xÞ 2 EðTÞ such that there exists z 2 VðTÞ with

hTðxÞ < hTðzÞ < hTðxpÞ. For nodes x 2 VðT 0Þ corresponding to

nodes already present in T, we set hT0 ðxÞ ¼ hTðxÞ.

2.2 Species tree-gene tree reconciliation
Here, we consider the problem of finding the most parsimonious

reconciliation (MPR) when considering—as possible macro-events

that result in the birth and death of gene copies—speciation, gene

duplication, gene transfers and gene loss (Szöllo†si and Daubin,

2012). The general problem of finding an MPR is known to be NP-

complete, even for reconciling two binary trees (Tofigh et al., 2011).

The complexity of the problem is due to the difficulty of ensuring

the time consistency of gene transfers, i.e. satisfying the chronolo-

gical constraints among nodes of the species tree that are induced by

transfer events. However, the problem becomes polynomially solv-

able when accepting a time-ordered species tree as input (among

others Conow et al., 2010; Doyon et al., 2010 Tofigh, 2009, see

Doyon et al., 2011 for a review). In this article, we build upon the

combinatorial reconciliation model introduced by Doyon et al.

(2010), which can be used to solve this special case of the problem.

Some parsimony methods (e.g. Bansal et al., 2012) do not need

information on the order of speciations in time. This allows a more

efficient recursion over reconciliations, but at the cost of considering

reconciliations that contain transfer events that are not consistent

with any ordering of the species tree (Tofigh et al., 2011).

The DTLmodel of Doyon et al. (2010) can be used to reconcile a

time-ordered binary species tree S with a binary gene tree G by con-

structing a mapping a that maps each node u 2 VðGÞ into an

ordered list of nodes in VðS0Þ, namely the ancestral and/or extant

species in which the sequence corresponding to u evolved. This

model takes into account four kinds of biological events: speciation,

gene duplication, gene transfer and gene loss. The atomic events of

this model are: a speciation (S), a duplication (D), a transfer (T), a

transfer followed immediately by the loss of the non-transferred

child (TL), a speciation followed by the loss of one of the two result-

ing children (SL), and a contemporary event (C) that associates an

extant gene to its corresponding species. Finally, a null event (;), is

used to model a gene lineage crossing a time boundary. Note that

duplication-loss events and transfer followed by the loss of the trans-

ferred gene, unlike a transfer followed by the loss of the non-trans-

ferred gene and speciation-loss events, leave no trace and are

therefore undetectable. This is why, in the DTL model, losses are

never considered alone. We refer the reader to Doyon et al. (2010)

for the formal definition of a DTL reconciliation.

Let h, s, k be, respectively, the costs of a duplication, a transfer

and a loss. Given a DTL reconciliation, we define the cost of a,

denoted by cðaÞ, as the sum hd þ st þ kl, where d, t and l are respect-

ively the number of D events, of T and TL events, and of SL and TL

events in a. In Doyon et al. (2010) the authors give an efficient algo-

rithm to compute c(G, S) for a time-ordered species tree S and a

gene tree G, where c(G, S) is defined as the minimum cost over all

possible DTL reconciliations between G and S.

2.3 Choosing a reliable gene tree among several

competing alternatives
Even though our aim is to reconstruct reliable gene trees from a mul-

tiple sequence alignment and a species phylogeny, our approach

does not directly take sequence alignments as an input, but requires

a sample of gene trees, typically produced from the alignment by ei-

ther a Markov Chain Monte Carlo (MCMC) methods such as

PhyloBayes (Lartillot et al., 2009) and MrBayes (Ronquist et al.,

2012), or bootstrap resampling.

To find the optimal gene tree, clades found in the input sample

of gene trees are combined using the amalgamation approach in

order to recover an optimal tree with respect to our scoring scheme.

The optimal tree recovered will only contain clades found in the in-

put sample of gene trees, but it will not in general be found in the

sample itself.

Figure 1 provides a schematic illustration of the amalgamation

approach. Clades present in the sample of trees (the unrooted trees

on the left) can be combined to obtain a tree such that each clade is

found in the sample, but the tree itself is not. For example, one can

produce a green-blue tree consisting of a green subtree with genes a,

b and c, and a blue subtree with genes d, e and f. The sequence score

of each tree is obtained using CCPs that depend on the number of

times different trees are seen in the sample and is described in detail

in the next section. The reconciliation score for each tree corres-

ponds to the MPR of the gene tree with the species tree. The amal-

gamation algorithm itself is a joint dynamic programming recursion
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over (i) all trees that can be produced from clades present in the in-

put sample and (ii) all possible ways to reconcile each of these trees

with the species tree, to recover a gene tree with the smallest joint se-

quence-reconciliation score. As shown in Figure 1 in the online

appendix, amalgamation permits us to explore a vastly larger set of

trees than those contained in the sample.

Conceptually, both ALE (Szöllo†si et al., 2013b) and TERA are

based on the amalgamation approach of AnGST (David and Alm,

2010), and all three methods are—at the level of the dynamic pro-

gramming recursion—closely related. TERA differs from AnGST in

the underlying reconciliation model (Doyon et al., 2010) and be-

cause it allows transfers going/coming from extinct or unsampled

species (Szöllo†si et al., 2013a). Moreover, the AnGST scoring

scheme is solely based on the reconciliation score. ALE differs from

TERA in that it relies on a complex underlying probabilistic model;

the results of which, in contrast to TERA, are contingent on time-

like branch lengths of the species tree.

TERA’s amalgamation algorithm can be regarded as a generaliza-

tion of the gene tree reconciliation algorithm of Doyon et al. (2010),

which iterates over reconciliations by mapping each node of a gene

tree to branches of the species tree. In the joint recursion presented in

this article, instead of nodes of a gene tree, the clades found in the in-

put sample of gene trees are mapped into branches of the species tree.

More formally, assume we are given a set of (unrooted) gene

trees G on the same leaf set reconstructed from a unique sequence

alignment. We denote respectively by AðGÞ and PðGÞ the union of

all the clades, and the union of all tripartitions in G. For each tripar-

tition p, we denote by p½1� (p½2� and p½3�, respectively) the first (se-

cond and third, respectively) element of p. If G contains unrooted

trees we consider all possible rootings for each tree when computing

AðGÞ and PðGÞ. Furthermore, for a given clade C of AðGÞ, we denote

by PðCÞ the set of tripartitions p 2 PðGÞ for which p½1� ¼ C. When

focusing only on the reconciliation score, the optimization problem

consists of computing cðG; SÞ :¼ min G2Gam
cðG; SÞ, where Gam is the

set of gene trees such that AðGÞ � AðGÞ for all G 2 Gam. The

pseudocode is given in Algorithm 1 in the appendix. Roughly speak-

ing, our algorithm starts by computing the subdivision S0 of S, and

the sets AðGÞ and PðGÞ. Then, it performs a joint traversal of all

gene tree clades and species tree branches wherein clades C in AðGÞ
are considered in order of increasing size, and nodes x0 of S in order

of increasing height. For each pair (C, x0) the algorithm computes

the cost of reconciling clade C with x0 by testing all possible triparti-

tions p in PðCÞ. Because each non-trivial tripartition p can be seen

as an internal node of an amalgamated tree, with children p½2� and

p½3�, the cost of reconciling a tripartition p with x0 can be computed

according to Algorithm 1 of Doyon et al. (2010). We refer the reader

to Algorithm 1 of Doyon et al. (2010) for a better understanding of

the pseudocode. The correctness of our approach is proven in the

appendix.

Note that—for ease of writing—the pseudocode of the algorithm

does not contain the transfers from the dead, i.e. the transfers going/

coming from extinct or unsampled species (Szöllo†si et al., 2013a).

However, Algorithm 1 can be easily modified to accommodate this

kind of event by adding to the species tree S a sister group of the root

clade such that, within this group, duplications and losses are free, spe-

ciations are not permitted, and transfers to this new group (formally

corresponding to unrepresented speciations) cost zero—similar to what

is done in the likelihood framework by Szöllo†si et al. (2013a).

2.4 Taking into account the CCP
As described in the introduction, our goal is to create a species tree

aware method for reconstructing gene phylogenies that uses

information from both gene sequences and from the reconciliation

with a species tree. That is, we wish to construct a method that opti-

mizes a joint sequence-reconciliation score. In order to do this, we

must find an efficient manner to incorporate a sequence based cost

in addition to the reconciliation cost of Doyon et al. (2010) in the

amalgamation scheme.

AnGST, the seminal algorithm of David and Alm (2010) that

introduced the idea of amalgamation, does not distinguish between

trees that can be amalgamated. The problem with this approach is

that, as the number of input trees—and thus the amount of informa-

tion given as input—increases, the set of possible trees that can be

amalgamated also increases—until all possible tree topologies can

be amalgamated. At this point, since all possible tree topologies can

be amalgamated, the most parsimonious reconciled gene tree will

only depend on the reconciliation score. In practice this introduces

the problem that the topology of the amalgamated gene tree may

vary significantly when adding only a few trees to the sample of trees

(in the worst case only one tree).

In a probabilistic framework, conditional clade probabilities

(CCPs, cf. Fig. 1) provide an accurate approximation of posterior

probabilities for a very large number of tree topologies from a

smaller MCMC sample (Höhna and Drummond, 2012; Larget,

2013; Szöllo†si et al., 2013b). The CCP of a rooted tree G 2 Gam

(Höhna and Drummond, 2012), denoted by PCCPðGÞ, is defined as

the product of the conditional probabilities of all partitions in

PðGÞ. The conditional probability of the partition of clade C ac-

cording to the tripartition p is denoted PCCPðpÞ and is approximated

by the ratio fGðpÞ=fGðp½1�Þ, where for each clade C 2 AðGÞ and for

each tripartition p 2 PðGÞ; fGðpÞ and fGðCÞ is the frequency of C and

p in G.
Here, in order to construct a parsimony method that optimizes a

joint sequence-reconciliation score, we choose to minimize the joint

cost

cjointðG; SÞ ¼ cðG; SÞ þ cANA (1)

over G 2 Gam, where the parameter cA weights the contribution of

the sequence alignment NA to the cost, defined as

NA ¼ �log
PCCPðGÞ

PCCPðGMAPÞ

� �
(2)

where PCCPðGMAPÞ corresponds to the posterior probability of the

gene tree with the highest posterior probability according to the se-

quence alignment. The logarithm of the CCP provides an additive

cost for deviation from the phylogeny preferred by the sequence

alignment alone, similar to the additive cost for deviation from spe-

cies phylogeny provided by the DTL event costs. The parameter cA

is analogous to a statistical support threshold, corresponding to a

cost cA for each point of log posterior probability difference between

the log posterior probability of a given phylogeny and the gene tree

with highest posterior probability.

As illustrated in Figure 1, Algorithm 1 in online appendix is easily

modified by adding cA � log ðPCCPðpjCÞÞ to cS; cD cT while filling the

dynamic programming matrix (on line 15, 17 and 18 of Algorithm 1,

respectively). The term þcA � log ðPCCPðGMAPÞÞ, corresponding to the

gene tree with the highest posterior probability, can be neglected dur-

ing cost minimization as it simply corresponds to an additive constant.

Given estimates for the DTL costs (available for example in

David and Alm, 2010; Nguyen et al., 2013), the parameter cA can

be estimated in a self-consistent manner.

However, finding the proper weight between the disagreement

with the species tree (increase in DTL events) and the disagreement
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with the sequence alignment (decrease in log ðPCCPðGÞÞ) is difficult.

Our estimation approach consists of looking for the set of costs that

are the most self-consistent, i.e. the ratio of costs that best corres-

ponds to the ratio of events.

We assume a simple model for how costs determine the number

of events: each type of event, i.e. DTL events as well as the disagree-

ment with the alignment counted by NA, are considered to occur in-

dependently, such that events with smaller costs are expected to

occur more frequently. In particular, the expected amount of dis-

agreement with the species tree due to, respectively duplications,

transfers and losses, is proportional to exp ð�dÞ; exp ð�sÞ
and exp ð�kÞ, while the expected amount of disagreement with the

sequence alignment is propotional to exp ð�cAÞ. The observed

amount of disagreement with the species tree is given by the sum of

the number of DTL events, i.e. ND, NT and NL, while the observed

amount of disagreement with the sequence alignment is given by

NA. We then employ an expectation maximization like recursion

equating at each step the observed frequencies with the expected

frequencies:

cnew
A ¼ �log

NA

ND þNT þNL þNA

� �
: (3)

Algorithm 1 is then run until jcnew
A � cAj is larger then a threshold �.

2.5 Implementation and validation
TERA is implemented in Cþþ and is freely available from http://

mbb.univ-montp2.fr/MBB/download_sources/16__TERA.

Posterior samples of gene trees, for both simulated and real

alignments, were downloaded together with the ‘true’ gene trees

used to simulate alignments from the dryad data repository

(doi:10.5061/dryad.pv6df) provided by Szöllo†si et al. (2013b).

For all the parsimony-based species tree aware methods, includ-

ing TERA, we used the DTL costs d¼2, s¼3, k¼1 obtained by

David and Alm (2010) using a criteria based on minimizing the

change in ancestral genome sizes on a large biological dataset. We

ran TreeFix-DTL with default parameters, JTT/GTR with a gamma

distribution as models of evolution, and as a starting tree the

PhyML tree. MowgliNNI was run with default parameters, a thresh-

old of 50 for weak edges, and with the PhyML tree—with bootstrap

values—as a starting gene tree. AnGST was run with default param-

eters using the dated species tree on samples of 1000 gene trees,

whereas JPrIME-DLTRS was run with JTT with a gamma distribu-

tion as model of evolution, 100 000 iterations, a thinning factor of

10 and a time out of 10 h. Finally, we ran TERA with a starting cA

of 0.1 and for G samples from 10 up to 10 000 gene trees for each

simulated alignment. The gene trees reconstructed by ALE were

downloaded from the above mentioned data repository.

Note that, from a practical perspective, the DTL costs we use are

the default parameters for all the parsimonious methods described

in the article, and seem to work well for several parts of the Tree of

Life. If the user suspects that these values are not suited for the ana-

lyses, these parameters should be estimated beforehand, e.g. using

the ALE method.

3 Results

To test the accuracy of gene trees reconstructed using TERA we

chose a dataset based on 1099 homologous gene families present in

36 cyanobacterial genomes. This dataset, published in Szöllo†si et al.

(2013b), was constructed using homologous families from the

HOGENOM database (Penel et al., 2009) and contains both real

and simulated alignments as well as the gene trees used to simulate

sequences. The mean number of genes per family in this dataset

is 36.66, the largest family has 114 genes and the smallest 21

genes; the mean number of species in which a family is found is

31.49, with a minimum of 4 and a maximum of 36; the mean copy

number per genome—counting as zero genomes in which a family

is absent—is 1.012, with a minimum of 0.5833 and a maximum

of 3.17.

We chose this dataset, because (i) it contains a diverse set of gene

families from a reasonably large and divergent set of species, and (ii)

the parametric bootstrap-like simulation procedure used attempts to

retain as much of the complexity of the underlying biological dataset

as possible (Szöllo†si et al., 2013b). Furthermore, to emulate the rela-

tive complexity of real data compared with available models of se-

quence evolution, we used a complex model of sequence evolution

to simulate sequences—an LG model (Le and Gascuel, 2008) with

across-site rate variation and invariant sites—and used PhyloBayes

(Lartillot et al., 2009) with a simpler model—a Poisson model

(Felsenstein, 1981) with no rate variation—to produce the sample of

gene trees used by both TERA and AnGST (see below for more

details).

3.1 Validation on simulated data
For the simulated alignments, both the ‘true’ gene tree used to gener-

ate the sequences and the species tree—along which the gene trees

evolved—are known. Consequently, it is possible to directly assess

the accuracy of different reconstruction methods in recovering the

correct gene tree.

As shown in Figure 1a in the online appendix, the number of

possible amalgamations increases roughly exponentially with

increasing sample size in the simulated dataset, but the median re-

construction accuracy achieved by TERA begins to saturate (Figure

1b in the online appendix). To compare the accuracy of our method

to that of others, we reconstructed gene trees using six different ‘spe-

cies tree aware’ methods: (i) the TERA algorithm described here, (ii)

ALE (Szöllo†si et al., 2013b), (iii) TreeFix-DTL (Bansal et al., 2014,

submitted for publication, http://compbio.mit.edu/treefix-dtl/), (iv)

MowgliNNI (Nguyen et al., 2013), (v) AnGST (David and Alm,

2010) and (vi) JPrIME-DLTRS (Sjöstrand et al., 2014) as well as the

species tree unaware method, PhyML (Guindon et al., 2010).

In Figure 2a, we plot the normalized Robinson-Foulds (defined

as the Robinson-Foulds distance divided by its maximum possible

value, and denoted as n-R-F in the following) distance of the recon-

structed gene trees to the true tree. These results show that all of the

species tree aware methods achieve better accuracy than the species

tree unaware method PhyML, which is to be expected as they are

given additional information in the form of the species tree. Among

the species tree aware methods, with an input of 10 000 samples

TERA’s accuracy is statistically indistinguishable from the more

complex maximum likelihood based results from ALE (paired

Wilcoxon test P>0.1) and is significantly more accurate than

TreeFix-DTL (Bansal et al., 2014, submitted for publication) (paired

Wilcoxon test P<10�8) as well as the other species tree aware

method MowgliNNI (Nguyen et al., 2013). TERA also outper-

formed jPrIME-DLTRS, although the accuracy of the latter may

have been limited by the available run time (recall that a time out of

10 h per each data set was given). For an input of 1000 samples,

TERA is less accurate than either TERA or ALE with 10 000 input

samples (paired Wilcoxon tests P<10�8), statistically indistinguish-

able from jPrIME-DLTRS, slightly more accurate then TreeFix-DTL

(paired Wilcoxon test P¼0.026), and still significantly more accur-

ate than MowgliNNI and AnGST (paired Wilcoxon tests P<10�8).
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Results for AnGST are only shown for sample sizes of 1000 gene

trees, due to the very large memory requirement of the AnGST im-

plementation. To investigate the effect of using a joint sequence-rec-

onciliation score we also ran TERA with cA¼0, i.e. emulating

AnGST in only optimizing the reconciliation score. We found that

on a sample of 1000 trees AnGST was more accurate then TERA

with cA¼0 with an n-R-F of, 0.156 and 0.166, respectively.

However, using TERA with only 1000 samples, but estimating cA,

resulted in a mean n-R-F of 0.146. The average cA estimated by

TERA was 0.49 while the average NA was 6.57.

An important difference of TreeFix-DTL compared with the

other methods considered here, is that it does not use information of

the time order of speciation events in the species tree (note that

AnGST can also run without information on time ordering).

Therefore TreeFix-DTL uses less information, which may explain

the difference in performance in comparison to TERA on the simu-

lated dataset. Nonetheless, we ran TERA with 10 random time

orderings of the species tree and this resulted in statistically identical

n-R-F values when using the correct time order of speciations

(Wilcoxon rank sum test P¼0.6).

A potential concern regarding methods that optimize a joint rec-

onciliation-sequence score is that we may overfit the species tree. If

overfitting of the species tree occurs we expect the reconstructed

gene trees to become too similar to the species tree. In the context of

the simulated dataset used here, we expect that the reconstructed

gene trees will become more similar to the species tree than the true

trees used to simulate alignments. To test for such a signal of overfit-

ting, we require a measure of similarity between gene trees and the

species tree. The most straightforward solution is to restrict our ana-

lysis to gene families that have exactly one copy in each species.

In this case, we can simply use the n-R-F distance between the spe-

cies tree and each of the gene trees as our similarity measure. In

Figure 2b, we show the results for the 431 single copy universal gene

families in our simulated dataset. We measure the extent of over and

underfitting as the difference in n-R-F distance between the species

tree and the reconstructed gene tree and the n-R-F distance between

the species tree and the true gene tree. We observe that the species

tree unaware method, PhyML, as expected, reconstructs trees that

are more distant to the species tree than the true tree. The results for

the species tree aware methods are more variable: ALE, based on an

explicit probabilistic approach, exhibits a median difference of zero

and produces only a few examples of overfitting. TERA, which esti-

mates the cA parameter giving the relative weight of the sequence

and reconciliation component of the joint score, also achieves a me-

dian difference of zero when 10 000 samples are given as input, but

produces a somewhat larger number of slightly overfitted trees.

When only 1000 samples are used, both TERA and AnGST underfit

the species tree, similar to jPRIME-DLTRS, suggesting that it may

be a lack of convergence of the sampling in all cases. TreeFix-DTL,

which relies on a fixed support threshold, shows signs of more sig-

nificant overfitting; while MowgliNNI substantially underfits the

species tree, at least with the default parameters used here.

The runtimes for the methods discussed in this section are given

in Table 1. We can see that TERA has the fastest stand-alone run-

time. However, if the runtime necessary to generate the input tree(s)

Fig. 2. (a) To compare the accuracy of TERA and other methods we used the

simulated data set of Szöllo†si et al. (2013b). We find that TERA achieves statis-

tically equivalent accuracy to ALE and better accuracy than the other meth-

ods, see main text for details. (b) To test for over and underfitting of the

species tree we examined the 431 gene families with exactly one copy in

each of the 36 cyanobacterial species. For each family we plot the difference

of the R-F distance of the true tree to the species tree and the R-F distance of

the reconstructed gene tree from the species tree. Negative values for the dif-

ference indicate overfitting, while in the case of underfitting we expect a posi-

tive value

Table 1. Mean runtimes in seconds for the methods discussed in

the main text on a cluster of 2.1 GHz Intel Xeon processors with 24

GB of RAM with maximum runtime limited to 10 h per family

Stand-alone [s] Input [s]

PhyloBayes

1000 samples 10 000 samples

TERA 3.65 756.6 7566

AnGST 54.9 756.6 —

ALE 159.2 756.6 7566

PhyML

MowgliNNI 6.3 182.5

TreeFix 5718.0 182.5

No input tree needed

jPrIME 32 137.3 0

The time required to compute inputs is given by the runtime of PhyloBayes

for 1000 and 10 000 samples and for the time required for PhyML to compute

an ML tree with SH branch supports. Stand-alone runtimes are given for

10 000 samples for TERA and ALE and 1000 samples for AnGST.
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are considered, Mowgli is the fastest method, but it is also the least

accurate (cf. Fig. 2a). For an input size of 1000 samples TERA

achieves comparable accuracy to TreeFix-DTL, but with a seven

fold reduced mean runtime. For an input size of 10 000 samples

TERA achieves similar accuracy to ALE and outperforms TreeFix-

DTL, but considering the time to generate the required inputs

TreeFix-DTL is 1.3 times faster on average.

3.2 Results on real data
In order to test TERA on biological data, we again used the dataset

published in Szöllo†si et al. (2013b), but focusing on real alignments.

As inputs to TERA we used: (i) the tree samples obtained from real

alignments and (ii) the ML species tree unaware gene trees obtained

using PhyML from the same alignments. Similar to the results of

ALE (Szöllo†si et al., 2013b), we find that the number of transfer and

loss events (but not duplication events) in most parsimonious recon-

ciled gene trees is substantially lower than those found in the most

parsimonious reconciliations of PhyML trees: the mean and median

number of transfers per family was 3.914 and 3 compared with

10.38 and 9, respectively; the mean and median number of losses

per family was 5.088 and 4 compared with 7.542 and 7, respect-

ively, while the mean and median number of duplications per family

was 1.071 and 0 compared with 1.042 and 0, respectively.

4 Discussion

We have presented a detailed description of the TERA algorithm, a

parsimony-based species tree aware method of gene tree reconstruc-

tion. We demonstrate that TERA reconstructs gene trees with nearly

identical accuracy as the more complex ML based ALE method and,

at least on the simulated datasets considered here, outperforms the

other parsimony based species tree aware methods.

Examining a subset of single copy universal gene families we

show that TERA does not overfit or underfit the species tree. This

result lends credibility to TERA’s results on biological data, whereby

two thirds of apparent gene transfers in gene trees reconstructed

without taking into consideration the species tree are not recovered

given knowledge of the species phylogeny.

Although parsimony based methods are fundamentally limited in

some aspects compared with model based probabilistic methods, in

the case of species tree aware gene tree reconstruction our results in-

dicate that parsimony based methods can closely approach their ac-

curacy. A further advantage of TERA compared with the

corresponding probabilistic method ALE is that it is faster (if only

up to a constant factor), does not require explicit time-like branch

lengths that are difficult to estimate, and due to its relative simpli-

city, in particular the lack of numerical integration, is more robust

in practice. Compared with parsimony based methods that require

prior assumptions about statistical support, TERA is distinguished

by its ability to estimate a statistical support threshold from its in-

put. In contrast to the methods considered here it does require more

elaborate upstream analysis, taking as its input a sample of trees

from e.g. an MCMC-based tree inference methods, while in contrast

MowgliNNI requires a single tree with branch supports, and

TreeFix-DTL a multiple sequence alignment.

Finally, while we have shown that it is possible to estimate the

cA parameter, we have been less successful in estimating all four

costs (d; s; k; cA) simultaneously, due to the tendency of the cost esti-

mates to diverge toward a very low transfer cost, and a correspond-

ingly large number of transfers. We expect that relaxing the, in

general, unrealistic assumption of independence between events

could ameliorate this problem.
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Szöllo†si,G. et al. (2014). The inference of gene trees with species trees. Syst.

Biol. 64, e42–e62.

Than,C. and Nakhleh,L. (2009). Species tree inference by minimizing deep co-

alescences. PLoS Comput. Biol. 5, e1000501.

Tofigh,A. (2009). Using trees to capture reticulate evolution, lateral gene

transfers and cancer progression. PhD Thesis, KTH Royal Institute of

Technology, Sweden.

Tofigh,A. et al. (2011). Simultaneous identification of duplications and lat-

eral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinform. 8,

517–535.

Wu,Y.-C. et al. (2013). TreeFix: statistically informed gene tree error correc-

tion using species trees. Syst. Biol. 62, 110–120.

Wu,Y.-C. et al. (2014). Most parsimonious reconciliation in the presence of

gene duplication, loss, and deep coalescence using labeled coalescent trees.

Genome Res. 24, 475–486.

848 C.Scornavacca et al.


	btu728-M1
	btu728-M2
	btu728-M3
	btu728-TF1

