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1. Introduction

Excitation energy transfer in electronic systems, such as photo-

synthetic pigment–protein complexes, has been experimental-
ly studied by increasingly faster time-resolved techniques over

the years. The latest nonlinear spectroscopy tool is two-dimen-
sional electronic spectroscopy (2DES).[1] In 2007, this technique

was applied to the Fenna–Matthews–Olson (FMO) complex of
purple bacteria, in which, among other dynamics, long-lived

coherent oscillations were observed.[2] This observation

sparked interest in coherent phenomena in such systems.
2DES was used to observe in more detail FMO,[3] antenna com-

plexes of marine algae,[4] the major light-harvesting antenna
LHCII,[5] and the reaction centers (RCs)[6, 7] of higher plants, to

name a few examples. In all cases, the omnipresent, robust os-

cillations were found at cryogenic and even at room tempera-
ture.

Accordingly, much of the following work was devoted to in-
vestigating the origin of these long-lived oscillations and their

relation to energy transfer in the system. Originally, they were
associated with electronic coherences.[8] One proposed mecha-

nism was that correlated bath fluctuations at different sites

could result in long-lived coherence between the correspond-
ing states. However, no evidence for such correlations was

found through modeling based on molecular dynamics simula-
tions.[9] Also, direct separation of the coherences into electronic

and vibrational is not possible, as can be seen by comparing
the oscillation frequencies with known vibrational modes.[7]

Gradually, the consensus has been reached that the oscillation

longevity and frequencies must be explained by mixing of
electronic and vibrational coherences.[10–15] In particular, vibra-
tional modes with frequencies resonant with electronic energy
gaps were suggested to be important for both spectroscopic

signals and energy-transfer dynamics.[7, 16–20]

To investigate the role of the vibrations in the electronic

system dynamics, several ingredients have to be present in the
model. These include the interaction between the pigments,
a few explicitly quantized vibrational modes, and interaction

with an external phonon bath. There are several levels of de-
scription of such a situation with increasing complexity. The

first level involves N interacting pigments with a few quantized
vibrational modes and one corresponding generalized coordi-

nate for every vibrational mode. In other words, the configura-

tion space for every vibrational mode is one-dimensional.
The interaction with the external bath can then be described

by second-order perturbation theory. Such a description by
multilevel Redfield theory was developed by Jean et al.[21, 22]

They derived the equations of motion for such a system and
showed the equivalence of weak- and strong-coupling limits
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to the Fermi golden rule and Landau–Zener regime, respec-
tively. Later Egorova et al. investigated the range of validity of

multilevel Redfield theory by comparison with other methods
and concluded that it was appropriate for the description of

coherent ultrafast dynamics.[23] More importantly for our study,
they also calculated the dynamics of the vibrational wavepack-

et after photoexcitation.[24] They showed that the vibrational
wavepacket evolved coherently and that coherence survived
several nonadiabatic transfers between excited-state poten-

tials. The model was later successfully applied to describe pri-
mary charge separation in the photosynthetic reaction center

of purple bacteria by Novoderezhkin et al.[25] It was concluded
that vibrational modes were important for the formation of

the charge-separated state.
The next complexity level keeps the one-dimensional de-

scription of the quantized vibrational modes, but uses an exact

model for the treatment of the phonon bath. Such a descrip-
tion is provided by the hierarchical equations of motion

(HEOM). HEOM in the presence of quantized vibrational modes
were derived by Tanaka and Tanimura,[26] and later extended

for the presence of underdamped vibrational modes by Tani-
mura.[27] The advantage of this method is its validity for differ-

ent strengths of coupling to the bath, the disadvantage is the

relatively high computational demand. These equations were
applied to larger systems, such as FMO (7 pigments)[12] and

LHCII (14 pigments),[18] with several vibrational modes, by
using massively parallel calculations on graphics cards.[28] Final-

ly, the HEOM were used by Fuller et al. to simulate the coher-
ent dynamics of the photosystem II reaction center, as ob-

served by 2DES.[7] Of particular interest for our study is their ex-

amination of the effect of the vibrations on charge-transfer
(CT) state formation. First, almost all vibrational modes present

are in resonance with some energy gap between the states in
the system. The authors then described the vibrational modes

as sharp and broader peaks in the phonon spectral density.
They showed that, in the sharp case, which they called coher-

ent, charge separation was faster than that in the broad case.

As we discuss later, this can be explained by the resonance
mechanism described herein.

Another exact approach which describes the bath by polar-
on transformation was developed by Kolli et al.[29] On a FMO-
inspired four-site model they demonstrated the effects of non-
equilibrium bath and illustrated the distinction between the

electronic and vibrational components of the oscillatory fea-
tures. Later the authors applied this approach to a larger
PE545 antenna system of cryptophyte algae to investigate the
role of quantized vibrations quasi-resonant with excitonic
energy gaps.[11]

Yet another possibility was explored by Plenio et al.[30, 31]

They used a time-dependent density-matrix renormalization

group method together with the orthogonal polynomials tech-

nique (TEDOPA method), which allowed them to follow the dy-
namics of the system and bath. The key principle is the unitary

transformation of the oscillator bath into an infinite one-di-
mensional chain of harmonic oscillators. In the context of pho-

tosynthetic complexes, the authors applied TEDOPA to a FMO-
inspired dimer.[17] They demonstrated that the presence of a vi-

brational mode resonant with the excitonic energy gap could
result in longer-lived coherences and even led to a coherence
revival.

The one-dimensional description of the quantized vibration-

al mode has, however, some disadvantages. Because all pig-
ments effectively interact with the same vibrational mode, fluc-

tuations along its coordinate will be correlated for all of them.
This can lead to unrealistic behavior, such as prolongation of

coherence lifetime. Also, nonequilibrium vibrational dynamics
of this mode, such as dynamic Stokes shifts, cannot be correct-
ly reproduced. The more complex level of description uses one

generalized coordinate for each vibrational mode and for each
pigment, that is, independent vibrational modes for each pig-

ment. The dimension of the configuration space for every
mode is then N. As is immediately apparent, the scaling of the

problem with the number of pigments and/or quantized

modes increases dramatically. This description was actually
originally proposed by Fçrster in 1965.[32] It was then recently

rediscovered in the context of coherent dynamics of photosyn-
thetic complexes by Christensson et al.[10] and independently

by Tiwari et al.[16] In the latter work, a “symmetric” dimer, that
is, with equal excited-state displacements, was investigated. In

this special case, dissipative dynamics occurs only along the

correlated nuclear motion direction, which permits effective
treatment of the energy-transfer dynamics as a one-dimension-

al problem. The special case of a symmetric dimer was also
used to discuss the bath correlation[33] and 2DES oscillatory fea-

tures.[34] Butkus et al. have also investigated in detail the signa-
tures of the vibrational and electronic degrees of freedom

(DOF) in the 2DES spectra.[15, 35] An excellent review on the sub-

ject of the interplay of electronic and vibrational DOF, present-
ing HEOM and multiconfiguration time-dependent Hartree

(MCTDH), another method capable of dealing with explicit vi-
brations, was written by Schrçter et al.[36] Whereas these stud-

ies were of mostly a qualitative nature, Novoderezhkin et al.
used the same multidimensional configuration space descrip-
tion to obtain a quantitative fit of experimental 2DES frequen-

cy maps. This enabled them to characterize the observed co-
herences in the B820 subunit of the LH1 complex of purple
bacteria[37] and in the reaction center of photosystem II of
higher plants.[20]

Herein, we describe the interaction of a system that includes
independent quantized vibrational modes on every pigment

with a phonon bath. This allows us to observe the interplay of
coherent and dissipative dynamics. Our work is thus a logical
continuation of the theory development outlined above. The
paper is structured as follows: First, we formulate the theoreti-
cal description of the interacting pigments with explicitly

quantized vibrational modes and in interaction with the
phonon bath. We show that the electronic and vibrational

modes effectively feel two baths, albeit those arising from the
same environmental modes. Using such system–bath interac-
tions, we derive expressions for Redfield theory dynamics.
Then we apply this description to a model vibronic dimer of
pigments with one vibrational mode on each of them. We

study the influence of the vibrations on the system dynamics,
in particular the role of the resonance of the vibrational fre-
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quency with the energy gap between the pigment electronic
transitions.

2. Results and Discussion

2.1. Theoretical Description

2.1.1. The System and Bath

In the traditional open quantum systems approach, the elec-

tronic DOF are treated explicitly in the system Hamiltonian, HS,
and all vibrations are included in the bath HB. These two are

then coupled by the interaction Hamiltonian, HSB, which factor-
izes into the system part and bath part, F. Because our goal is

to study the role of resonant vibrations, let us include one vi-
brational mode from the bath explicitly quantized in the
system Hamiltonian. Originally, the bath modes were typically

considered as being independent and noninteracting. Howev-
er, when a specific vibrational mode is included in the system,

not only the electronic DOF, but also this vibrational mode, will
be linearly coupled to the rest of the bath modes, which

remain to be treated perturbatively. The mathematical proce-

dure for this mode transformation can be found in the Sup-
porting Information. As a result, there are two system–bath in-

teraction terms: one coupling the bath modes to the electron-
ic DOF and the other to the quantized vibrational mode. There

are thus effectively two baths, although they originate from
the same vibrational modes in the environment. According to

the DOF they act on, we call these baths “electronic”, with op-
erator Fð2Þ, and “vibrational”, with operator Fð1Þ. The Hamilto-

nian of one pigment can be written as Equation (1):

Hpigment¼ HB þ eg þ HvibðQÞ
£ ¡

gj i gh j
þ ee þ lþ HvibðQ¢ Q0Þ þFð2Þ
£ ¡

ej i eh j
ð1Þ

in which Hvib(Q) is given by Equation (2):

HvibðQÞ ¼
�hW

2
P2 þ Q2ð Þ þ Q

ffiffiffi
2
p

Fð1Þ ð2Þ

in which gj i and ej i are the ground and excited electronic

states of the pigment, respectively, with energies eg,e ; l is the
reorganization energy; Hvib is the Hamiltonian of the quantized

vibration; W is the vibrational frequency; Q is the vibrational

coordinate, displaced by Q0 in the excited state; and P is the
canonical momentum.

The motivation for separating the two baths is not only

mathematical. Physically, the two baths correspond to different
processes. Because of the DOF it couples to, the electronic

bath Fð2Þ causes fluctuations of the electronic energy gap. In
contrast, the interaction with the vibrational bath Fð1Þ, coupled

linearly to the quantized coordinate, causes transitions be-

tween the vibrational states. One can perform a linear absorp-
tion measurement. The width of the zero-phonon line (ZPL) at

low temperature is then given by the electronic bath Fð2Þ only,
which causes dephasing of the optical coherence between the

ground and excited states. One can also perform a time-re-
solved measurement, such as transient absorption, to observe

a dynamic Stokes shift, that is, intramolecular vibrational relax-
ation. The relaxation rate is then given only by the vibrational

bath Fð1Þ. It is thus, in principle, possible to obtain the parame-
ters of these two baths from different experiments.

Let us proceed to the description of an aggregate of inter-
acting pigments. The total Hamiltonian is then given by Equa-

tion (3):

H ¼
X

n

Hn �m 6¼n 1m þ
X
n6¼m

Jnm �l 6¼n;m 1l ð3Þ

in which Hn is the Hamiltonian of one pigment defined above
and Jnm is the element of the operator of interaction between

the pigments.

In the Born–Oppenheimer approximation, the electronic and
nuclear DOF are independent. The basis functions for the

ground and excited states of each pigment can then be writ-

ten as a product of their vibrational and electronic parts
[Eq. (4)]:

gnn
n

�� � ¼ cðgÞnn
n

�� �
gnj i,

enn
n

�� � ¼ cðeÞnn
n

�� �
enj i

ð4Þ

in which n 2 1:::N counts the pigments and the greek indeces

nn 2 1:::NV count the vibrational levels. To shorten the nota-
tion, we occasionally make use of multi-indices n ¼ n1:::nN in

the text below.

The collective states of an aggregate of these N pigments

are given by Equation (5):

gnj i ¼ gn1
1

�� �
::: gnN

N

�� � ¼ �n gnn
n

�� �
,

en
n

�� � ¼ gn1
1

�� �
::: enn

n

�� �
::: gnN

N

�� � ¼ �m6¼n gnm
m

�� �
enn

n

�� � ð5Þ

in which gn1 :::nnj i are the ground state levels and en1 :::nn
n

�� �
are

the singly excited states. Now we write the explicit elements

of the Hamiltonian in this basis.

We again separate the total Hamiltonian into system part HS,

bath part HB, and system–bath interaction HSB. Let us write the
system Hamiltonian in the exciton-vibrational basis. The

ground state block is (setting eg = 0) given by Equation (6)

gnh jHS gmj i ¼ Pndnnmn

¨ ¦ X
m

nm�hWm

 !
ð6Þ

in which Wn is the vibrational frequency at the nth pigment.
The matrix elements of the one exciton block read as shown in
Equation (7):

en
n

� ��HS em
m

�� �¼ dnm Pldnl ml

¨ ¦
en þ

X
l

nl�hWl þ ln

 !
þ 1¢ dnmð ÞJnnnmmnmm

nm

ð7Þ
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in which ln is the reorganization energy and the coupling
terms are given by the electronic coupling Jnm and the vibra-

tional wavefunction overlap [Eq. (8)]:

Jnnnmmnmm
nm ¼ Jnm cðeÞnn

n

� ��cðgÞmn
n

�
cðgÞnm

m

� ��cðeÞmm
m

� ð8Þ

The electronic bath is independent of the vibrational DOF

and causes fluctuations of the electronic levels. The vibrational
bath causes nk ! nk � 1 transitions between the vibrational

levels. We can write the system–bath interaction separately for
the ground-state block [Eq. (9)]:

gnh jHSB gmj i ¼
X

i

K g
i;nmF

ð1Þ
i ; where

Ki;nm ¼ ffiffiffiffi
mi

p
dni mi¢1

¨ þ ffiffiffiffiffiffiffiffiffiffiffiffi
mi þ 1

p
dni miþ1ÞP j 6¼idnj mj

ð9Þ

and for the one-exciton block [Eq. (10)]:

en
n

� ��HSB em
m

�� �¼ dnm P ldnl ml

¨ ¦
Fð2Þ

n þ dnm

X
i

Ki;nmF
ð1Þ
i ð10Þ

We introduced the index tensor Ki;n1::Nm1::N
to shorten the nota-

tion of ni ¼ mi � 1 transitions.

The system–bath interaction is treated by second-order per-
turbation theory, in which the bath is fully described by its cor-

relation function (that is, the spectral density in the frequency

domain). We have the vibrational correlation function given by
Equation (11):

Cð1Þn ðWÞ ¼
2

�h2 Re

Z 1

0
eiWt Fð1Þn ðtÞFð1Þn ð0Þ
� � ð11Þ

the electronic correlation function given by Equation (12):

Cð2Þn ðWÞ ¼
2

�h2 Re

Z 1

0
eiWt Fð2Þn ðtÞFð2Þn ð0Þ
� � ð12Þ

and the cross-correlation term given by Equation (13):

Cð12Þ
n ðWÞ ¼

2

�h2 Re

Z 1

0
eiWt Fð1Þ

n ðtÞFð2Þ
n ð0Þ

� � ¼ Cð21ÞðWÞ ð13Þ

In the following calculations, we set these baths as formally

uncorrelated for now, that is, Cð12Þ
n ðWÞ ¼ 0 8n. We also consider

baths coupled to different pigments to be uncorrelated, in ac-

cordance with Ref. [38] .

The interaction of the system with light, HSL, is treated in the
dipole approximation given by Equation (14):

HSL ¼ ¢mEðtÞ ð14Þ

in which m is the dipole moment operator. In the Condon ap-

proximation, the dipole moment operator is independent of
the vibrations [Eq. (15)]:

m ¼
X

n

enj imn gh j þ h:c: ð15Þ

If we consider the case when coupling between the pig-

ments is stronger than coupling to the bath (strong coupling
regime), the preferred basis is the exciton basis. This is ob-

tained by diagonalization of the one-exciton block of the

system Hamiltonian with an orthogonal transformation
H ! CyHC. The resulting states are superpositions of the elec-

tron-vibrational states, so they are called vibronic states
[Eq. (16)]:

eij i ¼
XN

n¼1

X
m

ci
n;m em

n

�� � ð16Þ

According to this transformation, the system–bath interac-

tion and dipole moment operators are also transformed into
the excitonic basis. The particular expressions can be found in

the Supporting Information.

2.1.2. The Dynamics

In the reduced description, the system dynamics can be calcu-
lated by using a master equation in the following form given

by Equation (17):

@1

@t
¼ ¢ i

�h
½HS; 1¤ ¢ RðtÞ1þ i

�h
½m; 1¤EðtÞ ð17Þ

in which RðtÞ is a rank four tensor that arises from the pertur-

bative treatment of the system–bath interaction. The solution
of this equation is then formally expressed by a propagator :

1ðtÞ ¼ UðtÞ1ð0Þ. Herein, we use time-independent Redfield
theory, in which the relaxation tensor (also called Redfield

tensor) can be expressed as follows: let us define, similar to

the description given in Ref. [39], the auxiliary operators for
the electronic and vibrational bath [Eq. (18)]:

Y ð2Þijkl ¼
1
2

XN

n¼1

X
n;m

ci
n;ncj

n;nck
n;mcl

n;mCð2Þn ðwkiÞ,

Y ð1Þijkl ¼
1
2

XN

n¼1

XN

m¼1

X
p

X
n;m;k;l

ci
n;ncj

n;mck
m;kcl

m;lKp;nmKp;klCð1Þp ðwkiÞ
ð18Þ

In the one-exciton block, we separate the Redfield tensor

into the electronic and vibrational bath terms:
RðeÞij;kl ¼ Rð1Þij;kl þ Rð2Þij;kl , as given by Equation (19):

RðoÞij;kl ¼¢ Y ðoÞijkl þ Y ðoÞjilk

� �
þ djl

X
s

Y ðoÞsiks þ dik

X
s

Y ðoÞsjls

o ¼ 1; 2

ð19Þ

In the ground state, there is only the vibrational bath. Defin-

ing the auxiliary operator as Equation (20):

Y ðgÞnmkl ¼
X

n

Kn;nkKn;lmCð1Þn ðWn
knÞ ð20Þ
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we can write the Redfield tensor as Equation (21):

RðgÞnm;kl ¼ ¢ Y ðgÞnmkl þ Y ðgÞmnlk

� �
þ dml

X
s

Y ðgÞsnks þ dnk

X
s

Y ðgÞsmls ð21Þ

Herein, we denote the vibrational frequency differences as
Wn

mn ¼ mn ¢ nnð ÞWn.

It is also possible to describe the evolution of the optical co-
herences, that is, 1ign

ðtÞ, by Redfield theory, but in the time-in-
dependent case this leads to unrealistic Lorenzian lineshapes.
We therefore use a second-order cumulant expansion, which is
even exact for our case of a harmonic oscillator bath. There are
again two lineshape functions corresponding to the two baths

[Eq. (22)]:

gðoÞn ðtÞ ¼
Z

t

0
dt

Z
t

0
dt0CðoÞn ðt0Þ

o ¼ 1; 2

ð22Þ

The transformed g functions can be expressed by consider-

ing the dynamics of the energy gap, that is, He
SB ii ¢ Hg

SB nn

� �
for

the one-exciton–ground state coherences, leading to Equa-
tion (23):

ge
i ðtÞ ¼

X
n

X
nm

jci
nnj2jci

nmj2gð2Þn ðtÞþ

XN

n¼1

XN

m¼1

X
p

X
nmkl

ci
n;nci

n;mci
m;kci

m;lKp;nmKp;klgð1Þp ðtÞ
ð23Þ

The evolution of the optical coherences is then given by
Equation (24):[39, 40]

Uign
ðtÞ ¼ exp ¢ge

i ðtÞ ¢
1
2

Rii;ii þ Rgn gn ;gngn

¨ ¦
t

� �
ð24Þ

in which R are the Redfield tensor elements that express popu-
lation transfer from the respective states leading to lifetime de-

phasing.

2.1.3. Spectroscopy

The spectra can be calculated by the response function formal-
ism as a response to the electric field.[40] The nth order polari-

zation is then given by Equation (25):

PðnÞ ¼
Z 1

¢1
dt1:::

Z 1

¢1
dtnSðnÞðtn; tn¢1:::t1Þ

Eðt ¢ tn ¢ tn¢1 ¢ :::¢ t1Þ:::Eðt ¢ t1Þ;
SðnÞðtn; tn¢1:::t1Þ¼ TrfmUðtnÞ½m; :::Uðt1Þ½m; 1eq¤g

ð25Þ

in which UðtÞ is the system “free” propagator without the elec-

tric field. In our case, UðtÞ is obtained by solving Equation (17)
without the electric field. The signal is then connected to the

polarization through the Maxwell equations. We thus get the
absorption spectrum [Eq. (26)]:

aðwÞ / w
X

i

X
n

jmi;gn
j2Re

Z 1

0
dt eiwt Ui;gn

ðtÞ1eq ð26Þ

2.2. Numerical Simulations

2.2.1. System Description

In this section, we present the application of the theory pre-
sented above for a coupled dimer of pigments, N = 2. Unless

different values are explicitly given, the parameters used for
simulation can be found in Table 1. The vibrational frequency,

W= 340 cm¢1, was chosen because it corresponds to a known

vibration of chlorophyll and was observed in the experimental
2DES spectra.[6, 7] The transition dipole moments of the pig-

ments are parallel-oriented (head-to-head) and are of the same

size. To characterize the excited states, we use the Huang–Rhys
factors, which relate to the dimensionless displacement as

Sn ¼ d2
n=2 (dn is denoted Q0 in the theory section above). Be-

cause we have two pigments and one quantized vibrational

mode on each of them, we describe the excited-state potential
in a space of two generalized coordinates (Figure 1). Such a po-

tential surface in the exciton picture and its influence on the

exciton delocalization was studied in detail by Beenken et al.[41]

Except for the resonance study, see below, we use an over-

damped Brownian oscillator (BO) for the model of the bath
[Eq. (27)]:

Table 1. System parameters used for a simulation of a coupled dimer of
pigments.

Parameter Value

ZPL energy difference DE = e2¢e1 = 300 cm¢1

electronic coupling J12 = 75 cm¢1

Huang–Rhys factor S1 = 0.7, S2 = 0.25
vibrational frequency W= 340 cm¢1

temperature 77 K (kBT = 53.7 cm¢1)
bath reorganization energy l1 = 20 cm¢1, l2 = 50 cm¢1

bath inverse correlation time L= 100 cm¢1

Figure 1. The configuration space with the parabolic potentials of the
ground (0) and excited states of the pigments. The excited states are dis-
placed from the ground state along the respective generalized coordinates.
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CðwÞ ¼ 1þ coth
w

2kBT

� �� �
2lwL

w2 þL2 ð27Þ

(We measure frequencies and energy in wavenumbers, that is,

�h ¼ 1, ½w¤ ¼ ½E¤ ¼ cm¢1.) Because both effective baths arise

from the same environmental modes, we use the same bath
correlation time, tcorr ¼ L¢1 � 50 fs, for both. We then vary

only the strength of the system–bath coupling, that is, the re-
organization energy. For uncoupled pigment at 77 K, these

bath parameters give a vibrational relaxation time of approxi-
mately 250 fs: tR ¼ k¢1

R ¼ Cð1ÞðWÞ¨ ¦¢1
and 55 cm¢1 wide ZPL

(3–4 nm in the typical wavelength range). This form of a bath

and parameters in this range are commonly used in photosyn-
thetic light-harvesting complexes.[39] High-frequency modes are
sometimes included in the bath spectrum, but these would be
represented herein by the explicitly quantized modes. The pro-
cedure of including the quantized modes in the bath was in-
vestigated by Roden et al.[42]

In the calculations, four vibrational levels on each pigment
were used as a diabatic site basis. After diagonalization, the

levels were truncated to 13 lowest levels in the one-exciton
manifold. This restriction is valid because the higher energy vi-

bronic states have negligible oscillator strength and lie out of

the Franck–Condon region. Thus, they are neither populated
by interaction with light nor by system dynamics. Numerically

it was checked that the increase in both the basis size (4!6
states) and number of levels (13!16) did not produce an ap-

preciable difference in the calculated quantities.
To discuss our system, we use the following quantities: ab-

sorption spectrum with peak designations, vibronic (excitonic/

vibrational) population dynamics with level characterization, vi-
bronic coherence dynamics with coherence characterization,

site populations, and intersite coherence. For illustration, we
also plot the vibronic wavepacket in the configuration space.
We would like to emphasize at this point that the absorption
spectra are experimental quantities and the vibronic coherence
and population dynamics can be, to a large extent, followed

by 2DES.
The absorption spectrum is calculated from the diagonalized

Hamiltonian by using a second-order cumulant expansion [see
Eq. (26)] . Peak designations are read from the origin of the cor-
responding transitions. It turns out that 77 K is a temperature
low enough for only the transitions from the vibrational

ground state, g0
1

�� �
g0

2

�� �
, to be visible in the linear spectrum due

to the Boltzmann distribution of the ground-state populations
in thermal equilibrium.

The vibronic states are directly populated by interactions
with light and their population dynamics are calculated by

using Redfield master Equation (17). Corresponding to experi-
mental conditions in nonlinear spectroscopy, such as 2DES or

broadband transient absorption, the initial condition is excita-

tion by a spectrally broad d-pulse (two interactions with the
field), as given by Equation (28):

1ijð0Þ ¼
X

n

mign
1eq

gngn
mgn j ð28Þ

The system is considered to be in thermal equilibrium
before excitation, 1eq

gn gn
¼ e¢Wn=kB TP

n
e¢Wn=kB T

:

To characterize the vibronic levels in the one-exciton mani-
fold, we calculate their localization on the respective sites (pig-

ments) from Equation (29):

li ¼ l1ðiÞ; l2ðiÞð Þ; lnðiÞ ¼
X

n

jci
n;nj2 ð29Þ

As well as the dynamics of the vibronic populations, we cal-

culate the evolution of the vibronic coherences, called plainly
coherences herein. Quantum mechanical coherences are de-

fined as coherent superpositions of states. As such, the system

eigenstates, called vibronic states herein, are also coherent su-
perpositions of the diabatic, site states. However,we denote

only the superpositions between the vibronic states as coher-
ences, that is, the off-diagonal elements of the system density

matrix in the eigenstate (vibronic) basis. Our motivation is that
exactly these coherences are observed by 2DES as oscillations

in the population time.

Similar to vibronic populations, coherences are also directly
created by light. We describe them by their vibronic levels

origin and the “intersite mixing” ratio [Eq. (30)]:

xij ¼
X

n;m

jci
1nj2jcj

2mj2 þ jcj
1nj2jci

2mj2
� �

ð30Þ

which determines how much the two sites are mixed in the

particular coherence, 1ij. This can be also expressed by the state

localization, xij ¼ l1ðiÞl2ðjÞ þ l1ðjÞl2ðiÞ ¼ 1¢ l1ðiÞl1ðjÞ ¢ l2ðiÞl2ðjÞ;
in another words, xij corresponds to the probability that states

i and j are localized on different pigments. This measure helps
to distinguish the prevailing character of the coherence. Purely

vibrational coherences, that is, superpositions of different vibra-
tional states on the same pigment, have xij ¼ 0. In contrast, the

electronic coherences, namely, superpositions of electronic exci-

tation on different pigments, have xij ¼ 1. The value of xij

reaches these extreme values only if the states constituting the

coherence correspond to the diabatic states. In practice, this
occurs only in the case of uncoupled pigments (see below). In

the general, coupled case, if xij is close to zero (one), the coher-
ence 1ij is of prevailing vibrational (electronic) character. De-

pending on the chosen basis, different measures with similar
functions can be used, such as those discussed in Refs. [15, 37].

Site populations are calculated as overall population of a par-
ticular site (pigment), including all vibrational states, that is,

Pn ¼
P

n

P
i;j ci

nn1ijc
j
nn.

Intersite coherence is calculated as the coherence between

the two sites traced (i.e. averaged) over the vibrations
[Eq. (31)]:

P12¼ Trvib11n;2m

¼
X

i;j

X
nm

ci
1;n1n2

1ijc
j
2;m1m2

cg
m1

D ���ce
n1

E
ce

m2

D ���cg
n2

E ð31Þ
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In contrast to vibronic coherences, intersite coherence is cal-
culated in the diabatic, site basis. The real part of P12 measures

the delocalization of excitation between the two sites, whereas
its imaginary part reflects the amount of dynamic coherence

between the two sites.
The vibronic wavepacket is calculated as the probability of

the system at a given time to be at a given point,
Q ¼ ðQ1;Q2Þ, of the configuration space [Eq. (32)]:

wpðQ; tÞ ¼ jYðQ; tÞj2 ¼ Qh j1ðtÞ Qj i ð32Þ

2.2.2. Uncoupled Pigments—Quantities and Measures

First, to get a feeling about the role of the two baths and

measures defined above, we show the case of two uncoupled

pigments, that is, J = 0 cm¢1 (Figure 2). In the absorption spec-
trum in Figure 2 A, we can see the ZPLs of the two pigments

and the two vibrational progressions. The width of the ZPLs is
determined only by the electronic bath; for higher vibrational

peaks, the lifetime broadening caused by the vibrational relax-
ation also partially contributes. Because this effect is compara-

tively small, we can say that the linewidth is determined by

pure dephasing due to electronic level fluctuations. On the
other hand, the vibronic population dynamics (Figure 2 B) is

given purely by the vibrational bath. For l1 = 0 cm¢1, the popu-
lations would be stationary because there would not be trans-

fer between the pigments, and thus, the electronic fluctuations

would be absolutely correlated for all states at a given pig-
ment. Because there is no mixing between the sites, all states

are fully localized (i.e. site basis,vibronic basis). Small oscilla-
tions of the vibronic populations are given by population$co-

herence transfer and disappear in the strict secular approxima-
tion (see below). Because there is no transfer between pig-

ments, the site populations (not shown) stay constant. In Fig-
ure 2 C, the real part of the five most intense coherences

(sorted by initial amplitude) are shown. It is apparent from the

xij measure that we have two kinds of coherences: purely vi-
brational, with xij ¼ 0, and electronic, with xij ¼ 1. The elec-
tronic ones dephase quickly due to the electronic bath. The vi-
brational ones are long-lived and dephase only by lifetime de-

phasing given by the vibrational bath. This is best seen by set-
ting l1 = 0 cm¢1, in which case the electronic coherences will

decay rapidly, while the vibrational ones will live forever. Final-

ly, the intersite coherence (Figure 2 D) is affected mostly by the
electronic bath. As mentioned above, its imaginary part corre-

sponds to the amount of dynamic coherence in the system,
whereas its real part reflects the amount of intrinsic delocaliza-

tion between the pigments due to their coupling. In the J =

0 cm¢1 case, they both decay to zero.

2.2.3. Coupled Pigments

Let us now switch on the coupling, setting J = 75 cm¢1 (inter-
mediate coupling regime), and study the dependence of the

system properties on the energy detuning, DE. All studied

Figure 2. Results for uncoupled pigments : A) absorption spectrum, B) vibronic population dynamics, C) coherence dynamics, and D) intersite coherence. Cou-
pling: J = 0 cm¢1; other parameters are those given in Table 1.
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properties are depicted in Figure 3 for three different energy
gaps. We remind the reader that the vibrational frequency is

W= 340 cm¢1. In the absorption spectra in Figure 3 A–C, we
can see the peaks shift and the oscillator strength is redistrib-

uted. As the states become delocalized, one-exciton states
consist of several diabatic states and a simple transition desig-

nation, as in Figure 2 A, is no longer possible. As expected, dif-
ferent vibronic states are initially populated with increasing DE

(Figure 3 D–F). For smaller energy gaps, the lowest vibronic

state (which is almost the pure ZPL of the lower pigment) is
populated faster than that for larger DE.

The coherences (Figure 3 G–I) are sorted by initial amplitude,
including the five most intense ones, the ones between the

strongly populated states and the long-lived ones. All “local-
ized” coherences with small xij are again long-lived. On the

other hand, not all long-lived coherences have small xij : for
near-resonant energy gaps, there can be delocalized coherenc-

es with xij 2 0:4:::0:6ð Þ, which can be also long-lived. The
reason for this is that they are delocalized between the sites in
exactly the same way, that is, li ¼ lj , and therefore, the fluctua-

tions that the constituent states feel are correlated, which de-
creases dephasing. An example is the coherence 2–5 with

Figure 3. Results for coupled pigments. The properties of the system are calculated for three different energy gaps, DE ; other parameters are given in Table 1.
A–C) Absorption spectrum, states sorted by their energy. D–F) Dynamics of the vibronic states population. G–I) Vibronic coherence dynamics, ordered by their
initial amplitude. J–L) Intersite coherence dynamics. M–O) Site population dynamics.

ChemPhysChem 2016, 17, 1356 – 1368 www.chemphyschem.org Ó 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim1363

Articles

http://www.chemphyschem.org


x25 ¼ 0:5 for DE ¼ W. To gain an insight into the actual

structure of the coherences and the constituent states, the par-

ticipation ratios, jci
n;nj2, of states 2 and 5 in the site basis states

are given in Table 2. We can see that these two vibronic states

are composed of completely different exciton-vibrational
states. However, because the electronic bath fluctuations are

the same for different vibrational states on the same pigment
and it is this electronic bath that mostly causes the decay of

coherence 2–5, only total localization on the respective pig-

ments, given by li, is important in determining the coherence
lifetime. This demonstrates the usefulness of the introduced

measures. One more remark is in order. Naively, we would
expect the mixed coherences to be easily recognizable in the

experiment because their frequencies generally differ from the
frequency of the vibrational mode characteristic for purely vi-

brational coherences. However, as we see from coherences 2–

5, even such a mixed coherence can oscillate on frequency
e5 ¢ e2 ¼ 341 cm¢1, that is, practically at W. Indeed, much at-

tention has been given to distinction of the kinds of coherenc-
es in recent years.[10, 15, 37]

For higher energy gap resonances, the effect of longer co-
herence lifetime will be obscured by lifetime dephasing be-
cause the delocalized states near the potential energy surface

(PES) intersections have higher energy and undergo rapid re-
laxation. A good example is coherences 1–4 in the DE ¼ 2W

case. The effect of lifetime dephasing alone can be nicely seen
on the purely vibrational coherences 3–7 in Figure 2. Notably,

the effect of mixed coherence longevity is absent in the off-
resonant DE = 500 cm¢1 case, in which the only long-lived co-

herences are purely vibrational.
The intersite coherence (Figure 3 J–L) oscillates because of

the coherences from which it originates: with increasing de-

tuning, the overall delocalization (corresponding to the real
part of the intersite coherence) decreases as expected.

To show the presence of long-lived mixed coherences, we
calculate the total amplitude of coherence present in the

system, AcohðtÞ ¼
P

i;j>i j1ijðtÞj2, for different energy gaps (see

Figure 4 A). Surprisingly, the amount of coherence present in
the system decays in almost the same way for all given energy

gaps. From the results presented in Figures 2 and 3, we know
that for off-resonant cases there are long-lived vibrational co-

herences present, whereas in the resonant cases the coherenc-
es become mixed, that is, the constituent states become delo-

calized. Putting these two pieces of knowledge together, we

must conclude that there are longer-lived mixed coherences
when the energy gap is in resonance with vibrational frequen-

cy. In other words, a redistribution of the dynamic coherence
lifetime between the vibrational and mixed coherences takes

place.

Finally, the site populations (Figure 3 M–O) show transient
oscillatory behavior when the delocalized states are populated
and then more monotonous evolution when the excitation be-
comes more localized. Most importantly, they show a clear

trend of faster dynamics in the resonant DE ¼ kW cases, for
which the energy gap is a multiple of the vibrational frequen-

cy. This indicates that the direction of resonant vibrations in-
creases population transfer, which is investigated in the next
sections.

2.2.4. Role of Resonance

To quantify the effective rate of population transfer between

sites, we fit the first 600 fs of the higher site population dy-

namics with an exponential decay to obtain the effective trans-
fer time. Let us study the effect of changing the energy gap

on this transfer time. Because the Redfield rates also depend
on the value of spectral density at the transition frequency and

we are only interested in the effect of the resonance at the
moment, let us use a flat spectral density [Eq. (33)]:

Table 2. Participation ratios of states 2 and 5 from Figure 3 D in specific
pigment states. These states constitute the long-lived mixed coherenc-
es 2–5 in Figure 3 G.

Site State 2 State 5
basis e2 = 12607 cm¢1 e5 = 12948 cm¢1

e0
1

�� � g1
2

�� �
0.14 0.01

e1
1

�� � g0
2

�� �
0.39 0.00

g0
1

�� �
e0

2

�� � 0.45 0.00
e0

1

�� � g2
2

�� �
0.00 0.21

e1
1

�� � g1
2

�� �
0.00 0.14

e2
1

�� � g1
2

�� �
0.00 0.18

g0
1

�� �
e1

2

�� � 0.00 0.35
g1

1

�� �
e0

2

�� � 0.00 0.10

Figure 4. A) Total coherence amplitude present in the system calculated for
four different energy detunings. B) Comparison of the “secular” and full Red-
field calculations of the transfer time dependence on energy detuning.
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CðwÞ ¼ T l

L ; w > 0

ewkB T T l

L ; w < 0

(
ð33Þ

in which the w > 0 value coincides with the w! 0 limit of the
BO [Eq. (27)] and the negative frequencies are exponentially

damped to preserve the detailed balance, that is, correct ther-
modynamics. In Figure 5, we study the transfer time for two

cases of interpigment coupling and four different lower site

displacements. For both strong and weak coupling, there are

clear minima around the resonant DE ¼ kW detunings. The
slight shift of the minima from the exact resonance is caused

by fitting the oscillating higher energy pigment population
with an exponential decay. This procedure performed more

poorly for more oscillating populations, which correspond to
delocalized states. The shifts are therefore present mainly for
small displacements and strong coupling.

We would like to emphasize that in traditional Redfield
theory the resonance of an energy gap in the excitonic basis
with a peak in phonon spectral density speeds up population

transfer between excitons. This is caused by a larger density of
available phonons. This is a different effect than that observed

herein, in which the resonance is in the site basis and speeds
up energy transfer between the pigments, leaving the vibronic

population dynamics practically unaffected. In our case, this is
a consequence of increased delocalization of the vibronic

states composed of the resonant states. This delocalization
then leads to leaking of the vibrational wavepacket through

the excited-state PES intersection to the lower energy site. We

discuss this mechanism in more detail in later sections.
Another point to mention is the significant width of these

resonances. This agrees with results in the literature for the
multidimensional configuration space[14, 16] and is in contrast

with the one-dimensional studies.[19, 20] Our results should then
better correspond to experimental observations.[43] The advant-

age of wide resonances becomes apparent when realizing that

the considered biological systems are dynamically fluctuating
and highly energetically disordered.[44] Under such conditions,

a wider range of quasi-resonant regimes of fast energy transfer
becomes a necessity.

To demonstrate that the resonance speeds up transfer, even
for higher multiples of the vibrational frequency, we increased

the number of states in the vibronic manifold to 18 (to main-

tain accuracy) and calculated the population transfer for larger
energy gaps (Figure 6 B). For very small energy gaps, the low-

lying states are delocalized, which results in large site popula-
tion oscillations and makes the fitting unreliable. For large

energy gaps the transfer is very slow. However, the effect of
accelerated population transfer clearly persists, even for large

energy gaps.

In the case of a more realistic overdamped BO spectral den-
sity, we expect these minima to experience only a minor shift

because of the slope of the spectral density. As demonstrated
in Figure 6 A, this is indeed the case. We can see the minima

shift to higher frequencies, which reflects the positive slope of
the spectral density in the relevant region of small phonon fre-

quencies.

Knowing that the effect of the BO bath is just an energy
shift, we can investigate the role of the baths on the transfer

time and resonance conditions (Figure 7). The effect of the vi-
brational bath is straightforward: weaker coupling to this bath
slows down population transfer, which makes resonance more
important. This is because in the resonant case excitation
“leaks” to the lower site through delocalized states at the excit-

ed-state PES intersection. On the other hand, the effect of the
electronic bath is more subtle. Increasing coupling to this bath
speeds up transfer in the lower detuning minimum and slows
down transfer in the higher detuning minimum. This can be
understood intuitively when considering that this bath reduces
delocalization of the excitation: in the large detuning case, the

population leaks to the lower site at the PES crossing through
the delocalized states and relaxation at the upper site is a com-
peting channel. Thus, delocalization is preferable in this case.
In the small energy detuning case, even the low upper site
states are delocalized and a lack of bath-induced localization

permits coherent oscillations between the sites, which slows
down directional transfer.

Figure 5. Influence of detuning on transfer time: the role of resonance. The
dependence is calculated for four different state 1 displacements and for
couplings of A) 120 and B) 60 cm¢1. The black vertical lines mark the reso-
nant DE ¼ kW energy gaps.
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To appreciate the role of delocalization of the vibronic states

in speeding up energy transfer, consider the evolution of the
vibronic populations in Figure 2 for the off-resonant DE =

500 cm¢1 and resonant DE = 680 cm¢1 cases. Clearly, in the

latter, faster case, state 4, which serves as an intermediate
state, is of importance. From the localization l4 measure, we

can see that this state is highly delocalized between the two
sites, which provides the means for the vibronic wavepacket to

leak into the lower pigment. In contrast, in the off-resonant
case, there are no such states: all vibronic states are highly lo-

calized.
Another means of visualizing the actual evolution of the

system after excitation is the motion of the vibronic wavepack-

et (Figure 8). We can observe the actual motion of the excita-
tion, including the initial coherent evolution followed by leak-

ing of the excitation through the potential intersection and
final relaxation in the lower energy site 1. Comparing off-reso-

nant DE = 500 cm¢1 with resonant DE = 340 and 680 cm¢1

energy gaps, we can see that in the resonant cases the excita-
tion clearly reaches the relaxed state at site 1 much faster.

Leaking between the potentials occurs along the correlated
nuclear motion direction, that is, in the direction of the line be-

tween the excited PES minima. The full video of the evolution
can be found in the Supporting Information, together with the

projection of the vibronic wavepacket on the abscissa connect-

ing the PES minima, which is shown in Figure S1.

2.2.5. Secular Approximation

Finally, to further investigate the effect of dynamic localization

and to address the much discussed question of dynamic co-
herences “helping” the energy transfer, let us study the influ-
ence of these coherences on population dynamics and transfer

time. To this end, we set DE = W= 340 cm¢1 and compared the
full Redfield dynamics presented above with the case in which

terms of type Rii;jk; Rij;kk , connecting the populations with the
coherences, were set to zero (this is called the secular approxi-

mation herein). In this situation, the coherences and popula-
tions evolve independently and the eigenenergies of the

system are fixed by the transformation of the Hamiltonian to

the vibronic basis. For direct comparison of the system dynam-
ics, see Figure S2 in the Supporting Information; in most as-

pects the two cases are barely distinguishable. The only signifi-
cant difference can be seen in the site populations, for which

the secular case is evidently faster than the full dynamics. Let
us then compare the role of resonance in the full and secular

Figure 6. The dependence of the transfer time on energy detuning. A) Com-
parison of the BO and flat spectral density for two different state 1 displace-
ments. The arrows indicate the shift of the resonance minima from the flat
to the case of the BO spectral density. B) Occurrence of multiple resonances
for a higher energy gap, as calculated with a flat spectral density (33). The
black vertical lines mark the resonant DE ¼ kW energy gaps.

Figure 7. The dependence of the transfer time on energy detuning. The in-
fluence of the A) electronic and B) vibrational bath coupling strengths is cal-
culated for four different state 1 displacements. The arrows indicate the shift
of the resonance minima with increasing strength of coupling to the respec-
tive bath.
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cases (Figure 4 B). Interestingly, the energy transfer is actually

faster when the populations and coherences evolve independ-
ently; the difference is larger for the higher detuning reso-
nance. This further supports the dynamic localization argument

presented above, since in the secular approximation the vi-
bronic basis is the fixed preferred basis and there is no localiza-
tion. This is advantageous for energy transfer because in the
original vibronic basis the lowest state is always localized on

the lower energy pigment, and thus, dynamic localization in
the low states of the higher energy pigment is undesirable.

3. Conclusions

We derived an expression for the Redfield theory dynamics of

a system of interacting pigments in the presence of a vibration-
al bath and explicit quantization of a few prominent vibration-

al modes. The resulting description includes two effective

baths that correspond to experimentally observable quantities,
namely, the spectral line width and dynamic Stokes’ shift. This

enabled us to study the effects of the resonance of the quan-
tized vibrational frequency with the energy gap between the

two pigments on energy transfer. Moreover, our realistic two-
dimensional configuration space of the vibrational coordinates

allowed us to follow the motion of the vibronic wavepacket in
the excited state.

The results showed that the system exhibited strong mixing
of the vibrational and electronic states, leading to vibronic

states. The resonance of the vibrational frequency with the
energy gap then resulted in significant delocalization of the vi-

bronic wavefunctions between the two pigments. This caused
fast leaking of the vibrational wavepacket in the excited state

through the intersection between the excited-state PESs. The

overall energy transfer between the sites was then faster than
that in the off-resonant case. We investigated this effect and

found that it persisted over a broad range of physically rele-
vant parameters. The resonance minima were not very sharp,

so the mechanism would also work in energetically disordered
systems, such as natural photosynthetic pigment–protein com-
plexes.

Furthermore, we tested the effect of the mentioned reso-
nance on the evolution of dynamic coherences, which is, in
principle, directly experimentally observable by 2DES. We pre-
sented evidence that, although in the off-resonant case only vi-

brational coherences can be long-lived, in the resonant case
mixed coherences can also have a long lifetime. The observed

presence of long-lived coherences, which are not of a purely

vibrational origin, then acts as a signature of a resonance of
typically intrapigment vibrations with electronic energy levels.
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