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Abstract: In some instances, when chemicals bind to proteins, they have the potential to induce a
conformational change in the macromolecule that may misfold in such a way that makes it similar to
the various target sites or act as a neoantigen without conformational change. Cross-reactivity then can
occur if epitopes of the protein share surface topology to similar binding sites. Alteration of peptides
that share topological equivalence with alternating side chains can lead to the formation of binding
surfaces that may mimic the antigenic structure of a variant peptide or protein. We investigated
how antibodies made against thyroid target sites may bind to various chemical–albumin compounds
where binding of the chemical has induced human serum albumin (HSA) misfolding. We found
that specific monoclonal or polyclonal antibodies developed against thyroid-stimulating hormone
(TSH) receptor, 5′-deiodinase, thyroid peroxidase, thyroglobulin, thyroxine-binding globulin (TBG),
thyroxine (T4), and triiodothyronine (T3) bound to various chemical HSA compounds. Our study
identified a new mechanism through which chemicals bound to circulating serum proteins lead to
structural protein misfolding that creates neoantigens, resulting in the development of antibodies
that bind to key target proteins of the thyroid axis through protein misfolding. For demonstration
of specificity of thyroid antibody binding to various haptenic chemicals bound to HSA, both serial
dilution and inhibition studies were performed and proportioned to the dilution. A significant decline
in these reactions was observed. This laboratory analysis of immune reactivity between thyroid target
sites and chemicals bound to HSA antibodies identifies a new mechanism by which chemicals can
disrupt thyroid function.
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1. Introduction

Immunological cross-reactivity is expressed when antibodies with similar amino acid homology
or similar antibody surface topology bind to the same binding site [1,2]. The interactions of multiple
antigenic antibodies with the same binding site are known as cross-reactivity [3]. Cross-reactivity of
various antigens with self-tissue proteins can induce tissue-specific autoimmune diseases in susceptible
subjects [1,2]. These molecular interactions with the antigen–antibody binding sites can occur from
a diverse list of antigen-promoted antibodies [4]. Cross-reactive antibodies from various infections
have been found to play a role in autoimmune thyroid disease and thyroid metabolism dysfunction
by binding to multiple target sites of the thyroid axis via cross-reactivity [5–14]. Furthermore, many
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antibody binding sites are polyfunctional and can accommodate more than one antigenic epitope and
play a role in autoimmune disease [15]. Cross-reactive interactions with various target sites of the
thyroid axis may also lead to thyroid metabolism disruption.

Reactivity of antibodies with chemicals bound to proteins has the potential to play a cross-reactive
role in autoimmune thyroid disease and thyroid metabolism disruption. In addition, the binding of
chemicals to self-proteins such as albumin, globulin, or hemoglobin leads to protein misfolding and
induces a conformational change in the macromolecule. The alteration of protein topography leads
to the binding of the antibody to the protein in the target sites [16,17]. Chemical molecules can bind
directly or indirectly to circulating proteins after hepatic or extrahepatic conversion from prohapten to
haptens, generating hapten–protein adducts. This leads to neoantigen formation, resulting in systemic
T-cell or antibody immune responses against the haptens and self-proteins [16,18].

Conjugation of chemicals bound to human serum albumin (HSA) is found with blood samples of
healthy human blood donors. In a study we published of 400 subjects, between 8–22% of individuals
exhibited elevated levels of commonly exposed chemicals bound to human serum albumin [19].
Further research identified that these chemicals conjugated to HSA are associated with antibodies
to neurological tissue involved in multiple sclerosis [20]. We also determined that elevated levels
of bisphenol-A bound to HSA significantly increases the risk for Parkinson’s disease and correlates
with alpha-synuclein antibodies [21]. Studies on thyroid cross-reactivity have focused primarily on
pathogens and dietary proteins [22,23]. The study of chemical cross-reactivity and thyroid disruption
has not been thoroughly investigated.

In this laboratory study, we evaluated the potential for anti-thyroid axis antibodies to bind to
various chemical–albumin complexes that have chemically-induced human serum albumin (HSA)
misfolding; this misfolding leads such compounds to act immunologically similarly to thyroid target
site antigens such as thyroid-stimulating hormone (TSH) receptor, 5′-deiodinase, thyroid peroxidase,
thyroglobulin, thyroxine-binding globulin (TBG), thyroxine (T4), triiodothyronine (T3), and various
chemicals bound to albumin.

Cross-reactivity between chemically-induced misfolded HSA with the various target sites of the
thyroid axis may play a role in the pathophysiology of thyroid autoimmunity. This could impact
various aspects of thyroid metabolism, which could interfere with the proper dosage of thyroid
hormones, impair thyroid peripheral metabolism, disrupt thyroid feedback loops, and alter thyroid
hormone transport. We evaluated the immune reactivity of chemicals bound to human albumin,
including chemical compounds found in plastic products, foams, cosmetics, upholstery, dry cleaning
agents, fire retardants, metal products, and chemicals commonly found in water and soil contamination.
In this study, we investigate whether chemicals bound to human serum albumin can develop into
neoantigens that cross-react with thyroid axis sites.

2. Results

2.1. Results of ELISA

Eleven chemicals bound to HSA and eleven chemicals in native form (unconjugated) were tested with
seven target tissue antibodies leading to 84 antigen–antibody OD measurements using ELISA methods.
The enzyme protein disulfide isomerase (PDI) was also tested with seven target tissue antibodies suing
ELISA. The OD range for all of the chemicals bound to HSA was 0.1–2.02. The mean OD was 0.46, with
a standard deviation of 0.45. The OD of 0.91 represented one standard deviation from the mean of all
chemicals measured that were bound to HSA. The OD of 1.35 represented two standard deviations from
the mean of all chemicals measured that were bound to HSA. The OD of 1.81 represented three standard
deviations from the mean of all chemicals measured that were bound to HSA. Additionally, control studies
were conducted for each of the seven tissue antibodies with OD measurements that were all found to
be less than 0.2. Significant OD measurements were defined as those measurements that were above



Int. J. Mol. Sci. 2020, 21, 7324 3 of 15

the control OD and at least 1 standard deviation from the mean of all single measurements of the 84
antigen–antibody ODs. These findings are illustrated as red bars in Figures 1–4.

Figure 1. Reaction of thyroid-stimulating hormone receptor polyclonal antibodies with different
chemicals bound to human serum albumin. The antigens in red represent optical density (OD) levels
that are above the control and also 1 standard deviation above the mean of all 84 single measurements of
chemicals bound to human serum albumin (HSA). The antigens in blue are less than 1 standard deviation
above the mean. The control is in green. Afla-HSA = aflatoxin-HSA; Formal-HSA = formaldehyde-HSA;
Iso-HSA = isocyanates-HSA; TPA-HSA = trimellitic + phthalic anhydride-HSA; 2,4-Din-HSA =

2,4-dinitrophenol-HSA; PDI = protein disulfide isomerase; BPA-HSA = bisphenol-A-HSA; T-BPA-HSA
= tetrabromobisphenol-A-HSA; T-ethyl-HSA = tetrachloroethylene-HSA; Merc-HSA = mercury-HSA;
Para-HSA = parabens-HSA; Hvy Mtls-HSA = heavy metal composite-HSA.

Figure 2. Reaction of thyroxine deiodinase polyclonal antibodies with different chemicals bound
to human serum albumin. The antigens in red represent OD levels that are above the control and
also 1 standard deviation above the mean of all 84 single measurements of chemicals bound to
HSA. The antigens in blue are less than 1 standard deviation above the mean. The control is in green.
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Afla-HSA = aflatoxin-HSA; Formal-HSA = formaldehyde-HSA; Iso-HSA = isocyanates-HSA; TPA-HSA
= trimellitic + phthalic anhydride-HSA; 2,4-Din-HSA = 2,4-dinitrophenol-HSA; PDI = protein disulfide
isomerase; BPA-HSA = bisphenol-A-HSA; T-BPA-HSA = tetrabromobisphenol-A-HSA; T-ethyl-HSA =

tetrachloroethylene-HSA; Merc-HSA = mercury-HSA; Para-HSA = parabens-HSA; Hvy Mtls-HSA =

heavy metal composite-HSA.

Figure 3. Reaction of monoclonal triiodothyronine antibodies with different chemicals bound to
human serum albumin. The antigens in red represent OD levels that are above the control and also
1 standard deviation above the mean of all 84 single measurements of chemicals bound to HSA.
The antigens in blue are less than 1 standard deviation above the mean. The control is in green.
Afla-HSA = aflatoxin-HSA; Formal-HSA = formaldehyde-HSA; Iso-HSA = isocyanates-HSA; TPA-HSA
= trimellitic + phthalic anhydride-HSA; 2,4-Din-HSA = 2,4-dinitrophenol-HSA; PDI = protein disulfide
isomerase; BPA-HSA = bisphenol-A-HSA; T-BPA-HSA = tetrabromobisphenol-A-HSA; T-ethyl-HSA =

tetrachloroethylene-HSA; Merc-HSA = mercury-HSA; Para-HSA = parabens-HSA; Hvy Mtls-HSA =

heavy metal composite-HSA.

Immunological reactivity using monoclonal and polyclonal antibodies made against thyroid
target antigens showed various degrees of reaction (Figures 1–4). We identified immune reactivity
with thyroid-stimulating hormone receptor (TSH-R). The control wells coated with HSA, BSA, or
hemoglobulin were less than 0.2 OD. The OD for formaldehyde-HSA (F-HSA) was 0.47. Aflatoxin
bound to albumin OD was 0.9 (1+), and isocyanate bound to albumin OD was 1.3 (2+). The reactions
with TSH-R for nine other chemicals were less than 0.2, which is equivalent to the control wells
(Figure 1).

Immune reactivity was identified with thyroxine deiodinase antibody with all tested chemicals,
with ODs ranging from 0.4 OD for T-BPA-HSA to 0.7 OD for TPA-HSA in comparison to control.
The OD for aflatoxin bound to albumin was 1.1 (1+) and formaldehyde bound to albumin was 0.95
(1+), which were more significant (Figure 2).

Immune reactivity with T3 for all tested chemicals was above the control OD (0.2) and ranged
from 0.78 for TPA-HSA to 2.0 for parabens-HSA. Specifically, the OD for aflatoxin bound to albumin
was 1.6 (2+), formaldehyde bound to albumin OD was 1.3 (1+), isocyanate bound to albumin OD was
1.0 (1+), 2,4-dinitrophenol bound to albumin OD was 0.7 (1+), protein disulfide isomerase OD was 2.1
(3+), bisphenol-A OD was 1.3 (1+), TBBTA bound to albumin OD was 1.3 (2+), tetrachloroethylene
bound to albumin OD was 1.5 (1+), mercury bound to albumin OD was 1.0 (1+), parabens bound to
albumin OD was 2.0 (3+), and heavy metal composite bound to albumin (2+) OD was 1.7 (Figure 3).
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Figure 4. Reaction of thyroglobulin monoclonal antibodies with different chemicals bound to human
serum albumin. The antigens in red represent OD levels that are above the control and also 1
standard deviation above the mean of all 84 single measurements of chemicals bound to HSA.
The antigens in blue are less than 1 standard deviation above the mean. The control is in green.
Afla-HSA = aflatoxin-HSA; Formal-HSA = formaldehyde-HSA; Iso-HSA = isocyanates-HSA; TPA-HSA
= trimellitic + phthalic anhydride-HSA; 2,4-Din-HSA = 2,4-dinitrophenol-HSA; PDI = protein disulfide
isomerase; BPA-HSA = bisphenol-A-HSA; T-BPA-HSA = tetrabromobisphenol-A-HSA; T-ethyl-HSA =

tetrachloroethylene-HSA; Merc-HSA = mercury-HSA; Para-HSA = parabens-HSA; Hvy Mtls-HSA =

heavy metal composite-HSA.

Immunological reactivity with thyroglobulin antibody only identified a reaction with aflatoxin
bound to albumin with a significant OD of 1.5 (2+). The other 11 chemicals did not demonstrate a
significant reaction compared to the control (Figure 4).

Immunological reactivity between thyroid peroxidase (TPO), TBG, and T4 antibodies resulted in
ODs that were not significant and below 0.5. There was a borderline reaction between TPO antibody
and formaldehyde-HSA with an OD of 0.46. The ODs for TPO for the other 11 reactions were much
lower and comparable to the control OD.

2.2. Demonstration of Analytical Specificity of Thyroid Antibodies Binding to Different Haptenic Chemicals
to HSA

The analytical specificity of these polyclonal and monoclonal antibodies binding to haptenic
chemicals bound to HSA was confirmed by serial dilation and inhibition studies.

Figures 5 and 6 show the binding of different serially diluted antibodies made against thyroid
antibodies to different haptenic chemicals bound to HSA. In proportion to the dilutions, there was a
significant decline in the ODs that were observed when the reaction of thyroid antibody to haptenic
chemical bound to HSA was high. For example, thyrotropin receptor (TSH-R) antibody binding
to isocyanate-HSA at the dilution of 1:100 resulted in OD of 2.5, 1:200 resulted in OD of 1.5, 1:800
resulted in OD of 0.6, and 1:1200 resulted in OD less than 0.2 (Figure 5). Thyroglobulin antibodies to
aflatoxin-HSA at a dilution of 1:100 resulted in OD of 2.6, 1:200 resulted in OD of 2.1, 1:800 resulted in
OD of 0.8, and 1:1200 resulted in OD of less than 0.3 (Figure 6).
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Figure 5. Reaction of different dilutions of thyroid antibodies with the same concentration of haptenic
chemical-coated plates. Note that in proportion to the antibody dilution, a significant decline in the
reaction of the antibodies to the haptenic chemicals was observed. � = thyroid-stimulating hormone
receptor (TSH-R) antibody to isocyanate-HSA; � = TSH-R antibody to aflatoxin-HSA; N = TSH-R
antibody to formaldehyde-HSA; # = thyroxine deiodinase antibody to aflatoxin-HSA; � = thyroxine
deiodinase antibody to formaldehyde-HSA.

Figure 6. Reaction of different dilutions of thyroid antibodies with the same concentration of haptenic
chemical-coated plates. Note that in proportion to the antibody dilution, a significant decline in the
reaction of the antibodies to the haptenic chemicals was observed. � = triiodothyronine antibody to
protein disulfide isomerase (PDI);� = triiodothyronine antibody to parabens-HSA;N = triiodothyronine
antibody to aflatoxin-HSA; # = thyroglobulin antibody to aflatoxin-HSA; � = thyroid peroxidase
antibody to formaldehyde-HSA.

Inhibition studies conducted with all native chemicals as well as with HSA alone demonstrated
no ability to inhibit any of the thyroid antibodies. Inhibition of thyroid antibodies was only found with
haptens complexed with HSA. Figures 7–10 demonstrate inhibition of thyroid antibodies binding to
haptenic chemical-coated plates by different concentrations of the haptenic chemicals. For example, for
TSH-R antibody to isocyanate-HSA antibody, the addition of 2 µg/mL of isocyanate-HSA resulted in
0% inhibition of anti-TSH-R antibody to isocyanate-HSA-coated plates. However, the addition of 4, 16,
or 64 µg/mL of isocyanate-HSA to the liquid phase of ELISA resulted in 15, 46, or 76% inhibition of
this antibody–antigen reaction, respectively (Figure 7). Similar inhibition of binding was observed
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when aflatoxin was added to the reaction, but not with BPA bound to HSA or with 2,4-Din-HSA for
TSH-R antibodies. These findings further support the specificity of aflatoxin-HSA and isocyanate-HSA
binding to TSH-R, as shown in Figure 1.

Figure 7. Binding of thyroid-stimulating hormone receptor antibody to isocyanate-HSA in the absence
or presence of isocyanate aflatoxin, BPA-HSA, and 2,4-Din-HSA in concentrations of 0, 2, 4, 8, 16, 32, 64,
and 128 µg/mL. � = Isocyanate; � = aflatoxin-HSA; N = BPA-HSA; • = DNP-HSA.

Figure 8. Binding of thyroxine deiodinase antibody to aflatoxin-HSA in the absence or presence of
aflatoxin-HSA, formaldehyde-HSA, and parabens-HSA in concentrations of 0, 2, 4, 8, 16, 32, 64, and
128 µg/mL. � = Aflatoxin-HSA; � = formaldehyde-HSA; N = parabens-HSA.
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Figure 9. Binding of triiodothyronine antibody to parabens-HSA in the absence or presence of
parabens-HSA, aflatoxin-HSA, formaldehyde-HSA, T-BPA-HSA, and TPA-HSA in concentrations of 0,
2, 4, 8, 16, 32, 64, and 128 µg/mL. � = Parabens-HSA, # = aflatoxin-HSA; � = formaldehyde-HSA; N =

T-BPA-HSA; • = TPA-HSA.

Figure 10. Binding of thyroglobulin antibody to aflatoxin-HSA in the absence or presence of
aflatoxin-HSA, formaldehyde-HSA, BPA-HSA, and parabens-HSA in concentrations of 0, 2, 4, 8, 16, 32,
64, and 128 µg/mL. � = Aflatoxin-HSA; � = formaldehyde-HSA; N = BPA-HSA; • = parabens-HSA.

Furthermore, comparing the inhibition of antibody binding of thyroxine deiodinase after the
addition of a high concentration of aflatoxin bound to HSA and formaldehyde bound to HSA resulted
in significant inhibition of these antibody–antigen reactions. The addition of parabens bound to HSA in
the liquid phase caused minimum inhibition of the T4 antibodies to the paraben-bound-to-HSA-coated
plates as shown in Figure 8. These findings further support the specificity of aflatoxin-HSA and
formaldehyde-HSA to thyroxine deiodinase, as shown in Figure 2.

In Figures 9 and 10, similar results were obtained only when haptenic chemicals bound to HSA
reacted strongly with a particular thyroid antibody; when the same chemical was added to the liquid
phase of the ELISA, it resulted in significant inhibition. Furthermore, when the reaction of thyroid
antibody resulted in low ODs with specific haptenic chemicals bound to HSA, even high concentrations
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of the same chemical added to the liquid phase did not cause inhibition in the antibody–antigen
reaction (Figure 11).

Figure 11. Binding of thyroid peroxidase antibody to formaldehyde-HSA in the absence or presence of
formaldehyde-HSA, isocyanate-HSA, BPA-HSA, and mercury-HSA in concentrations of 0, 2, 4, 8, 16, 32,
64, and 128 µg/mL. � = Formaldehyde-HSA; � = isocyanate-HSA; N = BPA-HSA; • = mercury-HSA.

3. Discussion

Our study’s goal was to investigate whether chemicals bound to human serum albumin can
develop into neoantigens that cross-react with thyroid axis sites. Our study found that antibodies
made against TSH-R, DIO2, thyroglobulin, and T3 interact with chemicals bound to HSA (Figures 1–4).
Previous models of how chemicals play a role in disrupting thyroid metabolism include binding of
the chemicals with nuclear hormone receptors, orphan and neurotransmitter receptors, and direct
chemical alteration of enzymatic pathways [24]. Our study identified a new mechanism through which
chemicals bound to albumin lead to structural protein misfolding, which creates neoantigens that
lead to the development of antibodies that bind to key target proteins of the thyroid axis through
cross-reactivity. The outcomes of this study may serve to fill a knowledge gap related to the way
chemicals may influence thyroid function through a novel pathway that has not yet been identified in
the thyroid literature to the best of our knowledge.

As chemicals bind to proteins and induce a conformational change in the macromolecule, there
is the potential to create new structures that may react with various target sites of antibodies [16].
Cross-reactivity can occur if epitopes of the protein share surface topology to similar binding sites [17].
Alterations of peptides that share topological equivalence of alternating side chains can lead to
the formation of binding surfaces that can mimic the antigenic structure of a variant peptide [25].
In addition to peptide similarity with models of cross-reactivity, it is now clear that binding sites
are polyfunctional and can accommodate more than one antigenic epitope [26]. The cross-reactive
binding of specific epitopes with thyroid axis target sites may explain a previously uninvestigated
mechanism of the way chemicals may interfere with thyroid hormone metabolism, interfere with
thyroid medication dosage, or potentially promote autoimmune reactivity.

In our study, several chemicals bound to albumin exhibited specific cross-reactivity with T3.
These chemicals included aflatoxins, formaldehyde, isocyanate, 2,4-dinitrophenol, protein disulfide
isomerase, BPA, and TBBPA. The structural similarity between them may explain their roles as both
thyromimetics and immunological cross-reactive target proteins. The structure of thyromimetics is
based on those of endogenous thyroid hormones, which consist of a biaryl ether skeleton substituted
with iodine, alpha-alanine moiety, and a hydroxyl group at two 2,4-dinitrophenol rings [27].
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Interestingly, our study found that antibodies made against T3 reacted with several chemicals,
but antibodies made against T4 did not. Although T3 and T4 have some structural similarity, there are
significant biochemical structural differences between them. When differentiated from T3, there are
two conformations that are independent with T4 in the outer phenyl ring structure and independent
conformations in the crystal lattice. The significant distinctions between T3 and T4 structures are
condensed C4’-O4’ bond contraction of the C3’-C4’-C5’ angle and an enlargement in the C3’ and carbon
C5’ angles of T4 [24]. These differences may explain why antibodies made against T3 but not against T4
reacted with chemicals bound to HSA. Due to the fact that T3 has structural similarity to thyromimetics,
such as BPA and TBBPA, it is possible that the cross-reactivity with T3 antibodies occurred unrelated to
protein misfolding of these secondary epitopes with HSA. However, our specificity studies found no
inhibition of T3 antibodies with native adjunct alone. Therefore, we propose that despite T3 structural
similarity with various chemicals, the production of secondary epitopes was responsible for our
findings of cross-reactivity. This chemical–protein adduct cross-reactivity with T3 may impact thyroid
medication dosage and impact thyroid metabolism by interfering with T3 directly in the periphery.

Our investigation found immune reactivity between BPA and antibody to T3. This may suggest
that immune reactivity to compounds in plastic products impacts circulating T3 levels and thyroid
autoimmunity. BPA and T3 possess such a high degree of molecular structure similarity that BPA may act
as an antagonist compound on T3 receptor sites [28]. In particular, hydrocarbon rings found both on BPA
and T3 with anchor ring-like similarities may induce immune reactivity [29–32]. When compounds have
structural similarity, it may potentially lead to immune reactivity with the formation of antigen–antibody
complexes, which then may result in inflammation and autoimmunity [33]. The potential for BPA to
induce thyroid autoimmunity due to immune reactivity has been previously reported [34]. In our
study, we found that antibodies formed against BPA bound to HSA may play a role in cross-reactivity
with T3, leading to potential thyroid metabolism disruption.

Additionally, we identified cross-reactivity between anti-T3 antibody and the enzyme PDI. PDI
directly acts to catalyze protein folding and the multimerization of thyroglobulin in the follicular
lumen of the thyroid gland [35,36]. PDI also has a role in the biosynthesis of T3 by inactivating type 2
iodothyronine 5′-deiodinase involved with converting T4 into bioactive T3 [36–39]. BPA binds to PDI,
which is located throughout the body and potentially accountable for the diverse list of physiological
influences of BPA due to enzyme function disruption [39]. Therefore, demonstration of cross-reactivity
between T3 and PDI may explain how the binding of BPA to PDI could be another mechanism of
interference with thyroid function, due to cross-reactivity, as we identified in our study.

TBBPA is a fire-retardant compound. Our study found that when TBBPA binds to HSA it forms
a conformational change in the peptide that exhibits cross-reactivity reactions with T3. It should be
noted that TBBPA has already been found to share structural similarity to thyroid hormones and can
interfere with thyroid hormone physiology [40]. This structural similarity between TBBPA and T3
not only allows it to compete with thyroid receptor sites, but also allows for potential immunological
cross-reactivity, as identified in our study.

We identified cross-reactivity between T3 and 2,4-dinitrophenol bound to HSA. Research shows
2,4-dinitrophenol has structural similarity to thyroid hormones and hence has an affinity to bind to
thyroid transport proteins [41]. Exposure to 2,4-dinitrophenol has been reported to induce thyroid
insufficiency. The immunological mechanisms of cross-reactivity that we identified in our study between
2,4-dinitrophenol bound to HSA and T3 may explain the mechanism behind thyroid metabolism
disruption that is reported in the literature [42,43].

Our study also identified cross-reactivity between TSH-R and T3 with isocyanates-HSA. Several
studies have demonstrated that isocyanates have the potential to disrupt thyroid metabolism [44–46].
It is possible that the structural similarity of isocyanates to T3 leads to its acting as an endocrine
disruptor and to its playing a potential cross-reactive role, which is identified in our study with TSH-R
and T3. A similar mechanism of structural similarity between formaldehyde and T3 may occur, as our
study identified cross-reactivity between formaldehyde-HSA and both T3 and thyroxine 5-deiodinase.
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These immunological reactions may explain the findings of an animal study in which formaldehyde
exposure altered thyroid function and reduced circulating T3 levels [47].

Immunological reactivity was identified between formaldehyde-HSA with thyroxine 5-deiodinase
and T3. In a small animal study, rats exposed to formaldehyde showed alterations in thyroid function
and reduced T3 levels [43]. The reaction between antibodies to T3, thyroxine 5-deiodinase, and
formaldehyde bound to HSA suggests this immunological reactivity has the potential to interfere with
circulating T3 levels and thyroid conversion of T4 and T3.

The specificity of these thyroid antibodies to haptenic chemicals binding to HSA was shown by
serial dilution of the antibodies added to the chemicals bound to HSA in the solid phase, and by the
addition of different concentrations of haptenic chemicals in the liquid phase and examining decline in
the ODs that are proportioned to the concentrations. A key question to ask in our study is whether the
chemical adduct itself or the modifying effect of the chemical adduct bound to human serum albumin
had the ability the inhibit the binding of antibodies. In our laboratory study, we found no inhibition
of antibody binding to the chemicals alone. Inhibition only occurred with the adduct formed by the
HSA complexed with chemicals. Furthermore, we found that even high concentrations of chemicals
bound to HSA did not inhibit the reactions when the optical density was at least in the range of 0.7
(Figure 11). These findings shows that there is some degree of non-specific reaction between thyroid
antibodies and chemicals bound to HSA; otherwise, the addition of chemicals in the liquid phase
should have inhibited these antigen–antibody reactions. These findings provide support that it is
the complexed chemicals and HSA that is specifically reacting to thyroid antibodies and not native
chemicals. Dose-responsive curves of these studies are shown in Figures 7–11, and these findings
support the specificity of our thyroid binding of haptenic chemicals to HSA as shown in Figures 1–4.

4. Materials and Methods

4.1. Polyclonal and Monoclonal Antibodies

We purchased mouse monoclonal antibody to TBG with purified human TBG as the immunogen,
mouse monoclonal antibody thyroglobulin that was raised in mouse using human thyroglobulin as
the immunogen, mouse monoclonal antibody thyroxine that was raised in mouse using thyroxine
(T4)–bovine serum albumin (BSA) as the immunogen, mouse monoclonal triiodothyronine antibody
that was raised in mouse using triiodothyronine BSA as the immunogen, and mouse monoclonal thyroid
peroxidase antibody that was raised in mouse using human thyroid peroxidase as the immunogen
from MyBioSource Inc. (San Diego, CA, USA).

Additionally, we purchased affinity-purified goat polyclonal thyroxine 5-deiodinase (DIO2)
antibody with peptide sequence EVKKHQNQEDRC from the internal region of the protein sequence
as the immunogen, affinity-purified antibody to rabbit polyclonal TSH receptor with synthetic peptide
directed towards the C terminal region of human TSH receptor as the immunogen, and affinity-purified
mouse monoclonal thyroid-stimulating hormone that used TSH from human pituitary gland as the
immunogen from Sigma Aldrich (St. Louis, MO, USA).

4.2. Proteins and Chemicals

In this investigation, we followed the methods of chemical binding to proteins from our previous
publication, in which we ascertained elevated levels of antibodies against xenobiotics in a subgroup of
healthy subjects [19]. In that study, we identified antibodies to the same chemical haptens in about 20%
of tested individuals. For this study, we used the same binding methods.

We purchased the HSA, BSA, hemoglobin, formaldehyde, tolylene-2.4-diisocyanate, trimellitic
anhydride, p-amino benzoic acid, bisphenol-A (BPA), tetrabromobisphenol-A (TBBPA), isopropyl
benzoic acid, cyanoethyl benzoic acid, propyl 4-hydroxybenzoic acid, permethrin, mercury chloride,
nickel sulfate, cobalt acetate, cadmium chloride, lead acetate, and arsenic oxide from Sigma Aldrich
(St. Louis, MO, USA).
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4.3. Preparation of Chemicals Bound to HSA

Because HSA is found in most human body tissues, and copious amounts exist in serum, we
selected it as our model protein. HSA has a well-defined monomeric and three-dimensional structure.
Additionally, in vivo studies by Chipinda et al. [25] reported that HSA is a target of hapten binding.
We prepared formaldehyde-human serum albumin (Formal-HSA) using the method published by Plan
et al. [26]. We used a similar method as published by Pezzini et al. [27]. The preparation of trimellitic
+ phthalic anhydride-human serum albumin (TPA-HSA) was developed by the method published
by Plan et al. [26] to filter the mixture and keep it at −20 ◦C. The preparation of 2,4-dinitrophenol
ring-HSA (Din-HSA), BPA-human serum albumin (BPA-HSA), tetrabromobisphenol-A-human serum
albumin (T-BPA-HSA), tetrachlorothylene-human serum albumin (T-ethyl-HSA), parabens-human
serum albumin (Para-HSA), mercury-human serum albumin (Merc-HSA), and heavy metals-human
serum albumin (Hvy mtls-HSA) conjugate was achieved through methods described by Vojdani et
al. [19]. These methods have confirmed conjugation of haptenic chemicals by gel electrophoresis and
spectrographic analyses.

4.4. Demonstration of Anti-Thyroid Antibody Binding to Various Chemicals Bound to HSA Using ELISA

HSA or chemical bound to HSA at a concentration of 1.0 mg/mL−1 was diluted 1:100 in 0.1 M
phosphate buffer saline (PBS) with a pH of 7.4. We added 100 µL of the chemical bound to HSA to
different wells of microtiter ELISA plates. The plates coated with antigens were incubated overnight and
then washed with 200 µL of PBS containing a pH of 7.4. Non-specific binding of antibodies was prevented
by adding 2% BSA in PBS and then incubating overnight at 4 ◦C. The plates were washed again, and then
monoclonal and polyclonal antibodies were added to the wells at an optimal dilution of 1:300 in 0.1 M
PBS Tween containing 2% BSA and incubated for 1 h at room temperature. The plates were washed, and
then secondary antibodies or goat anti-rabbit or anti-mouse IgG F(ab’)2 fragments (KPI, Gaithersburg,
MS, USA) were added to each well at an optimal dilution of 1:200–1:1000 in 2% BSA-TBS were added
to each well. The plates then were incubated for an additional 1 h at room temperature and washed
with PBS-Tween buffer four times. The enzymatic response was started by adding 100 µL of substrate in
diethanolamine buffer 1 mg/mL−1 at a pH 9.8. Using a microtiter reader, the optical densities (ODs) were
read at 405 nm. For demonstration of non-specific binding of antibody to the plate coated with antigens,
we used several control wells that were coated with HSA, BSA, or hemoglobulin by itself, followed
by all other reagents. We measured one antibody to each individual thyroid axis component. Mouse
monoclonal antibodies to TBG, thyroglobulin, T4, T3, thyroid peroxidase (TPO), goat polyclonal antibodies
to DIO2, rabbit polyclonal antibodies to TSH receptor, and mouse monoclonal antibodies to TSH were
used against 11 chemicals bound to HSA adducts and the enzyme protein disulfide isomerase (PDI) was
used in ELISA analyses. The chemicals were all bound to HSA and included aflatoxin bound to human
serum albumin (Afla-HSA), formaldehyde bound to human serum albumin (Formal-HSA), isocyanates
bound to human serum albumin (Iso-HSA), trimellitic + phthalic anhydride bound to human serum
albumin (TPA-HSA), 2,4-dinitrophenol bound to human serum albumin (2,4-Din-HSA), bisphenol-A
bound to human serum albumin (BPA-HSA), tetrabromobisphenol-A bound to human serum albumin
(T-BPA-HSA), tetrachlorothylene bound to human serum albumin (T-ethyl-HSA), mercury bound to
human serum albumin (Merc-HSA), parabens bound to human serum albumin (Para-HSA), heavy metals
bound to human serum albumin (Hvy mtls-HSA).

4.5. Binding of Serially Diluted Anti-Thyroid Antibodies with Different Haptenic Chemicals Bound to HSA

For demonstrating the specificity of anti-thyroid antibodies binding to different chemicals bound
to HSA, 10 different strips of microtiter plate coated with fixed concentrations of chemicals–HSA
were exposed to serially diluted different thyroid antibodies. The final concentration for each
of the anti-thyroid-stimulating hormone receptor, anti-thyroxine deiodinase, anti-triiodothyronine,
anti-thyroglobulin, and thyroid peroxidase antibodies ranged from 10 µ/mL to as low as 0.075 µ/mL.
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After proper incubation washing and addition of secondary antibody, plus completion of all other
steps, the ODs were recorded at 405 nm.

4.6. Inhibition of Anti-Thyroid Antibodies Binding to Different Haptenic Chemicals Bound to HSA-Coated
Plates with the Same Haptenic Chemicals in Liquid Phase

Two different rows of microtiter plates coated with different haptenic chemicals, 50 µL serially
diluted with the same haptenic chemical concentration of 0, 2, 4, 8, 16, 32, 64, and 128 µg/mL, were
added to different wells of microtiter plate and immediately the same concentration of different thyroid
antibodies was added to these series of 8-well strips of microtiter plates. After shaking, incubation,
and washing, secondary antibodies were added and incubated again. Following repeated washing
and the addition of substrate, the color development was measured and ODs were recorded at 405 nm.
These analyses were also conducted with the chemicals that were not complexed with HSA, as well as
with HSA alone.

5. Conclusions

We propose that chemicals can bind to proteins in serum and lead to the development of new
epitopes. These epitopes can lead to cross-reactive interactions with various target sites of the thyroid
axis and the formation of antibodies that potentially generate immunological reactivity with various
target sites of the thyroid axis, and which may promote autoimmune thyroid reactivity. The results
of our study provide new insights into how hapten–protein adducts can develop into neoantigens
that may lead to immunological interactions with various target proteins of the thyroid axis due to
cross-reactivity and potentially cause thyroid metabolism disruption. Further research evolving into
animal and human models would be necessary to investigate the exact clinical role of these interactions.
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