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Abstract: Diabetes mellitus (DM) poses a major health problem, for which there is an unmet need
to develop novel drugs. The application of in silico techniques and optimization algorithms is
instrumental to achieving this goal. A set of 97 approved anti-diabetic drugs, representing the
active domain, and a set of 2892 natural products, representing the inactive domain, were used to
construct predictive models and to index anti-diabetic bioactivity. Our recently-developed approach
of ‘iterative stochastic elimination’ was utilized. This article describes a highly discriminative and
robust model, with an area under the curve above 0.96. Using the indexing model and a mix ratio of
1:1000 (active/inactive), 65% of the anti-diabetic drugs in the sample were captured in the top 1% of
the screened compounds, compared to 1% in the random model. Some of the natural products that
scored highly as potential anti-diabetic drug candidates are disclosed. One of those natural products
is caffeine, which is noted in the scientific literature as having the capability to decrease blood glucose
levels. The other nine phytochemicals await evaluation in a wet lab for their anti-diabetic activity.
The indexing model proposed herein is useful for the virtual screening of large chemical databases
and for the construction of anti-diabetes focused libraries.

Keywords: diabetes mellitus; anti-diabetic drugs; drugs analysis; ligand-based screening approach;
bioactivity index

1. Introduction

Diabetes mellitus, an expanding pandemic worldwide, is expected [1,2] to affect more than 640
million individuals by 2040 [3]. Diabetes mellitus type 2 (T2DM), one of three types of diabetes [1,4],
accounts for more than 90% of all cases now diagnosed at any age, even in children [5]. T2DM
is characterized by gradually progressive insulin resistance in various body tissues (liver, muscle
and adipose), or failure in islet β-cells, or both [6–8], leading to the development of chronic
hyperglycemia [9,10]. In T2DM-affected individuals, other cardiovascular risk factors (hypertension,
dyslipidemia and obesity) are abundantly present [4,11–13]. If uncontrolled, T2DM leads to
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nephropathy, neuropathy, retinopathy, and amputations and poses a high risk of cardiovascular
and cerebro-vascular events [4,14–18]. Due to the multifactorial nature of T2DM, no single
anti-hyperglycemic agent can correct all abnormalities [10]. At this point in time, glucose control is the
major focus of the management of T2DM, along with the management of cardiovascular risk factors,
which includes reducing the duration of the disease, smoking cessation, the adoption of healthy lifestyle
habits, blood pressure control, lipid management, patient adherence and resources and, in some cases,
antiplatelet therapy [19–30]. The complexities of treatment entail enormous health, economic and
social burdens. In practice, soon after diagnosis, metformin ‘monotherapy’ or ‘dual therapy’ is
initiated, consisting of one of six treatment options: (1) sulfonylurea; (2) thiazolidinediones (TZD);
(3) dipeptidyl peptidase 4 inhibitors (DPP-4 inhibitor); (4) selective sodium glucose cotransporter 2
inhibitor (SGLT2 inhibitor); (5) glucagon-like peptide 1 receptor agonists (GLP-1 receptor agonist);
or (6) basal insulin. When the glycated hemoglobin (HbA1c) target is not achieved, ‘triple therapy’
combinations that do not include metformin may also be considered [19]. However, there is a limited
potential with the use of any of the available drugs in patients with T2DM because balancing the
glucose-lowering efficacy, the side-effect profiles, the anticipation of additional benefits, cost and other
practical aspects of care is difficult. Moreover, data on the side effects of most of the possible drug
combinations are lacking. Hence, the quest for new compounds that can complement current therapies
for T2DM and its comorbidities is expanding [31,32]. Notably, natural products offer many potential
mechanisms of actions for improving glucose homeostasis, which could reduce and/or abolish diabetic
complications [32–34]. Since drug discovery and development involve time-consuming and expensive
processes, computer methodologies are utilized to shorten the time span of drug development and to
reduce costs, and in silico techniques may contribute to the identification of new lead compounds and
to the optimization of drugs in clinical use [35].

In efforts to detect novel bioactive ligands, ligand-based techniques, including properties-based
and pharmacophore-based tools, are being used more and more for modeling the bioactivity of
molecules and for the virtual screening of large chemical databases [35–38]. Ligand-based modeling
tools use optimization algorithms such as Monte Carlo simulations (MCs), simulated annealing
(SA) [39], genetic algorithms (Gas) [40], neural networks (NNs) [41], support vector machines
(SVM) [42], the k-nearest neighbor algorithm (kNN) [43,44], Bayesian classifiers and some combinations
thereof (Monte Carlo/ simulated annealing algorithm, MCSA) [45–49]. Distinguishing between active
and inactive ligands that are useful for treating a certain disease may be accomplished by using sets of
active and inactive chemicals and certain optimization techniques [50–52]. Such techniques presume
that bioactive ligands have common features that are not easily recognizable if only a small number
of bioactive ligands are tested. Therefore, if a database contains a larger number of active/inactive
ligands, drawing more significant and robust conclusions about the properties of these chemicals is
achievable. In addition, it is essential to include in the training set of inactive chemicals, chemicals
that cover the same property space as those in the screened chemical databases. In this way, analyses
of sets of active/inactive ligands may shed light on characteristics leading to the bioactivity of active
ligands. Due to the large number of descriptors taken into consideration during the modeling process,
special optimization techniques that can overcome the limitations of the combinatorial nature of the
problem of molecular bioactivity indexing are required. To address this, over the last decade, we have
developed a new optimization algorithm capable of scanning multi-dimensional space and detecting
the best solutions (finding the global minimum, as well as the set of local minima). Termed iterative
stochastic elimination (ISE), it has been applied to solving structure-based problems [53], as well as
ligand-based problems [54,55]. ISE uses an algorithm that can efficiently scan a multi-dimensional
space in order to detect the best set of solutions. It has been used to solve problems such as positioning
protons [56] and predicting side-chain conformations in proteins [57], scanning the conformational
space of loops [58], searching the conformational space of cyclic peptides [59] and loops, predicting
drug-likeness and indexing chemicals for their hERG liability [44,55].
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Here, we report on the use of the ISE algorithm to construct a model for indexing natural
products for their potential anti-diabetic activity and for mapping their discriminative physicochemical
properties. Anti-diabetic drugs may act through numerous mechanisms of action and bind with
different biological targets. However, as demonstrated by our previous experience [46], the proposed
filters-based indexing approach can deal effectively with such complex problems. For this study,
we have chosen to screen a database of natural products because they are secondary metabolites of
organisms, which means they have been optimized to interact with biological systems through a long
natural selection process [60–62], and thus, they serve as good drug candidates. It is worth noting
that anti-diabetic drug candidates are molecules that, according to the model, have a high chance of
exhibiting anti-diabetic activity, but they should be validated using in vivo methods in order to be
considered truly anti-diabetic.

2. Results and Discussion

2.1. Utilization of the Iterative Stochastic Elimination Algorithm for Indexing Natural Compounds for Their
Potential Anti-Diabetic Drug Likeness

In this study, we used the ISE algorithm to construct a model for indexing natural products for
their potential anti-diabetic activity and to map their discriminative physicochemical properties. For
the scanning, we used a set of 97 anti-diabetic drugs (presented in the simplified input line-entry
system (SMILES) format in the Supporting Information (Table S1)) to represent the active domain.
A database composed of 2892 natural products (which was prepared by collecting phytochemicals
isolated from more than 800 different plants and which is distributed worldwide and available for
purchase from AnalytiCon Discovery company, Postdam, Germany (www.ac-discovery.com)), sharing
intermolecular similarity values <0.9, was used to represent the inactive domain. It is worth noting
that the 2892 natural products are putative inactives and probably contain a few active chemicals.
In order to guarantee that our active/inactive classes would not be biased by similar structures, we
first checked for diversity among the 97 anti-diabetic drugs and the 2892 natural products and found
them to be very diverse (see Figure 1A,B).
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Figure 1. Diversity within anti-diabetic drugs (A) and diversity within the natural products database (B).

Optimal differentiation between the active and inactive chemicals was attained by searching in
multivariable space for the best sets of descriptors (‘variables’) and the best ranges for all descriptors in
each set, capable of distinguishing between actives and inactive chemicals. Since chemical descriptors
generally interact with each other, changes in the range of one descriptor could have an effect on the
best range of another descriptor, and the optimization process is obliged to take into consideration all
descriptors in the set at one time to attain the best set of filters. A flowchart of the modeling process is
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shown in Figure 2. For further details on applying ISE to obtain the best ranges for a set of descriptors
and for the optimization process, see our previously-reported studies [46,55].Molecules 2017, 22, 1563 4 of 14 

 

 

Figure 2. Flowchart for the ligand-based modeling process. ISE, iterative stochastic elimination; MCC, 
Matthews correlation coefficient. 

2.2. Mapping the Discriminative Physicochemical Properties Responsible for Anti-Diabetic Activity 

More than 65% of the anti-diabetic drugs had an intermolecular Tanimoto index of similarity 
<0.7. It is interesting to note that 89.7% of the anti-diabetic drugs obey Lipinski’s rule of five  
(ROF) [63], and 74.2% obey Oprea’s rule for lead-likeness [64] (see Figure 3). 

 
Figure 3. Violation distribution of anti-diabetic drugs for Lipinski’s rule of drug-likeness and Oprea’s 
rule for lead likeness. 

Figure 4 shows the distribution plots of the Lipinski and Oprea physico-chemical properties of 
the set of anti-diabetic drugs. 

Figure 2. Flowchart for the ligand-based modeling process. ISE, iterative stochastic elimination; MCC,
Matthews correlation coefficient.

2.2. Mapping the Discriminative Physicochemical Properties Responsible for Anti-Diabetic Activity

More than 65% of the anti-diabetic drugs had an intermolecular Tanimoto index of similarity <0.7.
It is interesting to note that 89.7% of the anti-diabetic drugs obey Lipinski’s rule of five (ROF) [63], and
74.2% obey Oprea’s rule for lead-likeness [64] (see Figure 3).

Molecules 2017, 22, 1563 4 of 14 

 

 

Figure 2. Flowchart for the ligand-based modeling process. ISE, iterative stochastic elimination; MCC, 
Matthews correlation coefficient. 

2.2. Mapping the Discriminative Physicochemical Properties Responsible for Anti-Diabetic Activity 

More than 65% of the anti-diabetic drugs had an intermolecular Tanimoto index of similarity 
<0.7. It is interesting to note that 89.7% of the anti-diabetic drugs obey Lipinski’s rule of five  
(ROF) [63], and 74.2% obey Oprea’s rule for lead-likeness [64] (see Figure 3). 

 
Figure 3. Violation distribution of anti-diabetic drugs for Lipinski’s rule of drug-likeness and Oprea’s 
rule for lead likeness. 

Figure 4 shows the distribution plots of the Lipinski and Oprea physico-chemical properties of 
the set of anti-diabetic drugs. 
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rule for lead likeness.

Figure 4 shows the distribution plots of the Lipinski and Oprea physico-chemical properties of
the set of anti-diabetic drugs.
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2.3. Filters and Descriptors Produced for Constructing the Predictive Model for Indexing Chemicals

To construct the indexing model, we used the ISE algorithm to produce 47 unique filters, composed
of different sets and ranges of descriptors. As examples, three such filters are described in Table 1.

Table 1. Efficiency and descriptor ranges of three of the 47 filters used to produce the anti-diabetic
activity indexing model.

Filter 1 Filter 2 Filter 3

MCC = 0.642 MCC = 0.640 MCC = 0.638
TP = 86.59% TP = 62.88% TP = 81.4%
TN = 77.42% TN = 97.23% TN = 82.3%
a_n O (0–6.99) BCUT_PEOE_2 (0–0.67) SMR_VSA3 (0–37.82)
PEOE_VSA + 4 (0–30.95) GCUT_SLOGP_2 (0.11–0.27) SMR_VSA1 (0–94.72)
Chiral (0–4.99) Chiral_u (0–3) GCUT_PEOE_3 (0–2.88)
SlogP_VSA2 (0–65.17) GCUT_SLOGP_0 (−2.26–−0.91) Reactive (0–0.00)

NOTE: The efficiency of the filters, in terms of their MCCs, is very close, but they differ in their true positive and
negative percentages. In addition, the filters could be composed of different sets and/or ranges of descriptors.
The name of descriptors stated herein are the same as named by CCG's computational suite MOE. A full description
and methods of descriptors' calculation could be found in the site of Chemical Computing Group [65].

The efficiency of the three filters, in terms of their Matthews correlation coefficients, (MCCs), was
very close, but they differed in their true positive and negative percentages, as well as in the index
attached to each molecule. Filter 2 in Table 1 has an MCC of 0.64, and it identified successfully nearly
63% of the anti-diabetic drugs (true positives), while only 2.77% of the natural products database
(presumably inactive) was misclassified (namely, turned up as false positives).

An analysis of the composition of the best filters disclosed a list of discriminative descriptors
and/or physico-chemical properties. The data shown in Table 2 describe the most dominant descriptors
in the 47 filters used to produce the anti-diabetic activity indexing model. The third column describes
how many times the appearances of the descriptor compared to random.

Table 2. Number of appearances of descriptors within the set of the best unique filters. The full list
of descriptors is presented in the Supporting Information (Table S2). Definition for descriptors and
methods of its calculation could be found in the site if Chemical Computing Group [65].

Descriptor Name No. of Appearances Redundant More Times than Random

GCUT_SLOGP_0 24 23.7
a_ICM 16 15.8

PEOE_VSA + 4 12 11.9
SMR_VSA1 10 9.9

logS 9 8.9
Nmol 9 8.9

lip_druglike 9 8.9
Chi1_C 8 7.9

GCUT_PEOE_0 8 7.9
opr_leadlike 7 6.9

Q_VSA_FPOS 7 6.9
SMR_VSA3 7 6.9

a_don 6 5.9
a_hyd 6 5.9

Furthermore, Figure 5 was constructed by utilizing the WORDLE module (a tool for generating
"word clouds" from text) and shows the number of appearances of descriptors in a graphic manner.
For a full list of all of the descriptors used in the modeling process and their redundancy within the
selected best filters, see the Supporting Information (Table S2) in the Appendix. The most dominant
descriptors may be valuable for discriminating between anti-diabetic chemicals and inactive ones.
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2.4. Assessing the Quality of Anti-Diabetic Activity-Indexing Model Potential

To assess the quality of the indexing model, based on the 47 range-based filters, various parameters
such as the enrichment factor, Matthews’s correlation coefficient (MCC), ROC curve and the area under
the ROC curve (AUC) were generated. The percentage of true/false positives (left y-axis) and MCCs
(right y-axis) were plotted against the molecular bioactivity index (MBI) threshold (x-axis), and the
results are shown in Figure 6.
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To illustrate how anti-diabetic drug candidates can be identified if natural products are sorted
according to the model’s predictions, rather than based on random selection, an enrichment plot
was generated, and it is shown in Figure 7. An enrichment plot of the ISE-based model showing
near-perfect results very close to the perfect model at the top fraction indicates a high prioritization
power for the proposed model.
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With the use of the proposed anti-diabetic activity indexing model and a mix ratio of 1:1000
for active to inactive compounds, 65% of the anti-diabetic drugs were captured in the top 1% of the
screened compounds, compared to 100% in the perfect model and 1% in the random model. This
means that the enrichment factor at the top fraction of 1% is 65-fold (Figure 8).
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If we select molecules with an MBI above 13.0, the ISE-based model and the perfect model totally
overlap. Thus, it seems that the proposed model is highly discriminative and exhibits very good
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performance for the classification of anti-diabetic drug candidates versus inactive natural products.
The area under the curve (AUC) attained was slightly above 0.96, which indicates that the model is
very good.

2.5. New Potential Anti-Diabetic Drug Candidates as Disclosed by the ISE-Indexing Model

The database composed of 2892 natural products was virtually screened using the aforementioned
filter-based indexing model. We assume that few chemicals in the database are anti-diabetic and
will get a high MBI score. The MBI score, as shown in Figure 6, ranges between −4.0 (the lowest
score) and 14.0 (the highest score). Figure 9 shows ten natural products that scored highly as potential
anti-diabetic drug candidates according to our ISE-based anti-diabetic activity indexing model (with
MBI score above 8.0). Using the threshold of MBI 8.0, the ratio of TP: FP is equal to 185:1. A search on
PubMed revealed that one of the highly indexed phytochemicals (caffeine) has already been tested
in vivo and found to be capable of decreasing blood glucose levels, with confirmed anti-diabetic
activity [66–68]. The other nine phytochemicals await evaluation in the wet lab to ascertain their
potential anti-diabetic activity.
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3. Materials and Methods

For modeling purposes, we used a set of 97 anti-diabetic drugs (presented in SMILES format in the
Supporting Information (Table S1)) to represent the active domain. Diversity within the anti-diabetic
drugs is shown in Figure 1A. Furthermore, a set composed of 2892 natural products, sharing
intermolecular similarity values <0.9, was used to represent the inactive domain. This is justified, since
the prediction's model used for virtual screening should cover the properties of chemicals from the
screened database, and this database, which was prepared by collecting phytochemicals isolated from
more than 800 different plants, is distributed worldwide and is available for purchase from AnalytiCon
Discovery company that is located in Postdam, Germany (www.ac-discovery.com). The diversity
among the natural products is shown in Figure 1B. It should be noted that the 2892 natural products
are putatively inactive and probably contain few active chemical. The usage of a putative inactive set
of chemicals that might be ‘contaminated’ with a few active chemicals is discussed in our drug-likeness
paper [46]. The ACD database was used as a representative set of non-drugs, although it contains about
1% drugs. The filter-based prediction technique was found to be less sensitive to the ‘contamination’
of the inactive set by 1–2% active compounds.

The physico-chemical properties of all of the chemicals in both databases were calculated using
Molecular Operating Environment (MOE) software, Version 2009.10 (http://www.chemcomp.com).
The 2D descriptors were based on calculated properties such as molecular weight, log P, H-bond
donors/acceptors, solubility, total charge and charge distribution, the types and number of atoms, and
so forth [65]. To assess and validate the predictability of the model, the datasets of active/inactive
ligands were split into 66.7% for the training set and 33.3% for the test set; an in-house random picking
module generated these sets.

The iterative stochastic elimination (ISE) algorithm [46] was implemented to construct models
tailored to indexing natural products for potential anti-diabetic activity. Optimal differentiation
between active and inactive chemicals was attained by searching, in multivariable space, for the
best sets of descriptors (‘variables’) and the best ranges for all descriptors in each set, capable of
distinguishing between active and inactive chemicals. Since chemical descriptors generally interact
with each other, changes in the range of one descriptor could have an effect on the best range of another
descriptor, and the optimization process is obliged to take into consideration all descriptors in the set
at one time to attain the best set of filters. The flowchart of the modeling process is shown in Figure 2.
For further details on applying the ISE algorithm to obtain the best ranges for a set of descriptors, and
for the optimization process, see our previously-reported studies [46,55].

Employing a ‘combined filters approach’ increases the discrimination power and makes it possible
to attach to each chemical a molecular bioactivity index (MBI) that correlates with the chance of a
molecule’s being bioactive. The MBI concept is based on the assumption that a bioactive ligand would
pass more ‘filters’, while an inactive molecule would pass a minimal number of filters. This is the basis
for the construction of the MBI index, which is composed of the contribution of the number of filters
passed by a molecule to that molecule’s overall quality of potential bioactivity.

MBI =
∑n

i=1(δAi PAi
PNAi − δNAi NNAi

NAi )

n
(1)

The value of the delta function δAi is 0 (zero) if the molecule is inactive according to the currently
calculated filter i and 1 if it is bioactive according to that filter. Similarly, the value of the delta function
δNAi is 1 if it is inactive according to filter i, and 0 if it is bioactive according to that filter. PAi is
the percentage of bioactive molecules that are predicted to be ‘bioactives’ according to filter i (‘true
positives’), while PNAi is the percentage of false positives, i.e., inactive molecules that are predicted to
be bioactives according to filter i. NAi is the percent of bioactives identified to be inactives according
to the current filter (‘false negatives’), and NNAi is the percent of inactives identified as such by the
current filter (i.e., ‘true negatives’). The quotient PAi/PNAi may be regarded as an ‘efficiency factor’ of
filter i for bioactives, while the quotient NAi/NNAi is an ‘efficiency factor’ for misidentifying inactives.

www.ac-discovery.com
http://www.chemcomp.com
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Various parameters such as the enrichment factor, Matthews correlation coefficient (MCC), the
ROC curve and the area under ROC curve (AUC) were used to assess the quality of the prediction
model. In the ROC curve, sensitivity (the true positive rate) is plotted as a function of the false
positive rate. The AUC (area under the ROC curve) is a measure of how well the prediction model can
distinguish between two chemicals, one active and one inactive.

4. Conclusions

Since diabetes mellitus (DM) is still a leading disease with lethal concomitant complications
affecting people worldwide and is associated with an unmet need for developing novel anti-diabetic
drugs, several research groups in academia and industry are using in silico techniques to facilitate
the discovery of novel anti-diabetic drug candidates, while aiming to save time and costs. We have
constructed a prediction model using a set of 97 approved anti-diabetic drugs to represent the active
domain and a set of 2892 natural products to represent the inactive domain. It is worth noting that
only a few out of the 2892 natural products could have been expected to be anti-diabetic, but the
effect of that assumption on the quality of the prediction model is assumed to be negligible. To obtain
accurate predictive models for virtual screening purposes, the modeling process should use sets of
chemicals that cover the space of the properties of the objects in the screened database. Consequently,
we had to select, as the inactive set, objects with the same ‘property space’ as the screened objects.
The optimization technique used in this study to index natural products for their potential anti-diabetic
bioactivity was the iterative stochastic elimination algorithm. A highly discriminative and robust
model was obtained with the area under the curve (AUC) >0.96, indicating a very good prediction
model. Upon application of the proposed anti-diabetic activity indexing model to the virtual screening
of a set of chemicals with a mix ratio of 1:1000 active-to-inactive compounds, 65% of the anti-diabetic
drugs were captured in the top one percent of the screened compounds, compared to 1% in the
random model. Some of the natural products that got a high score as anti-diabetic drug candidates are
disclosed and presented in Figure 9. A search of the literature revealed that one of the high-scoring
phytochemicals (caffeine) has already been tested and reported as an active anti-diabetic molecule,
capable to decrease blood glucose levels. The other nine phytochemicals await evaluation in the wet
lab for their anti-diabetic activity.

Supplementary Materials: The following are available online. Table S1 listing the 97 anti-diabetic drugs. Table S2
including a full list of all of the descriptors used in the modeling process and their redundancy within the selected
best filters.
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