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Risk assessment of interstate 
pipelines using a fuzzy‑clustering 
approach
A. Osman* & M. Shehadeh

Interstate pipelines are the most efficient and feasible mean of transport for crude oil and gas within 
boarders. Assessing the risks of these pipelines is challenging despite the evolution of computational 
fuzzy inference systems (FIS). The computational intricacy increases with the dimensions of the 
system variables especially in the typical Takagi–Sugeno (T–S) fuzzy-model. Typically, the number of 
rules rises exponentially as the number of system variables increases and hence, it is unfeasible to 
specify the rules entirely for pipeline risk assessments. This work proposes the significance of indexing 
pipeline risk assessment approach that is integrated with subtractive clustering fuzzy logic to address 
the uncertainty of the real-world circumstances. Hypothetical data is used to setup the subtractive 
clustering fuzzy-model using the fundamental rules and scores of the pipeline risk assessment 
indexing method. An interstate crude-oil pipeline in Egypt is used as a case study to demonstrate the 
proposed approach.

Pipelines are regarded as the most secure, cost-effective, efficient, and dependable means of transporting com-
bustible fluids1. Hence, pipelines would be an ideal choice for carrying significant amounts of petroleum. It 
is reported that in the period between 1990 to 2009, pipelines provided almost 70% of all oil transportation2.

Whilst most pipelines are subsurface and somewhat insulated from external intervention, they are none-
theless vulnerable to a variety of risks3,4, including fluid leakage5–7, which might have a negative impact on the 
environment or result in human casualties. Oil and gas firms prioritise pipeline integrity and safety in order to 
minimise leaks or system failures that might result in catastrophic or costly financial implications8. Pipe failure 
may never be completely prevented3; however, the total risk of failure can be minimized to an acceptable rate by 
implementing effective risk management measures9–11.

Oil and gas firms utilise a variety of risk assessment approaches, including as hazard and operability (HAZOP) 
evaluation, fault tree analysis, scenario-based analysis, and indexing methodologies12–14.

Limited information and insufficient data could lead to complex and unreliable pipeline risk assessment. 
To deal with such complexities, Zadeh developed a fuzzy logic system as a decision-making tool by process-
ing linguistic information of such complex structures15, where this data is denoted as fuzzy sets inputs and the 
output risk values can be represented as a numerical sets or fuzzy sets with associated attribute values16,17. As 
a result, numerous academics have used fuzzy logic in risk assessment and other applications using imprecise 
data. Numerous methodologies based on fuzzy reasoning, such as the typical fuzzy inference system (FIS), were 
presented18,19.

A typical FIS is a method of mapping an input space to an output space using fuzzy logic; the inference sys-
tem employs a collection of membership functions and rules for fuzzy reasoning of data; the fuzzy IF–THEN 
rules are implemented by experts; hence they are frequently referred to as fuzzy expert systems. One of the main 
topics to consider during the design process of a fuzzy inference system is how to decrease the overall range 
of included rules and their accompanying computing needs. The number of rules in a normal fuzzy system 
increases exponentially as the number of input variables increases. If there are n input variables and m member-
ship functions for each variable, then constructing a comprehensive fuzzy inference system requires mn rules. 
The rule base becomes increasingly complex to apply as n rises. This dimensional issue is known as the "curse 
of dimensionality"20.

One of the potential solutions for this dimensional problem is a fuzzy inference system based on subtractive 
clustering, in which fuzzy IF–THEN rules are generated from input–output data.

Studies are concerned with the use of standard fuzzy inference systems in their applications21. They created a 
fuzzy risk matrix that might be utilised in upcoming fuzzy logic applications in various safety evaluations (e.g., 
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LOPA). Fuzzy logic was merged with the traditional layer of protection analysis, and it was used in pipeline risk 
assessment to manage information fuzziness and inaccuracies22. Researchers suggested an integrated fuzzy logic 
model with relative risk score approach for pipeline risk assessment, based on expert knowledge, utilising the 
Mamdani algorithm to characterise the uncertainty inherent in the problem23. Ratnayake24 proposed a fuzzy 
inference system to reduce suboptimal function prioritizations in the functional failure risk (FFR) analysis 
applying an exemplary tailor-made risk matrix and the risk ranks are calculated by the suggested FIS. Further 
studies introduced a risk model for process operations in oil and gas facilities25. To eliminate the uncertainty of 
traditional risk-based maintenance (RBM) components, the fuzzy logic system (FLS) was introduced for risk 
modelling. Literature suggested a hybrid technique combining fuzzy set theory and a typical fault tree analysis 
of quantitative data for the crude oil tank fire and explosion (COTFE) fault tree in a fuzzy environment and to 
assess the likelihood of COTFE occurrence26. The traditional layer of protection analysis (LOPA) risk manage-
ment technique was combined with fuzzy logic approach by Khalil et al.27 to create a cascaded fuzzy LOPA to 
avoid or reduce industrial accidents in natural gas facilities. Another study introduced fuzzy sets theory to fault 
and event tree techniques by replacing all variables with fuzzy numbers and retrieving the outcome of each using 
one of the defuzzification methods; this application may then be implemented in the "bow-tie" technique for 
accident scenario risk assessment28. Yuhua and Datao suggested a method for evaluating the likelihood of failure 
events in oil and gas transmission pipelines by integrating expert elicitation in fault tree analysis with fuzzy set 
theories and overcoming uncertainty and inaccuracies in some essential events29. Aqlan and Ali introduced 
lean manufacturing concepts in conjunction with fuzzy bow-tie analysis for a successful risk assessment proce-
dure in the chemical industries, as well as to remove the uncertainties inherent in risks from standard bow-tie 
analyses30. A novel ranking approach was suggested by another study for supplier selection problem based on 
fuzzy inference system (FIS) to address the subjectivity of decision makers’ judgments in the management of a 
sustainable supply chain31.

Literature recommends the use of risk scores (which might be available as tables, equations and charts) to 
predict the risk in several daily life aspects32–37. Hence, predictive tools are implemented to evaluate risks for 
proper decision-making. However, these tools present critical limitations38,39. The common risk assessment tools 
are diversely represented which does not facilitate their integration/combination. These representations are not 
adequate to cope with missing risk factors and cannot incorporate additional knowledge/information. Hence, a 
common representation must be simple, interpretable, flexible to incorporate additional variables and to swiftly 
allow several models-integration39–44. Therefore, this study aims to minimize these limitations through a fuzzy 
clustering approach to improve the performance of the risk assessment, extract information provided by the 
risk assessment tools, to allow new risk factor incorporations, to deal with missing risk factors, and to assure 
the interpretability of the model.

The notion of fuzzy logic is used in this study to evaluate the risks of a pipeline. A variety of models are 
developed for a pipeline section’s Index Sum and Leak Impact Factor. The generated models’ performance is 
compared to the hypothetical computed data, and the best fit model is selected using performance assessment 
indices such as training root mean square error (Training RMSE), check root-mean-square error (Check RMSE), 
and correlation coefficient (R2).

Traditional indexing method
A subjective evaluation tool for assessing pipeline risks based on a combination of statistical failure data and 
operator experience, in which the pipeline is divided into segments based on factors such as population, land 
type, soil condition, coating condition, pipeline age, or any other factors determined by the evaluator.

This approach makes multiple hypotheses, including that all risks are independent and additive, that the 
worst-case scenario for the pipeline section is assigned, that all point values are relative rather than absolute, that 
the relative importance of each item is based on expert evaluations, that only risks to the public are considered, 
and that no consideration is given to pipeline operators or contractors.

Data is obtained to create an index for each type of pipeline failure initiation, including (a) third-party dam-
age, (b) corrosion, (c) design, and (d) incorrect operations, Fig. 1 shows the basic risk assessment model. These 
four indices rank the likelihood and significance of all elements that maximize or minimize the likelihood of a 
pipeline failure. The indices are then added together to get the Index Sum, as stated in Eq. (1). As the index sum 
score increases, so does the probability of risk, and vice versa. The evaluation concludes with a discussion of the 
effects of a pipeline system breakdown. The leak impact factor is a consequence factor that is used to change the 
index total scores to reflect the repercussions of failure, with a greater point representing a bigger risk. The leak 
impact factor is the sum of the product risks (acute + chronic), leak volume, receptors, and dispersion factor, 
as stated in Eq. (2), where the dispersion factor equals the leak volume spill score (LV) divided by the receptors 
population score (RE), as indicated in Eq. (3). As demonstrated in Eq. (4), the relative risk score RRS is equal to 
the Index Sum (IS) divided by the Leak Impact Factor (LIF)45.

(1)IS = TPD+ C+ D+ IO

(2)DF = LV / RE

(3)LIF = LV× RE× DF× PH

(4)RRS = IS / LIF
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Fuzzy inference system
The fundamental principle of fuzzy set theory was introduced by Zadeh (1965)4 to resolve uncertainty in real-life 
circumstances. Fuzzy logic is used to solve issues with unsharp boundaries where membership is determined by 
degree. A fuzzy set defined on a universe of discourse (U) is a characterized by a membership function µ(x)(x) , 
that accepts values from the interval [0, 1], where 0 indicates non-membership and 1 indicates full membership. 
A membership function quantifies the degree to which an element in U is similar to the fuzzy subset. For certain 
linguistic variables, fuzzy sets are defined. Each linguistic term can be expressed by a membership function of 
triangular, trapezoidal, or Gaussian form. The selection of membership function is mostly determined by vari-
able features, accessible information, and expert opinion26. In this work Gaussian membership functions are 
employed for being the most natural22, smooth and nonzero at all points46. As a result, it can tackle real challenges 
with uncertain and vague data as in risk assessment studies. Gaussian membership function can be represented 
as illustrated in Eq. (5).

where ci and σi σi are the center and width of the ith fuzzy set Ai , respectively, as shown in Fig. 2.
A fuzzy inference system maps an input space (universe of discourse) to an output space using fuzzy logic. 

A list of IF–THEN rules, membership functions that describe how each point in the input space is translated to 
a degree of membership between 0 and 1, and fuzzy logic operators that link with the fuzzy sets are the primary 
mechanisms for achieving this. As shown in the Fig. 3, a fuzzy inference system consists of: (1) knowledge base, 
(2) inference or decision-making unit, (3) fuzzification interface, and (4) defuzzification interface.

Several fuzzy inference models are applied in numerous applications, such as Mamdani, Takagi–Sugeno, and 
Tsukamoto fuzzy model. The Takagi–Sugeno and Mamdani approaches are commonly used to model real-world 
situations. In many ways, the two techniques are very similar to one another. The first two steps of the fuzzy infer-
ence process, fuzzification of inputs and application of fuzzy operators, are identical. The primary distinction is 
that Takagi–Sugeno output membership functions are either linear or constant. The Takagi–Sugeno approach is 
applied in this study to assess potential pipeline risks.

(5)µAi (x) = exp

(

−
(ci − x)2

2σ 2
i

)

Figure 1.   The basic risk assessment model.

Figure 2.   Gaussian membership functions47.
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The TS model introduced by Takagi and Sugeno in 1985 where its major feature is the linearization of each 
fuzzy rule as a linear subsystem, which is utilised to simulate complicated nonlinear systems48. The output is a 
mix of all of these linear subsystems, which is accomplished by rule aggregation. The TS fuzzy model can deal 
with any nonlinear system with high precision and has been accepted as a universal approximator of any smooth 
nonlinear system49,50. TS rules use functions of input variables as the rule output (consequent). The general form 
of TS rule model having two inputs x1 and x2, and output U is as follows:

where z = f(x1, x2) is a crisp function of the output; A1 and A2 are linguistic terms. Figure 4 depicts a typical TS 
inference mechanism for two input variables.

This function is most typically linear, with fuzzy rules created linearly from input–output data, although 
nonlinear functions are used by adaptive approaches51.

The aforementioned section discusses the presence of four variables for the Index Sum (IS) model which are 
C, TPD, IO, and D. The fuzzy IF–THEN rules of this model can be defined as follows:

However, the four variables for the Leak Impact Factor (LIF) model which are PH, DF, LV, and RE. The fuzzy 
IF–THEN rules of this model can be defined as follows:

if x1 is A1 and x2 is A2 THEN U is z = f(x1,x2)

If (C is ..), AND (TPD is ..), AND (IO is ..), AND (D is ..)

THEN (IS = a× C + b× TPD + c × IO + d × D + e)

Figure 3.   Fuzzy inference structure.

Figure 4.   A typical TS inference mechanism for two input variables.
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The parameters a, b, c, d, and e are estimated from the training dataset of the IS model, and the parameters f, 
g, h, i, and j are estimated from the training dataset of the LIF model. The final output of the two fuzzy models 
is the weighted average of all rule outputs in each model, computed as:

where N is the number of rules, wi is the firing strength to weight the ith fuzzy rule defined as:

where n is the number of input variables;µ(Aj
i) is the grade of the membership function Aj

i.

Research methodology
The risk assessment of pipelines could be qualitatively modelled using the expert’s knowledge of the system, 
which is accomplished through mathematical modelling from the expert’s knowledge, which includes the sys-
tem’s input and output data. The fuzzy clustering method is a powerful identification tool for such systems that 
contain potential uncertainty by grouping the input–output data into fuzzy clusters and then translating these 
clusters into fuzzy IF–THEN rules. This prevents identifying all of the rules as performed in conventional fuzzy 
inference methods. There are several fuzzy clustering methods, the most common of which is fuzzy C-means 
(FCM) clustering52,53, mountain clustering54, and subtractive clustering55,56.

Subtractive clustering method is used to conduct this research. This method, like the mountain clustering 
method, can auto-generate the number and initial location of cluster centres using search techniques, whereas 
fuzzy C-means clustering requires prior knowledge of the number of clusters. Another advantage of subtrac-
tive clustering over mountain clustering is that each data point is treated as a potential cluster centre, whereas 
mountain clustering treats each grid point as a potential cluster centre57.

Professional suggestions from previous studies33–45 are used to obtain data for the (IS) and (LIF) models. 
TPD, C, D, and IO are the input parameters of (IS). While the (LIF) input’s parameters are PH, LV, DF, and RE. 
The two models presented in this paper use a set of statical data that consists of 625 input/output data points, a 
portion of which is shown in Table 1 for the (IS) model and Table 2 for the (LIF) model.

Performance evaluation indices
Two different indices, including root mean square error (RMSE) and correlation coefficient (R2), are used to 
compare the outputs estimated by the established model with the expert’s data output to evaluate the performance 
of each model. The following equations are used to compute these indices:

where Pi is the predicted values, Ai is the qualitative expert’s values, Ai is the average of the observed set, and N 
is the number of data set.

The RMSE index, which is one of the most commonly used indices in performance evaluations, could clarify 
the difference between the model output and the actual value. The root mean square error (RMSE) is a non-
negative number that can be zero when the predicted output exactly matches the recorded output and has no 
upper bound.

R2 is a positive number that indicates how much of the variability in dependent variable can be explained 
by independent variable(s) and how well the model fits the data. R2 can take values between 0 and 1; which 1 
indicates the model can acquire all the variability of the output variable, while 0 expresses that there is a poor 
correlation between model output and actual output.

As shown in Figs. 5 and 6, for each model’s four inputs in the index sum and the leak impact factor model, 
there is a single output reflecting the risk determined by expert knowledge. As shown in Tables 1 and 2, out of 
625 pipeline data for index sum and leak impact factor, 500 pipeline data are used for training, i.e., to form the 
membership functions and produce the fuzzy IF–THEN rules; 125 pipeline data are used for testing and check-
ing the fuzzy model established in each model to validate the model and prevent overfitting that may occur on 
the training data set.

MATLAB software is used to perform subtractive clustering on the pipeline index sum and leak impact fac-
tor data. In each model, the algorithm is repeated for cluster radii 0.1 through 0.9. The best fitted model in the 
index sum and leak impact factor models based on the best performance indices with the testing dataset has a 
cluster radius of 0.8 and 0.6, respectively, after applying the subtractive clustering method to the training data 

If (PH is ..), AND (LV is ..), AND (RE is ..), AND (DF is ..)

THEN
(

LIF = f × PH + g × LV + h× RE + i × DF + j
)

(6)Final Output =

∑N
i=1 wizi

∑N
i=1 wi

(7)wi =

n
∏

j=1

µ(A
j
i)

(8)RMSE =

√

∑N
i=1 (Ai − Pi)2

N

(9)R2
= 1−

∑N
i=1 (Ai − Pi)

2

∑N
i=1 (Ai − Ai)2
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of the index sum and the leak impact factor with different ranges of cluster radius, as shown in Tables 3 and 4. 
The index sum and leak impact factor models generate 13 and 27 fuzzy rules, respectively. The established index 
sum model has 65 linear and 104 nonlinear parameters, whereas the established leak impact factor model has 
295 linear and 472 nonlinear parameters. As shown in Tables 3 and 4, a small cluster radius generates a large 
number of rules and vice versa.

The model performance indices, training RMSE and testing RMSE and the correlation coefficient (R2) for the 
best model of index sum (cluster radius = 0.8) obtained are 5.9653 × 10–8 and 7.35411 × 10–8 and 1 respectively. 
The model performance indices, training RMSE and testing RMSE and the correlation coefficient (R2) for the 
best model of leak impact factor (cluster radius = 0.6) are 1.4065 and 8.7814 and 0.9601 respectively.

The interdependence of input and output parameters derived from subtractive clustering rules can be dem-
onstrated using control surfaces, as shown in Figs. 9 and 10 for index sum and leak impact factor, respectively.

The index sum model is shown in Fig. 7. Figure 7(a1) indicates the interdependence of index sum on design 
and corrosion, Fig. 7(b1) shows the interdependence of index sum on incorrect operations and corrosion, and 
Fig. 7(c1) depicts the interdependence of index sum on third party damage and corrosion. While Fig. 8 of the 
leak impact factor model represents the interdependence of the leak impact factor on the dispersion factor and 
the product hazard on Fig. 8(a2) and (b2) demonstrates the interdependence of the leak impact factor on the 
leak volume and the product hazard, and Fig. 8(c2) depicts the interdependence of the leak impact factor on the 
receptors and the product hazard.

Case study
SUMED pipeline is a typical case study used here to demonstrate the proposed pipeline risk assessment approach, 
Fig. 9. Since, the SUMED pipeline is critical for the international energy market because it allows for the transport 
of exported crude oil, which is transported by very large crude carriers VLCCs from Gulf countries and passing 
through the Suez Canal on their way to Europe and/or the United States58–60. These large tankers cannot pass 
through the Suez Canal fully loaded because their draught exceeds the Canal’s depth. The loaded tankers are 
moored to a single point mooring system (SPM) at the Ain Sukhna terminal before passing through the Canal. 
The crude oil is then discharged from the tanker via the SPM piping system to the pipeline. Tankers can then 
pass through the Canal in ballast with a low draught. Crude oil is transported through two parallel pipelines, 42 

Table 1.   Statical description on data set of IS model.

No. C TPD D IO IS

1 0 0 0 0 0

2 0 0 0 25 25

3 0 0 0 50 50

4 0 0 0 75 75

5 0 0 0 100 100

6 0 0 25 0 25

7 0 0 25 25 50

8 0 0 25 50 75

9 0 0 25 75 100

10 0 0 25 100 125

11 0 0 50 0 50

12 0 0 50 25 75

13 0 0 50 50 100

14 0 0 50 75 125

15 0 0 50 100 150

16 0 0 75 0 75

17 0 0 75 25 100

18 0 0 75 50 125

19 0 0 75 75 150

20 0 0 75 100 175

21 0 0 100 0 100

22 0 0 100 25 125

23 0 0 100 50 150

24 0 0 100 75 175

25 0 0 100 100 200

 

625 100 100 100 100 400
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Table 2.   Statical description on data set of LIF model.

No. LV RE DF PH LIF

1 1 1 0.25 0 0

2 1 1 0.25 5.5 1.375

3 1 1 0.25 11 2.75

4 1 1 0.25 16.5 4.125

5 1 1 0.25 22 5.5

6 1 1 1.688 0 0

7 1 1 1.688 5.5 9.284

8 1 1 1.688 11 18.56

9 1 1 1.688 16.5 27.85

10 1 1 1.688 22 37.13

11 1 1 3.125 0 0

12 1 1 3.125 5.5 17.18

13 1 1 3.125 11 34.37

14 1 1 3.125 16.5 51.56

15 1 1 3.125 22 68.75

16 1 1 4.563 0 0

17 1 1 4.563 5.5 25.09

18 1 1 4.563 11 50.19

19 1 1 4.563 16.5 76.28

20 1 1 4.563 22 100.3

21 1 1 6 0 0

22 1 1 6 5.5 33

23 1 1 6 11 66

24 1 1 6 16.5 99

25 1 1 6 22 132

 

625 6 4 6 22 3168

Figure 5.   Index sum fuzzy inference structure.
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inches in diameter and 320 kms long, running from the Ain Sukhna terminal to the Sidi Kerir terminal south 
of Cairo, where a pressure relief station protects the pipeline from overpressure58,60. An intermediate boosting 
station, comprised of six gas turbine-powered pumps, is located midway at Dahshour to assist in pushing the oil 
to its final destination, the Sidi Kerir terminal. After passing through the canal in ballast, the tankers are moored 
to a single point mooring system (SPM) at the Sidi Kerir terminal, where the oil is reloaded via terminal pumps 
and the SPM piping system59,61–63.

Figure 6.   Leak impact factor fuzzy inference structure.

Table 3.   Index sum’s comparative test results of cluster radius value from 0.1 to 0.9 with selected best fitted 
model. Bold values are illustrated later within the following section.

Cluster radius Epoch number Number of fuzzy rules Training RMSE Check RMSE Correlation coefficient R2

0.1 4 485 5.9785 × 10–4 5.2103 0.9247

0.2 17 485 16.000 × 10–4 5.2161 0.9646

0.3 5 379 6.6872 × 10–4 5.8668 0.9992

0.4 2 127 2.8187 × 10–5 0.5839 1

0.5 12 54 1.4893 × 10–6 2.4321 × 10–6 1

0.6 9 34 3.8899 × 10–7 4.2578 × 10–7 1

0.7 18 20 1.5416 × 10–7 1.5269 × 10–7 1

0.8 185 13 5.9653 × 10–8 7.3541 × 10–8 1

0.9 2 10 5.2631 × 10–8 4.1280 × 10–8 1

Table 4.   Leak impact factor’s comparative test results of cluster radius value from 0.1 to 0.9 with selected best 
fitted model. Bold values are illustrated later within the following section.

Cluster radius Epoch number Number of fuzzy rules Training RMSE Check RMSE Correlation coefficient R2

0.1 1 483 2.5801 × 10–5 66.7306 0.7842

0.2 2 483 7.6480 × 10–5 66.4401 0.9052

0.3 11 339 5.8455 × 10–5 57.9682 0.9421

0.4 82 134 1.7843 × 10–4 93.7299 0.9368

0.5 78 59 1.1521 27.6552 0.9318

0.6 200 27 1.4065 8.78140 0.9601

0.7 200 17 4.4991 10.5146 0.8734

0.8 200 12 10.952 20.8779 − 0.9539

0.9 200 10 6.2846 13.0260 − 0.9044
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The pipeline’s wall thicknesses range from 11.13 mm to 22.22 mm depending on the design58. The 320 km 
pipeline will be divided into seven sections of varying lengths. The pipeline is sectioned by taking the following 
factors into account: the type of land, soil condition, atmospheric type, population density, crossing rivers and 
waterways, high/low lands, and the presence of Right of Way (ROW). Sections will have the following distances 
and characteristics, as shown in Table 5 6,58.

Figure 7.   Control surface of index sum on (a1) design and corrosion; (b1) incorrect operations and corrosion; 
(c1) third party damage and corrosion.
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The risk assessment is performed on each pipeline section separately using the traditional method and the 
proposed model, and the results of both methods are compared in the following section of the paper. The pipe-
line section with the lowest RRS value is chosen as the riskiest section, which may assist pipeline operators in 
beginning to manage the risk on the lowest score pipeline section. To improve the reliability and safety of the 
lowest RRS value section, the operator may begin with the lowest scored index., e.g., low scored design index. 

Figure 8.   Control surface of leak impact factor on (a2) dispersion factor and product hazard; (b2) leak volume 
and product hazard; (c2) receptors and product hazard.
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The results of the traditional RRS method for risk assessment of 7 sections are calculated, based on Eqs. (1), (2), 
(3), and (4). An example is presented as follows:

Results and discussions
Table 6 displays the proposed model’s output relative risk score RRS results (index sum and leak impact factor). 
Including index sum entry values, third-party damage, corrosion, design, and incorrect operations. And the leak 
impact factor, product hazard, leak volume, dispersion factor, and receptors entry values.

Table 6 demonstrates that Sect. 3 of the pipeline represents the lowest RRS value and ranked as the riskiest 
part of the pipeline as it passes through the river Nile. Section 3 is the starting point in risk management to 
decrease the risks on it. The risk assessor can start by enhancing the design index record of this section as it has 
the lowest value between the index sum indices.

IS(section1) = 84+ 83+ 1+ 82 = 250

DF(section1) = 2/2 = 1

LIF(section1) = 9× 2× 1× 2 = 36

RRS(section1) =
IS(section1)

LIF(section1)
= 250/36 = 6.94

Figure 9.   SUMED pipeline sections59,60.

Table 5.   Pipeline sections58.

Section number Starts-ends Pipeline length Characteristics

1 0 km–100 km 100 km Starts from Ain Sukna, lowest point on land, desert area

2 100 km–105 km 5 km Passing near a cement factory, high population density

3 105 km–115 km 10 km Passing through the river Nile, no ROW, presence of seasonal corps, high popula-
tion density

4 115 km–165 km 50 km Moderate population density

5 165 km–265 km 100 km Low population density

6 265 km–295 km 30 km Presence of seasonal corps, no ROW

7 295 km–320 km 25 km Ends at Sedi Kerir, passing through lake, high population density
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The design index record can be enhanced by doing the following:

•	 Increase pipe safety factor.
•	 Increase system safety factor.
•	 Avoid fatigue.
•	 Avoid surge potential.
•	 Make a system hydrotest to ensure pipeline integrity.
•	 Avoid pipe movements.

To compare the output RRS results of the proposed model with those of the traditional method, Table 7 dis-
plays the RRS output values and ranks in both methods. Figure 10 depicts the relationship between the traditional 

Table 7.   Output RRS results of traditional method and proposed model.

Section number

Traditional method Proposed model

IS Rank LIF Rank RRS Rank IS Rank LIF Rank RRS Rank

1 250 7 36 2 6.94 4 250 7 33.7 4 7.418 4

2 270 3 32.4 3 8.30 6 270 3 35.2 3 7.670 5

3 259.5 5 81 1 3.20 2 260 5 84.9 1 3.062 1

4 284.5 2 32.4 3 8.78 7 285 2 35.2 3 8.096 6

5 286 1 36 2 7.93 5 286 1 33.7 4 8.486 7

6 264 4 81 1 3.26 3 264 4 76.8 2 3.437 3

7 254 6 81 1 3.14 1 254 6 76.8 2 3.307 2

Figure 10.   RRS results of traditional method versus proposed models.

Table 6.   Output RRS results of the proposed model.

Section no. TPD C D IO PH LV DI RE IS LIF RRS Rank

1 84 83 1 82 9 2 1 2 250 33.7 7.418 4

2 77 81 30 82 9 2 0.6 3 270 35.2 7.670 5

3 68 72.5 32 87 9 3 0.8 4 260 84.9 3.062 1

4 77 84 36.5 87 9 2 0.6 3 285 35.2 8.096 6

5 84 83 36.5 82 9 2 1 2 286 33.7 8.486 7

6 64 81.5 36.5 82 9 3 1.5 2 264 76.8 3.437 3

7 63 70 37 84 9 3 1.5 2 254 76.8 3.307 2
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method output RRS values and the proposed model output RRS values. The results show that the proposed fuzzy 
model based on subtractive clustering is an effective tool for assessing pipeline risk.

To investigate the relationship between the qualitative method and the proposed model further, the degree 
of correlation between the index sum and leak impact factor obtained by the proposed subtractive clustering 
fuzzy model and those obtained by the qualitative method was calculated as:

where, x = qualitative output results, y = fuzzy inference output results, x = mean value of x , y = mean value of y , 
cov(x, y) = covariance of x and y , σx = standard deviation of x , σy = standard deviation of y.

Figure 11 shows high correlation coefficient value ( ρ = 0.9999) for index sum, ( ρ = 0.9903) for leak impact 
factor, and ( ρ = 0.9821) for RRS, implies the effectiveness of using the TS fuzzy inference method based on 
subtractive clustering.

Conclusion
Indexing pipeline risk assessment methodology is integrated with subtractive clustering fuzzy logic to deal 
with the uncertainty of the real-world conditions and to avoid the difficulties of constructing many rules. The 
computational complexity increases with the dimensions of the system variables because the number of rules 
increases exponentially as the number of system variables increases.

The proposed approach for pipeline risk assessment is demonstrated using a case study of a petroleum pipe-
line, with the results of the proposed model compared to the qualitative method. The pipeline is divided to seven 
sections and the risk assessment procedure is done for each section by both qualitative and proposed model. 
Results showed that the RRS values computed using the proposed model are consistent with those obtained using 
the qualitative method. The proposed model also had a high correlation and accuracy. The proposed model is 
evaluated using training RMSE, testing RMSE, and R2 of values 5.9653 × 10–8 and 7.35411 × 10–8 and 1 for index 
sum model, and 1.4065 and 8.7814 and 0.9601 for the leak impact factor model respectively. The proposed model 
is proven to be an efficient model for pipeline risk assessment using a fuzzy clustering approach. Hence, future 
work will be performed for risk assessment of several facilities within the offshore industry.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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