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Abstract

Protection of the world’s remaining forests and biodiversity is a matter of global concern.

Yunnan, China is home to China’s only mainland tropical rainforests, and 20% of China’s

total biodiversity. Despite restoration measures and establishment of new protected areas,

this region is still experiencing biodiversity loss due to inadequate management and moni-

toring. We evaluate restoration success of China’s tropical forests in Xishuangbanna

National Nature Reserve (XSBN-NNR), Yunnan, China using dung beetles as an indicator

taxon. We sampled across a land-use gradient of human alteration: protected forest,

restored forest, community owned forest, and rubber plantation. We collected 3,748 dung

beetles from 21 species over a 3 month period. Multivariate analyses revealed unique

assemblages in each land-use category, but with restored forest most similar to protected

areas, suggesting restoration success in this region. Community forests were more diverse

than plantations, suggesting that community forests may be a valuable and practical conser-

vation tool in this region. Most species were generalists, although some had dietary and

habitat preferences. Furthermore, dietary niche breadths were, on average, higher in dis-

turbed areas, suggesting that disturbance may result in dietary changes. We show that res-

toration of tropical forests appears to be successful for a key ecological and biological

indicator group- dung beetles. Furthermore, community-owned forests appear to be valu-

able and practical method of maintaining ecosystem health and biodiversity in the region.

Future management in this region would likely benefit from encouragement to maintain com-

munity-owned forests, economic incentives for restoring farmland to forest, and increased

environmental monitoring across the land-use gradient.

PLOS ONE | https://doi.org/10.1371/journal.pone.0204764 November 8, 2018 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Sullivan CD, Slade EM, Bai M, Shi K,

Riordan P (2018) Evidence of forest restoration

success and the conservation value of community-

owned forests in Southwest China using dung

beetles as indicators. PLoS ONE 13(11): e0204764.

https://doi.org/10.1371/journal.pone.0204764

Editor: Arun Jyoti Nath, Assam University, INDIA

Received: May 24, 2018

Accepted: September 13, 2018

Published: November 8, 2018

Copyright: © 2018 Sullivan et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data used in this

manuscript is available within the manuscript or

supplementary materials. GPS coordinates are also

available by contacting Eco-bridge Continental at

ebc@eco-bridgecontinental.org. To ensure the

security of some species within the study area,

such as Asian elephant, precise GPS coordinates

are not included in the manuscript itself.

Funding: This research was supported in part by

the Second National Survey of Terrestrial Wildlife in

China, State Forestry Administration of China, the

National Natural Science Foundation of China

http://orcid.org/0000-0002-3731-8421
https://doi.org/10.1371/journal.pone.0204764
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204764&domain=pdf&date_stamp=2018-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204764&domain=pdf&date_stamp=2018-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204764&domain=pdf&date_stamp=2018-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204764&domain=pdf&date_stamp=2018-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204764&domain=pdf&date_stamp=2018-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204764&domain=pdf&date_stamp=2018-11-08
https://doi.org/10.1371/journal.pone.0204764
http://creativecommons.org/licenses/by/4.0/
mailto:ebc@eco-bridgecontinental.org


1.1: Introduction

Protecting the world’s remaining biodiversity, particularly in tropical regions, is a priority [1–

3]. Over the last two decades, global tropical deforestation has exceeded an average of 12 mil-

lion hectares annually [4]. This loss has been particularly acute in South-East Asia, a recog-

nized biodiversity hotspot [5]. Restoration efforts are increasingly being used to combat this

loss, with some regions even increasing in forest cover [6]. While restoration may contribute

to biodiversity gains, this relationship is poorly understood, and some studies suggest that

greater intervention may be necessary to restore biodiversity and prevent irrevocable loss of

ecosystem functions [7–10]. In order to allocate funds and effort more effectively, it is impor-

tant to monitor the biodiversity and health of remaining forests as well as evaluate the success

of restoration efforts. Indicator taxa are increasingly used as a tool for monitoring ecosystem

health and restoration success, especially in highly diverse tropical regions [11–13].

Indicator taxa can be defined as a species or an assemblage of species that have adapted to

particular features of the ecosystem and reacts predictably and rapidly to change [14]. Dung

beetles (Coleoptera:Scarabaeidae) are examples of potentially good indicators, given their

inherently close relationship with both flora and fauna, particularly mammals [11,15,16], and

their responses to environmental change [17,18]. Their relative ease of sampling [19], high spe-

cies turnover rate (β diversity), global diversity, and well-characterized taxonomy [11,16] offer

additional advantages.

Dung beetles provide a variety of ecosystem services, including nutrient cycling, soil aera-

tion, and seed dispersal [20]. Widespread losses of dung beetles potentially results in degrada-

tion of ecosystem functioning [20–22]. Thus, dung beetles can be used to indicate the success

of restoration activities for biodiversity and offer evidence for the restoration of ecosystem

functioning [7].

Examples of the use of dung beetles as indicators in tropical and sub-tropical south-east

Asia include assessment of forest fragmentation following timber extraction, and palm oil and

rubber plantation development (i.e. [23–26]). Here we use dung beetles to examine forest res-

toration in the poorly studied tropical forests of southern China.

Yunnan Province, bordered by Myanmar (Burma), Laos, and Vietnam, contains some of

China’s last remaining tropical rainforests. It lies within the Indo-Chinese biodiversity hotspot

[27], and is also one of only two regions in China where rubber (Hevea brasiliensis (Willd ex.

A.Juss.) Müll. Arg.) can be cultivated. Since the 1970s, rubber plantations have increasingly

become a major land-use category in Yunnan due to the crop’s economic potential [28–31].

This is particularly apparent in Xishuangbanna National Nature Reserve (XSBN-NNR) in

southern Yunnan. Currently, rubber plantations cover 10% of XSBN’s total area [32] and less

than 50% of the original natural forest remains [33]. XSBN is China’s last remaining safe-

haven for Asian elephants (Elephas maximus Linnaeus, 1758), and contains 22% of China’s

vertebrate diversity, despite only covering 0.02% of China’s land area [34,35]. XSBN has also

experienced deforestation in the form of replacing traditional agriculture with non-rubber

commercial plantations, such as fruit, and infrastructure development [28,33,36,37]. Govern-

ment policies for forest restoration have been underway since 1999 as part of the “Restoring

Farmland to Forest” or “Grain for Green” (退耕还林) action [38], however, the success of

these policies in XSBN has not been fully evaluated. Surveys of birds [39] and plants [40] have

underlined the need to improve protected area management practices and restoration mea-

sures, but effective monitoring has been highlighted as a priority [41,42]. Presently, despite the

conservation value of Xishuangbanna, there is limited funding and capacity for long-term eco-

logical monitoring [35,43,44]. Thus, monitoring efforts must be simple and affordable if they
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are to be effectively implemented. Dung beetles are an ideal group for this, allowing rapid sam-

pling and assessment of ecosystem changes and health at minimal cost and labor [45].

We used dung beetles as an indicator of ecosystem health and restoration success across a

human-modified gradient in the Mengyang sub-reserve of the XSBN-NNR system. We evalu-

ated the diversity and trophic requirements of dung beetle assemblages across protected for-

ests, restored forest, community-owned forests, and rubber plantations and explored these

trends in terms of tropical forest ecosystem health in China. We then identified potential indi-

cator species, which can be further tested and potentially used to monitor ecosystem change in

the region in the future.

2.1: Methods and materials

2.1.1: Study area

This work was carried out in Mengyang reserve, located within the Xishuangbanna National

Nature Reserve (XSBN-NNR) in the Dai Autonomous Prefecture of Xishuangbanna (XSBN),

Yunnan. XSBN receives 1200mm-2500mm of rain annually, with 80% falling during the rainy

season (May-October) [46,47] In addition to rainfall, heavy fog deposits water in the dry sea-

son and is credited with increasing the northern limits of tropical rainforests in this region

[48]. This region contains four major natural vegetation types: tropical montane rainforest,

evergreen broadleaf forest, tropical seasonal rainforest, and monsoon forest over limestone.

XSBN is also home to over 1.1 million people from a diverse range of ethnic groups [49]. The

XSBN-NNR system was established in 1958 and contains six reserves that cover a land area of

approximately 2,500 km2. Of these reserves, Mengyang NNR is the largest, with an area of

around 1,000 km2, with records of 283 species of birds, and numerous plant species [50]. The

59 recorded mammal species include Asian elephant, Indo-Chinese tiger (Panthera tigris Lin-

naeus, 1758), clouded leopard (Neofelis nebulosa Griffith, 1821), and several primate species

[50].

Two villages, Guanping (关平) and Dangpian (挡片), were chosen as foci for surveys in

Mengyang NNR. Sampling was conducted within 22˚17’25.8” and 22˚14’18.96” N latitude;

100˚52’24.49” and 101˚3’40.64” E Longitude. Transects were positioned using habitat catego-

ries and local knowledge across a human-modified land-use gradient: rubber plantation

(n = 3), community-owned forest (n = 4), restored forest (n = 3), and protected forest (n = 4)

(Fig 1). Restored forests were defined as having previously been converted from farmland or

plantation in or before 1999 under the “Restoring Farmland to Forest” or “Grain for Green”

national forest restoration policy [51], which paid farmers to plant and encourage forest on

marginal farmland. Community forests were categorized as forests belonging to a household

or village where gathering and some timber extraction are permitted. All forests sampled had

experienced some level of human disturbance. For example, we encountered evidence of

poaching snares, harvested trees, and human refuse in even the most remote protected areas

sampled.

2.1.2: Sampling

Dung beetle sampling using pitfall trapping was carried out once per month over three months

during the rainy season (Aug–Oct, 2016). We sampled in the rainy season because dung beetle

diversity is often higher during times of precipitation [54,55]. We used 1.8L plastic traps with

dimensions of 18x12x11cm. Pitfall traps were set in groups of three (triplets) placed at least 7m

apart, each of which had a different bait: carrion, omnivore dung, or elephant dung. Carrion

consisted of pig meat left to decay for at least 6 hours, locally collected pig dung was used as

omnivore dung, and elephant dung was collected from forest-grazed rescue elephants living in
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Mengyang’s “Wild Elephant Valley”. Seven meter separation between bait types has been used

in other multiple bait studies aimed at capturing maximum diversity of dung beetles as well as

diet specialists (e.g. [7,56–58]). It is acknowledged that this separation may not allow indepen-

dence between baits [59], however, this method enabled a broader assessment of the full dung

beetle community compared to using only a single bait type.

Triplets were placed at least 100m apart to ensure independence between trapping points

[59] along transects of between 500m to 1km in length, depending on logistic accessibility and

land-use section size. Transects started at least 100m from forest edges to minimize forest-edge

effects, and at least 500m from paved roads. A total of 1,107 traps were set over the three sam-

pling months: 333 were in protected forests, 243 in restored forests, 306 in community forests,

and 225 in rubber plantations. However, baits were removed by wildlife from 12 traps in pro-

tected forests, 6 traps in restored forests, and one trap in both community and rubber planta-

tions. These traps were removed from analyses, resulting in a final sampling effort of 1,087

traps.

Fig 1. Location of XSBN-NNR and study sites. Location of XSBN-NNR within China and the position of study sites (Guanping and Dangpian, indicated with stars)

and transects, with land-use categories in the vicinity of sampling locations. Land-use classification was developed using ArcGIS satellite imagery and Vegetation

Continuous Fields (VCF) [52] with a forest cover cut-off of 70% to delimit mature rubber trees from forest [53]. Land used for corn, rice, substinence farming, and tea is

classified as agriculture.

https://doi.org/10.1371/journal.pone.0204764.g001
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We used 100g of homogenized bait in each trap to avoid potential size bias. Baits were

wrapped in muslin fabric, which was then suspended across the top of the trap and secured on

either side. Trap covers were placed approximately 10 cm above the trap to prevent depreda-

tion of beetles by birds or removal of baits by animals, as well as to limit rainfall entering the

trap. In accordance with reserve permit requirements, traps were left dry and empty to mini-

mize fatalities. Our pilot studies indicated that dung beetles could not crawl out of the traps or

easily fly through the gap between the lid and the trap. However, we acknowledge that some

specimens may have escaped or been depredated, for example by predatory beetles, such a sta-

phalinids, entering the traps.

Trap contents were collected after 24 hours. In accordance with permit requirements, large

and easily identifiable specimens were released after identification in the field. All small indi-

viduals, and specimens which could not be identified in the field, as well as representative spec-

imens from larger species, were euthanized using a 5% chloral hydrate solution, followed by

storage in 70% ethanol in the field and thereafter in 95% ethanol.

2.1.3: Data analysis

Collected specimens were identified to species level using museum specimens, and where this

was not possible a morphospecies code was assigned. Specimens that were too damaged to be

identified were excluded from further analyses (n = 7). Reference specimens were deposited in

the Beijing Forestry University Museum. EstimateS [60] was used to calculate species represen-

tivity using four common richness estimators (ICE, ACE, Chao1, and Jackknife) and create

species accumulation curves using 100 randomizations. All other data were analyzed using R

statistical package, version 3.1.2 [61] and packages vegan [62], labdsv [63], iNEXT [64,65],

MASS [66], lme4 [67], and LmerTest [68].

We first assessed diversity metrics across land-use categories and across bait types. To eval-

uate diversity metrics across land-use categories all individuals found at each bait type were

summed for each triplet of traps (grids). Biodiversity metrics (Shannon’s H, Simpson’s D, Fish-

er’s Alpha, and abundance) were calculated for each grid. Linear mixed-effects models were

used to assess the influence of land-use category on derived metrics followed by lsmeans pair-

wise comparison. As this was a repeated measures survey with sampling conducted over sev-

eral months we used a random intercept for sampling month, and grids nested within

transects to deal with spatial pseudo-replication [69]. Abundance values were log-transformed

prior to modeling. Rarefied species richness was calculated for the entire transect using cover-

age-based rarefaction methods in iNEXT [64]. The models for rarefied richness were con-

structed with a quasipoisson error distribution using glmmPQL in MASS [66] with transect

nested within land-use type.

We repeated the above process to analyze diversity metrics across bait-types, with each indi-

vidual pitfall trap representing an individual data point. Again, a random intercept was used

for sampling month with grids nested within transects, and GPS points for each sample nested

within grids. Rarefied richness was calculated at the transect level for each bait-type, and abun-

dance values were log-transformed prior to modeling.

We used a distance matrix based multivariate permutational analysis to test for differences

in dung beetle assemblages across land-use categories and bait types. Firstly, we assessed the

variance in assemblages explained by land-use categories, and then assessed the variance

explained by bait types, taking into account the variance explained by land-use category.

Grouping factors were used to constrain permutations with respect to individual transects and

the month. We used the metaMDS function in the Vegan package to determine the optimum

Bray-Curtis dissimilarity matrices for the abundance matrices, which resulted in Wisconsin

Dung beetles as indicators of restoration success

PLOS ONE | https://doi.org/10.1371/journal.pone.0204764 November 8, 2018 5 / 18

https://doi.org/10.1371/journal.pone.0204764


standardization. We then used non-metric multi-dimensional scaling (NMDS) to map species

assemblages across land-use categories and bait types.

The potential of each species as an indicator species was tested using the indicator valuation

method, IndVal [70], with 1000 permutations to evaluate habitat specificity and fidelity among

dung beetle species. IndVal scores are a product of the species relative frequency and relative

abundance, expressed as a value between zero and one [62,70]. Indicator species for specific

land-use categories were evaluated against a threshold value of�0.70, with species scoring

below this threshold regarded as generalist species [13,71].

Finally, we calculated Levin’s Niche Breadth (Levin’s D) for each species in each land-use

category in order to evaluate the relationship between species’ abundances and dietary niche

breadths (e.g. [72,73]).

Individuals of each species were summed within transects with respect to bait type, and

Levin’s values (D) were determined for each monthly sampling repetition. Due to some species

not being present in a given transect, a total of 153 values were calculated. We then calculated

abundance for each species and total abundance of all species, observed richness, and coverage

based rarefied richness for each transect in each monthly repetition. We used linear mixed

effects models to evaluate the relationship between Levin’s D and the abundance of each spe-

cies, total abundance of all species, observed species richness, and rarefied species richness to

determine whether niches were broader in depauperate habitats and for more abundant

species.

We first created the global model in lme4 with all variables (land-use category, species iden-

tity, rarefied species richness, total abundance at each transect, and each species’ abundance at

each transect, and logical two-way interactions). Two-way interaction variables between land-

use-category and total abundance of all species, the abundance of each species, and species

richness were modelled, in addition to the interaction between each species and its abundance.

Abundance values were log-transformed prior to analysis. The Step function from lmerTest

[68] was then used to simplify the global model by removing non-significant effects. The ran-

dom effects structure used random intercepts for sampling month and nested transects within

land-use category.

3.1: Results

3.1.1: Richness estimations and sampling representivity

In total 3,741 individual dung beetles were identified, representing 21 species or morphospe-

cies across seven genera. We identified 1,407 individuals from protected forests (19 species),

1,028 individuals from restored forests (19 species), 1,056 individuals from community forests

(18 species), and 250 individuals (14 species) from rubber plantations (S1 Table). Species accu-

mulation curves approached asymptotic levels for all land use types (S1 Fig). There was an

indication that ACE, ICE, Chao 1, and Jackknife means came close to convergence for com-

munity forests and rubber plantations, but ICE and Jackknife appeared to continue increasing

in restored and protected forests (S2 Fig).

3.1.2: Biodiversity metrics and community assemblages across land-use

categories

All of the models for biodiversity metrics were significant against the null model except for

alpha diversity (F3, 117.71 = 1.43, p = 0.238) (Fig 2). None of the forested land-use categories

(protected, restored, and community-owned) differed from each other across any of the biodi-

versity metrics. Rubber had significantly lower diversity metrics than restored forest for all
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significant models, but was only significantly lower than protected and community forests for

Shannon’s H and abundance (Fig 2). Rarefied richness was significantly lower in rubber plan-

tations than in restored forests, but not protected forests or community forests. Fisher’s alpha

was not significantly different across any land-use category.

Fig 2. Diversity metrics for dung beetle assemblages across land-use categories. Diversity metrics, excluding Fisher’s Alpha (which was not significant),

across land-use categories at the transect level. Transect means are shown, along with GLM model statistics against the null model. Letters above the error

bars indicate significant differences (p<0.05) between land-use categories, as determined by pairwise lsmeans. Denominator degrees of freedom using

Satterthwaite approximation are shown.

https://doi.org/10.1371/journal.pone.0204764.g002
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Dung beetle community assemblages did not vary significantly within transects, between

transects of the same land-use category, or between sampling months (p>0.05). However,

there was significant variation in dung beetle assemblages across land-use categories (F3, 41 =

2.42, p<0.01). NMDS ordinations showed complete separation of 95% confidence interval

ordination ellipses for rubber plantations and the forested land-use categories (Fig 3A). How-

ever, the three forested land-use categories were closely clustered, and protected forests and

restored forest assemblages overlapped. Convex ordination hulls, which enclose all points

within each land-use category, were consistent with the 95% confidence ellipses.

3.1.3: Land-use indicator analysis

We identified 10 species with significant indicator scores. Significant indicators were identified

for all forest types except for community forest (Table 1). The majority of indicator species

were for restored forest, with the highest indicator values of 0.38 for Onthophagus zimmer-
maani and O. diabolicus. Only one indicator was identified for rubber plantations, Liatongus
gagatinus, and protected forests, Onthophagus anguliceps.

3.1.4 Variation in biodiversity metrics and assemblages across bait types

We collected 1,780 individuals from omnivore baited traps, representing 48% of total individu-

als captured. Carrion baited traps were similar, with a total of 1,695 individuals, or 45% of total

individuals. Elephant dung collected 266 individuals, representing only 7% of the total number

of individuals captured. Total observed species richness was highest for omnivore dung

(n = 20), followed by carrion (n = 17), and finally elephant dung (n = 14) (S2 Table).

Permutational analysis revealed that dung beetle assemblages also varied significantly

between bait types, explaining 19% of the observed differences in assemblages, after account-

ing for variations between land-use categories (F2, 117 = 14.11, p<0.001). In the ordination, the

Fig 3. NMDS ordinations of dung beetle assemblages across land-use and bait type categories. NMDS ordinations for assemblages across A) land-use categories

(stress = 0.11) and B) bait types (stress = 0.17) using Wisconsin standardization of abundance matrices. Ordinations include standard deviation ellipses (CI = 0.05) and

convex hulls enclosing all data points within each grouping level (land-use category, bait type, respectively).

https://doi.org/10.1371/journal.pone.0204764.g003
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95% confidence ellipses for omnivore and carrion baits overlapped significantly, but elephant

dung assemblages were entirely non-overlapping. However, the convex hull for carrion baits

did overlap the other two bait types (Fig 3B). The assemblage of dung beetles captured in each

bait type appeared to be a subset of the overall assemblage, although Aphodius sp. (n = 2) was

only found on the elephant dung bait.

Simpson’s D, Shannon’s H, log transformed abundance, and rarefied richness were all sig-

nificant compared to the null models. Diversity values were significantly lower for elephant

dung than for the other two bait types across all models. Carrion values were significantly

lower than omnivore in the model for log-transformed abundance and significantly higher

than omnivore baits in the models for Simpson’s D (Fig 4).

3.1.5: Variations in niche breadth across land-use categories

Levins’ Niche Breath Values (D) for most species were greater than 1, but several species (Para-
gymnopleurus sp. 1, O. balthasari, O. dapcauensus, O. sp. 2, O. sp. 5, Aphodius sp), had a niche

breadth of 1, meaning they were found on only one bait type. On average, niche breadth was

higher in disturbed areas—community forest and rubber plantations, than in undisturbed

areas—protected forest and restored forest (Fig 5).

The final, simplified model for Levin’s Niche Breadth included only co-variates for species,

species’ abundances, the land-use category, and the interaction between species and their

abundances. Rarefied richness, total transect abundances, and interactions between these vari-

ables were all removed during the model simplification process (S3 Table).

Least square (LS) means showed a similar trend to standard mean values for niche breadth

across land-use categories: more highly disturbed categories (community forest and rubber

plantation) had higher values (1.39±0.07, 1.38±0.08, respectively) than less disturbed catego-

ries (protected forest, restored forest; 1.22±0.07, 1.22±0.07, respectively). LS mean values were

significantly higher in community forests than protected and restored forests (p = 0.02, both),

but differences between community forest and rubber plantations were not significant

(p = 0.89). While rubber plantations had a higher mean value than restored and protected for-

ests, this difference was not significant (p = 0.06, both).

Table 1. Abundance of species with significant indicator values.

Community Forest Protected Forest Restored Forest Rubber Plantation Indicator Value Cluster

Liatongus gagatinus 5 2 6 17 0.15�� Rubber

Onthophagus anguliceps 138 377 162 46 0.30�� Protected

O. balthasari 0 1 9 0 0.15��� Restored

O. diabolicus 99 150 178 14 0.38��� Restored

O. dissentaneus 31 41 33 26 0.17� Restored

O. manipurensis 35 72 85 1 0.27�� Restored

O. zimmermaani 23 17 76 9 0.38��� Restored

O. sp3 174 299 165 38 0.29� Restored

O. sp4 14 10 37 1 0.13��� Restored

Synapsis sp1 8 29 14 0 0.17�� Restored

Abundances of species with significant indicator values in each land-use category, their indicator values, and their associated cluster. Only species with significant

indicator values are shown. Levels of significance

<0.001���

<0.01��

<0.05�.

https://doi.org/10.1371/journal.pone.0204764.t001
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The LS mean values were significant at the p<0.05 value for all species except O. dapa-
cauensis (p = 0.05). Several congeneric species differed significantly, including O. tricornis, O.

zimmermaani, and O. dissentaneus (S4 Table). Despite significant variation between species’

niche breadths, and significant variations in niche breath across land-use categories, the inter-

action variables between land-use categories and species derived values (abundances and rich-

ness) were not significant.

Fig 4. Biodiversity metrics of dung beetle assemblages across bait types. Transect means for each biodiversity metric at the transect level with standard

errors. Letters above the standard error bars indicate significant differences (p<0.05) between bait-types, as determined by lsmeans pairwise comparisons.

https://doi.org/10.1371/journal.pone.0204764.g004
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Species abundance, overall, had a significant positive relationship with niche breadth values

(Estimate = 0.51±0.11, p<0.001). However, the species by species abundance interaction was

negatively related to niche breadth, except for Synapsis sp. (Estimate = 0.002±0.28, p>0.05).

4.1: Discussion

Overall, our results are consistent with numerous other studies in SE Asia that show that dung

beetle assemblage diversity decreases with increasing disturbance (e.g. [17,74–77]). Our results

show that restoration of farmland to forest also restores dung beetle communities with

restored forests showing increased diversity and abundance of dung beetles compared to plan-

tations and community forests and community compositions most similar to protected forest.

While community-owned forests had lower dung beetle diversity and abundance than restored

forests, they may represent a practical tool for conservation by maintaining higher levels of

diversity than plantations. Thus, these managed areas of forest may be more vital for ecosystem

health at a landscape level than previously realized. Importantly, we show that dung beetles

may act as reliable indicators of habitat disturbance and ecosystem health for the XSBN-NNR

region, and could be used to monitor future land-use changes.

4.1.1: Changes in dung beetle communities across the land-use gradient

Relatively high dung beetle diversity in restored forests and community forests suggests that

these habitats are capable of retaining or recovering biodiversity. Higher diversity and species

richness in forested (protected, restored, community-owned) land-uses compared to unfor-

ested land-uses (rubber) is consistent with many other studies on dung beetles in SE Asia

[24,25,74,77–80] and other groups, such as birds [26] and mammals [81]. However, the ability

Fig 5. Comparison of Levin’s niche breadth for species across land-use categories. Averaged Levin’s niche breadth values for each species at each site

type with standard errors. Species found on only one bait type (D = 1) are omitted (Paragymnopleurus sp. 1, O. balthasari, O. dapcauensus, O. sp. 2, O.

sp. 5, Aphodius sp). Species without standard error bars were either only present during one sampling period (as indicated with an asterisk) or

experienced no variation in niche breadth.

https://doi.org/10.1371/journal.pone.0204764.g005
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of restored forests to fully regain biodiversity is not well studied, although some studies have

indicated that prolonged restoration efforts have not resulted in fully restored biodiversity

[7,82,83] or have required considerable intervention and management [9,84]. The success of

restoration activities in XSBN-NNR may be because the restored forests sampled are all on the

edge of, or within, non-restored protected forests [85].

Rubber plantations had significantly lower richness compared to most forested areas, and

lower total abundance. This is not surprising, and is consistent with findings regarding planta-

tions from other studies in similar regions (e.g. [17,24,45,80,86]). Community forests were dis-

tinct from the other two forest types, but still more similar to protected and restored forests

than to rubber plantations. This suggests that community forests represent a practical tool for

local forest conservation, especially when compared to monocultures, while still allowing peo-

ple living in the area to directly benefit from the forest. Few studies have looked directly at

diversity within community-owned forests but a link between community management and

higher biodiversity in this region has previously been noted [43]. Community forests in other

regions of SE Asia have been credited with alleviating poverty, as well as increasing biodiversity

and biomass production [87–89]. However, within this region, we observed community forests

being replaced by plantations in some areas. We suggest that encouragement to maintain com-

munity forests instead of converting them into other land-use categories may have significant

benefits for biodiversity as well as human wellbeing (e.g. [90–92]).

Despite distinct assemblages across land-use categories, no indicators met the specialist

cut-off value of 0.70 [13,71]. However, many species showed a significant preference in land-

use categories, suggesting that they are flexible generalists that may serve as “detector species”,

or species that show habitat preferences, but will still move to adjacent habitats under changing

environmental conditions [71]. Therefore, these species may be useful for monitoring further

restoration success.

4.1.2: Dung beetle diet preferences

Almost all individuals (94%) were collected from omnivore and carrion baited traps. These

baits captured similar total abundances, although omnivore dung had slightly higher observed

richness. Elephant dung captured only 6% of the total individuals and only 14 species. While

the attraction of smaller dung beetle species to elephant dung has been recorded elsewhere in

Asia [93], we are not aware of any studies showing lack of attraction to elephant dung in areas

where elephants are native and present. However, one limitation of our study was that we used

standardized bait sizes of 100g, which is much smaller than the size of a typical elephant dung

pat and may have influenced dung beetle assemblages. The use of captive elephant dung in this

study may have influenced dung beetle responses, although the captive elephants used as a

dung source in this study were grazed in the forest and exposed to a similar diet to the wild ele-

phants. Furthermore, all wild elephant dung encountered during the study was inspected for

dung beetles, but no new species were found, and the dung often contained low or zero

individuals.

4.1.3: Variation in niche breadth

Levins’ niche breadth varied significantly across species, with congeneric species showing dif-

ferent bait preferences. Niche breadths were, on average, higher in community forests and rub-

ber plantations than in less disturbed forests. However, the interaction terms for species-

specific variables by land-use category were not significant, suggesting that individuals, as

opposed to species as a whole, may adjust their niche breadth based on differences in their

habitat in this study site. Additionally, total abundance of all dung beetles in a transect was not
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significant, although each species individual abundance was, suggesting that interspecific com-

petition may have less influence on niche breadth than intraspecific competition.

Despite significant variation between bait types, we acknowledge that our traps were not

necessarily independent of each other. The trap spacing of 7m, selected in accordance with

other studies that aimed to maximize sampling representivity by using multiple bait types (e.g.

[7,56–58]) may have resulted in interference among bait types, particularly with strong-smell-

ing baits like pig dung and rotting meat. More research regarding interspecific dietary niche

breadth is needed to determine whether the diet plasticity exhibited by dung beetles is due to

evolutionary responses at the population level or individual behavioral responses.

5.1: Conclusion

This research provides a baseline for further studies on ecological health, conservation, and

restoration success of forested tropical and sub-tropical areas in China. This region is of both

conservation and economic interest, and protecting biodiversity while maintaining economic

opportunities for the people living there is vital. We show that restoration of tropical forests

appears to be successful for a key ecological and biological indicator group—dung beetles. Fur-

thermore, community-owned forests appear to be a valuable and practical method of main-

taining ecosystem health and biodiversity.

The low number of species with either dietary or habitat specialisms suggests a possible

decline in specialists due to habitat change. Unfortunately, no previous dung beetle surveys

exist for XSBN, making comparisons over time impossible. Therefore, it is difficult to deter-

mine if XSBN has reduced richness and a loss of specialists, or if this is just a natural conse-

quence of biogeography. We encourage further work across latitude gradients to understand

the distributions of dung beetle assemblages in SE Asia, as well as surveys in more isolated

regions of the protected areas where mammal diversity remains relatively high and during

both the rainy and dry season. Combining dung beetle surveys with extensive mammal surveys

will provide a better understanding of interspecific interactions and trophic networks in this

highly fragmented landscape.

As China continues to create and improve its protected areas, monitoring their success is

increasingly vital. The presence of markedly different assemblages across land-use categories

suggests that dung beetles should continue to be used as indicators of restoration and pro-

tected area success for this region. In addition, land-management in this area would likely ben-

efit from maintenance of community-owned forests, and restoration of farmland to forest.
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