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Categorization performance is a popular metric of scene
recognition and understanding in behavioral and
computational research. However, categorical constructs
and their labels can be somewhat arbitrary. Derived
from exhaustive vocabularies of place names (e.g., Deng
et al., 2009), or the judgements of small groups of
researchers (e.g., Fei-Fei, Iyer, Koch, & Perona, 2007),
these categories may not correspond with
human-preferred taxonomies. Here, we propose
clustering by increasing the rand index via coordinate
ascent (CIRCA): an unsupervised, data-driven clustering
method for deriving ground-truth scene categories. In
Experiment 1, human participants organized 80
stereoscopic images of outdoor scenes from the
Southampton-York Natural Scenes (SYNS) dataset
(Adams et al., 2016) into discrete categories. In separate
tasks, images were grouped according to i) semantic
content, ii) three-dimensional spatial structure, or iii)
two-dimensional image appearance. Participants
provided text labels for each group. Using the CIRCA
method, we determined the most representative
category structure and then derived category labels for
each task/dimension. In Experiment 2, we found that
these categories generalized well to a larger set of SYNS
images, and new observers. In Experiment 3, we tested
the relationship between our category systems and the
spatial envelope model (Oliva & Torralba, 2001). Finally,
in Experiment 4, we validated CIRCA on a larger,
independent dataset of same-different category
judgements. The derived category systems
outperformed the SUN taxonomy (Xiao, Hays, Ehinger,
Oliva, & Torralba, 2010) and an alternative clustering
method (Greene, 2019). In summary, we believe this

novel categorization method can be applied to a wide
range of datasets to derive optimal categorical groupings
and labels from psychophysical judgements of stimulus
similarity.

Category systems for real-world
scenes

The visual properties of real-world environments
have enormous heterogeneity: no two scenes are
exactly alike. Scene categories allow us to organize
environments into meaningful, discrete classes that
represent their statistical regularities, and provide
a coarse, efficient description of the environment.
Category membership provides information about the
probable activities, objects, and layouts associated with
a scene, and serves as a convenient descriptor—most
people can easily visualize the typical characteristics of
forests or beaches, for example. It is unsurprising, then,
that categorization performance is a popular metric of
scene understanding in behavioral and computational
research.

Scene categorization is achieved with impressive
efficiency and minimal cognitive resources: novel images
can be categorized from brief presentation durations
(Fei-Fei et al., 2007; Potter, 1976), from only foveal, or
only peripheral, visual information (Larson, Freeman,
Ringer, & Loschky, 2014; Larson & Loschky, 2009), and
in the near-absence of attention (Li, VanRullen, Koch,
& Perona, 2002). The computational processes that
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underpin this ability have been extensively investigated
(Malcolm, Groen, & Baker, 2016); however, most
research does not scrutinize the taxonomical structure
of applied category systems, that is, the ontological
“realness” of the individual categories, the lawfulness
of the categorical boundaries, the number of categories,
and so on. In this introduction, we discuss different
taxonomies of real-world scenes, and review a number
of visual features that are thought to underpin human
scene categorization. We discuss the behavioral and
computational evidence that feature diagnosticity
depends on taxonomy, and then outline the importance
of establishing more rigorous taxonomies.

Systems of categorization

Category systems can differ in their descriptive scope:
a single environment might be described as “natural,” “
forest,” or “deciduous thicket.” Each description carries
a different amount of detail. Tree hierarchies have
been used to represent the multilevel organization of
categories (Rosch, 1975; Rosch, 1999; Rosch & Lloyd,
1978; Rosch & Mervis, 1975; Tversky & Hemenway,
1983). Superordinate categories (e.g., natural vs.
man-made or indoor vs. outdoor distinctions) are
located at the highest tier of the hierarchy, basic-level
categories describe variations within superordinate
categories (e.g., mountain and coast are subdivisions of
natural scenes) and subordinate categories capture finer
distinctions within basic-level categories (e.g., pebbly
beaches and sea cliffs within coastal scenes).

Rosch and Lloyd (1978) argue that “the task of
category systems is to provide maximum information
with the least cognitive effort” (p. 10) and propose that
basic-level categories offer the most economical mode
of description. Indeed, basic-level names are usually
the default: we tend to describe a scene as a “forest,”
avoiding coarser descriptions such as “natural,” or
finer qualifications like “a coniferous forest in autumn”
(Hajibayova, 2013). Basic-level categories purportedly
offer an optimal trade-off between distinctiveness and
informativeness (Murphy & Smith, 1982; Rosch &
Lloyd, 1978; Tversky & Hemenway, 1983), and, unlike
superordinate categories, may be encoded automatically
or involuntarily in response to visual images (Greene &
Li, 2014).

Category systems and feature encoding

Although there seems to be a general preference
for using basic-level categories, factors including
stimulus presentation duration (Kadar & Ben-Shahar,
2012; Loschky & Larson, 2010), presentation order
(Mack & Palmeri, 2015), and familiarity (Anaki &
Bentin, 2009), can bias scene categorization toward

superordinate or subordinate distinctions. Similarly, the
“entry level” (i.e., most quickly accessed level) of object
categorization is affected by stimulus typicality and
the observer’s subjective expertise (Johnson & Mervis,
1997; Jolicoeur, Gluck, & Kosslyn, 1984; Murphy &
Brownell, 1985; Tanaka & Taylor, 1991).

The ease of categorization may reflect where
an image sits relative to the boundaries that carve
out the “perceptual space” into distinct categories
(Sofer, Crouzet, & Serre, 2015). Sampling images
that maximize the distance to a relevant category
boundary (e.g., natural vs. manmade), facilitates
category discrimination (Sofer et al., 2015). Thus,
the category system, in addition to individual
differences, may alter the cues that are informative for
categorization (Figure 1). In the related case of object
categorization, encoding of background/context (Prass,
Grimsen, Konig, & Fahle, 2013), orientation (Hamm
& McMullen, 1998), and high spatial frequencies
(Collin, 2006; Collin & McMullen, 2005) varies over
different category systems (i.e., over different levels
in the tree hierarchy of categories). As we explore
in this article, similar effects have been observed for
scene categorization. This interplay between perceptual
coding and categorization highlights the importance
of understanding the category systems that humans
naturally use.

Objects
The hierarchical architecture of the human visual

system suggests that complex perceptual representations
are built from collections of simpler components
or features. Early theories similarly held that scene
recognition proceeds from an initial stage in which
the identity and position of individual shapes or
objects is determined (Bulthoff & Mallot, 1988;
Hildreth, 1987; Marr, 1982; Watt, 1990). Experimental
work suggests that object identification improves
subordinate scene category discrimination (Collin &
McMullen, 2005; Malcolm, Nuthmann, & Schyns,
2014). However, basic-level and superordinate scene
categories are identified in parallel with object
categories (Fabre-Thorpe, 2011; Joubert, Rousselet,
Fize, & Fabre-Thorpe, 2007; Rousselet, Joubert, &
Fabre-Thorpe, 2005; VanRullen & Thorpe, 2001), and
computing superordinate or basic-level scene category
from object statistics is computationally expensive
(Greene, 2013). These results suggest that objects are
more useful for subordinate categorization, possibly
owing to stronger object predictability for subordinate
categories, or redundancy between object identities
and concurrently available low-level image features for
coarser category discriminations (discussed elsewhere
in this article). It has also been argued that objects may
be more frequent and diverse in indoor scenes (Greene,
2013). As a result, empirical measurements of the utility
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Figure 1. A toy example of how particular category structures can determine the visual features informative for discrimination. Color
cues may be sufficient to discriminate natural images from street images (A), but less informative for discriminating subsets of natural
scenes (B, field and forest categories). In this case, information about the spatial structure (among other features; see below for
discussion) would be useful.

of object identification for scene categorization may
depend on the prevalence of indoor categories in the
dataset or experiment.

Spatial layout
According to the spatial envelope model (Oliva &

Torralba, 2001, 2006; Torralba & Oliva, 2002, 2003), an
image’s semantic category (e.g., beach vs. forest) can be
recovered using a small set of image descriptors termed
spatial envelope properties (e.g., openness, naturalness,
roughness) that represent the spatial layout of the
scene (Figure 2). Classifiers trained to predict semantic
categories from human-labelled spatial envelope
properties perform similarly to humans (Greene &
Oliva, 2006, 2009b). Moreover, adaptation studies
suggest that human category representations rely on
spatial envelope properties, or correlated features:
after prolonged viewing of an image set with similar
spatial envelope properties, subsequent categorization
is biased away from the adaptation set (Greene &
Oliva, 2010). For example, adaptation to images high
in openness generates a bias toward low-openness
categories such as forests. Spatial envelope properties
may be computed from statistics of low-level visual
features (e.g., histograms of edges or Fourier amplitude
spectra) pooled over large areas of the visual field
(Oliva & Torralba, 2001). For example, human-rated
spatial envelope properties can be predicted by the
GIST image descriptor proposed by Oliva and Torralba
(2001). The GIST descriptor computes a histogram
of average responses to Gabor-like filters at different
orientations and scales over different spatial regions
of an image (usually a 4 × 4 grid). Because global
GIST features predict human-rated spatial envelope

properties, which in turn predict semantic categories, a
core tenet of the spatial envelope model is that category
membership can be determined without parsing an
image into its constituent objects (Oliva & Torralba,
2001).1

The spatial envelope model predicts that category
systems that maximize between-category differences in
coarsely localized GIST features will be discriminated
more efficiently by humans. Although basic-level
categories are thought to be encoded more or
less automatically (as discussed elsewhere in this
article), some work has shown that superordinate
categorization in fact precedes basic-level categorization
(Fabre-Thorpe, 2011; Kadar & Ben-Shahar, 2012;
Loschky & Larson, 2010; Sun, Ren, Zheng, Sun,
& Zheng, 2016). According to the spatial envelope
model, this superordinate advantage emerges because
superordinate categories are more separable in
the GIST feature space than basic-level categories
(Loschky & Larson, 2010; Oliva & Torralba, 2001).
Indeed, if a biased sample of images maximizes the
discriminability of basic-level members in GIST-space,
basic-level categorization precedes superordinate
categorization (Sofer et al., 2015). The spatial envelope
model also predicts that GIST features discriminate
man-made vs. natural categories better than indoor
vs. outdoor categories (Oliva & Torralba, 2001),
and behavioural work confirms that natural vs.
man-made category distinctions are faster than
indoor vs. outdoor distinctions (Banno & Saiki,
2015; Kadar & Ben-Shahar, 2012). In other words,
not all superordinate categories are distinguished
equally easily, and this could reflect differences in the
perceptual availability of discriminative spatial layout
information.
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Figure 2. The spatial layout of natural scenes correlates with
low-level global image features. (A) Images from the SYNS
dataset (Adams et al., 2016). (B) Variations in pixel intensity
across the image capture some characteristics of the scene’s
spatial structure without object segmentation. Height
corresponds to pixel luminance (images were low-pass filtered
with a gaussian kernel: bandwidth = 50 pixels). (C)
Spectrograms provide a visualization of the distribution of
low-level image features. High energy is indicated in each polar
plot by dark regions. For example, in the image on the right,
contrast energy is concentrated in the lower half of the image,
where there are horizontal image structures of high spatial
frequencies (note that the high-energy, dark regions in the
lower Fourier plots are vertically oriented and close to the
center of each plot). The GIST feature descriptor provides a
summary of these image spectra. (D) Spatial envelope
properties, such as roughness and openness, can be predicted
from GIST. Figure adapted from Oliva and Torralba (2001).

Affordances
An alternative, affordance-centered account

of category representations emphasizes that the
“conceptual structure of environments is driven
primarily by the scene’s functions, or the actions that
one could perform in the scene” (Greene, Baldassano,
Esteva, Beck, & Li, 2016; Groen et al., 2018). Greene
et al. (2016) suggest that scene categories are better
predicted by functional information than features such
as color, spatial layout, attributes (surfaces, materials,
etc.), object co-occurrence statistics, and so on.
Importantly, however, affordances necessitate objects
to be acted upon, or spaces to be acted within—and
thus rely on extracting objects and spatial structure.
Moreover, though Greene et al.’s (2016) affordances
are stronger predictors of human categorization

than categorization models based on GIST, or other
low-level image statistics (e.g., Oliva & Schyns, 2000;
Oliva & Torralba, 2001), the latter models were
expressly formulated to reveal the diagnostic features
of early visual representations and were tested on
superordinate or basic-level categories (e.g., the spatial
envelope model was formulated to discriminate eight
basic level categories; Oliva & Torralba, 2001). In
contrast, Greene et al. (2016) tested these models on
311 subordinate categories. Low-level image statistics
may be more useful for basic- or superordinate-level
scene categorization, whereas subordinate-level
scene categorization may be more closely related to
affordances.

Color
The greenness of forests, blueness of coastlines, and

yellowness of deserts are highly predictive low-level
features for categorization (Goffaux et al., 2005).
Abnormally colored scenes (e.g., a beach scene with a
yellow sky and blue sand) that contain the same color
segmentation cues as normal scenes (i.e., with similar
discontinuities in hue at object/surface boundaries) take
longer to categorize (Castelhano & Henderson, 2008;
Goffaux et al., 2005; Oliva & Schyns, 2000). Hence,
color improves categorization not only because it may
benefit segmentation, but because some categories have
well-defined color profiles. Color-based improvements
are larger for indoor vs. outdoor urban discriminations
than natural vs. manmade discriminations (Rousselet
et al., 2005), presumably because artificially illuminated
indoor scenes tend to be more “yellowish/brownish”
than either natural or manmade outdoor scenes
(Rousselet et al., 2005). Computational work confirms
that color cues reliably discriminate indoor vs. outdoor
images (Szummer & Picard, 1998; Tong, Shi, Yan, &
Wei, 2017). Clearly, the benefit of color information
varies with the distribution of colors within and
between category representations.

In this brief review of four feature dimensions
(objects, spatial structure, affordances, and color),
we have highlighted how the cues informative for
categorization depend on the taxonomical structure
of the chosen category system. This dependence
highlights the importance of understanding the actual
scene taxonomies that humans rely on when viewing
real-world scenes. Next, we discuss the strengths and
weaknesses of existing approaches to taxonomizing
real-world scenes.

Existing scene taxonomies

Large-scale databases such as ImageNet (Deng et al.,
2009), Places (Zhou, Lapedriza, Xiao, Torralba, &
Oliva, 2014), and SUN (Xiao et al., 2010) have used
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WordNet (Miller, 1995) to identify quasi-exhaustive
dictionaries of category terms. These terms are then
entered into search engines to collect image stimuli.
However, the fine granularity of WordNet labels is
atypical of human language: humans show up to
32.7% disagreement regarding the meaning of these
labels (Chklovski & Mihalcea, 2003). WordNet was
built by expert lexicographers and many terms require
substantial esoteric knowledge. For example, “dolmen,”
“medina,” “indoor cloister,” “mastaba,” and “oast
house” are all categories from WordNet used in the
SUN and Places databases (Xiao et al., 2010; Zhou
et al., 2014). Computational work has shown that
merging these fine-grained representations into larger
clusters improves word-sense disambiguation (i.e., the
identification of the correct meaning of a word, given
multiple meanings—e.g., “bass”; Navigli, 2006; Snow,
Prakash, Jurafsky, & Ng, 2007), and recent behavioral
work suggests that humans integrate these senses into
simpler taxonomies with fewer categories (Greene,
2019).

Additional problems may stem from the putative
interchangeability of category terms such as “coast,”
“beach,” and “seaside.” Well–documented effects of
cognitive-linguistic categories on early visual processing
suggest that different category labels may elicit different
visual representations, and different categorization
behavior (e.g., Bentin & Golland, 2002; Goffaux,
Jemel, Jacques, Rossion, & Schyns, 2003; Schyns
& Oliva, 1999). Semantic labels modulate low-level
visual representations within 44 to 150 ms of stimulus
onset (Boutonnet & Lupyan, 2015; Maier, Glage,
Hohlfeld, & Rahman, 2014; Noorman, Neville, &
Simanova, 2018)—a time window in which important
scene properties such as color and spatial structure
are encoded (Cichy, Khosla, Pantazis, & Oliva, 2017;
Goffaux et al., 2005; Ramkumar, Hansen, Pannasch, &
Loschky, 2016). Thus, it is important to establish the
category labels that participants would most frequently
or naturally use.

Main research question

We have argued that the taxonomical structure
of category systems used in empirical perceptual
research can undesirably confound scene perception
and categorization responses. To address this problem,
we aim to develop a method to identify the categories
that humans most naturally use to taxonomize visual
environments. In Experiment 1, we present a novel
method to derive ground-truth category systems
from human grouping judgements in a flexible image
sorting and labelling task that minimizes instruction
and experimenter bias. We present category systems
for three dimensions: semantics, three-dimensional
(3D) spatial structure, and two-dimensional (2D)

appearance. In Experiment 2, we label a larger number
of images from the Southampton-York Natural Scenes
(SYNS) dataset using these categories, and examine
the generalizability of the categories derived from
Experiment 1. We also explore the relationships between
generated categories across the three dimensions. In
Experiment 3, we examine the relationship between
our category systems and the spatial envelope model.
Finally, in Experiment 4, we evaluate our method on
a larger and completely independent dataset, using a
different experimental paradigm.

Experiment 1

Methods

Participants
A convenience sample of 24 naïve undergraduate

and postgraduate students, 19 female, age range:
18–26 years, from the University of Southampton
participated as volunteers, or in return for course
credits. Each of the three tasks (semantic, 3D spatial
structure, 2D appearance) was completed by 20
participants (individual participants completed two or
three tasks each; the order was counterbalanced). For
all experiments, informed consent was obtained before
experimentation, and ethical approval was acquired
from the Research Governance Office, University of
Southampton.

Materials
Eighty full-color stereo-pairs (one randomly sampled

pair from every scene) were sampled from the SYNS
database (Adams et al., 2016). Stimuli were presented
on a dual-monitor display (two 32-inch, 2560 × 1440,
75-Hz, ASUS PB328Q monitors) via a single-bounce
Wheatstone mirror stereoscope at an effective viewing
distance of 83.5 cm. Stimuli were presented en masse as
monoscopic thumbnails (3.98 × 2.64° of visual angle),
but observers selected individual images for enlarged
stereoscopic viewing. (Grouping was performed using
stereoscopic images to capture the role of binocular
depth cues in scene perception.) The stereoscopic
images were displayed at 31.12 × 22.36° of visual angle.
Every participant viewed the same images. The entire
task was programmed in MATLAB (MathWorks, Inc.,
Natick, MA).

Procedure
Participants sorted images into discrete categories.

This task was completed separately for each of the three
dimensions. Task instructions informed participants of
the grouping system they would use (see Appendix for
full instructions).
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Figure 3. Schematic of the categorization task. Images were initially presented in five stacks of images (randomly assigned) on the left
margin of the display. Sort: Participants dragged and dropped each image into the workspace, stacking same category images.
Enlarged, stereoscopic versions of each image could be viewed at any time. Group: Participants checked the validity of all categories
and returned to the Sorting stage if any categories contained only one image or if the number of categories fell outside the range of
three to 10. Label: Participants labelled each category.

Semantic task: Images were grouped by the “type of
place” (e.g., mountain).
Three-dimensional spatial structure task: Images
were sorted according to their depth structure.
Participants were encouraged “to think about the
3D model that you would have to physically build
to represent each scene” and to consider how the
physical structure of some scenes might be similar or
different.
Two-dimensional appearance task: Images were grouped
by their 2D appearance (ignoring variations in 3D
structure). Participants were instructed to attend to the
“colors, patterns . . . or textures,” materials, luminosity,
etc., (e.g., blue or red).

In every task, participants were urged to consider
each image in its entirety, and discouraged from
focusing on smaller subregions like individual objects.
Participants were limited to between three and 10
categories. This constraint served as a liberal middle-
ground between accepted set sizes of superordinate
(two to three; e.g., Fei-Fei et al., 2007; Oliva & Torralba,
2001), and basic-level categories (seven to 13; e.g.,
Fei-Fei & Perona, 2005; Vailaya, Jain, & Zhang, 1998).
Although there are undoubtably a larger number of
possible categories than our limit of 10, the SYNS
dataset only contains a subset of all possible outdoor

scenes (Adams et al., 2016). Categories could contain a
minimum of two images.

Each task contained three activities: “Sort,”
“Group,” and “Label” (Figure 3). Participants accessed
each activity by clicking corresponding tabs at the
bottom of the display using the mouse.
Sort: All 80 images were initially stacked in random
order on the left margin of the display. Participants
created categories by dragging images, one at a time,
into the workspace; categories were defined as any set
of overlapping images. Enlarged stereoscopic versions
of the images were viewed by simultaneously pressing
two mouse buttons.
Group: Category validity was automatically checked. If
participants generated fewer than three or more than 10
groups, a thick black frame highlighted all categories. If
any group contained fewer than two images, the invalid
category or categories were highlighted. Valid groups
were each highlighted with a differently colored border.
Participants continued to the “Label” stage once all
categories were valid.
Label: Participants typed between one and five labels
to describe each group of images.

Participants had unlimited time to complete each
categorization task and took an average of 30 minutes
per task.
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The CIRCA method
We developed the clustering by increasing the

rand index via coordinate ascent (CIRCA) method to
organize images into categories based on psychophysical
judgements of stimulus similarity. In an experiment
that generates pairwise similarity responses, such as the
sorting experiment described elsewhere in this article, it
is possible to represent each participant’s data using an
n x n similarity matrix that codes the pairwise similarity
between all images by a series of 1s and 0s (1 if a given
pair were placed into the same group, and 0 if they were
not). Averaging these matrices across participants gives
S, a similarity matrix that codes the average association
between every image pair. Our ultimate aim is to
identify the set of categories that maximizes in-group
similarities and minimizes out-group similarities in S.

The Rand index quantifies the agreement between
two sets of categories by summing i) the number of
pairs that are in the same category in both sets, and ii)
the number of pairs that are in different categories for
both sets, and dividing by the total number of pairs
(Rand, 1971). A score of 1 represents perfect agreement
between two sets of categories, and 0 represents no
agreement.

Because the Rand index quantifies the agreement
between sets of hard categories (where each datapoint
belongs to only one category), and S represents
category membership on a continuum, we adapted the
Rand index to determine α, the agreement between
the similarity matrix S and a proposed clustering
c = c1, c2,…cn, where ci represents the category to
which image i has been assigned. Let sij be the (i, j)th
element of S, measuring the similarity of images i and
j. Then, we define the affinity between c and S as:

α = 1
n(n − 1)/2

∑

j>i

(ci = c j ) si j + (ci �= c j )(1 − si j ) (1)

Our goal is to find the clustering c that maximizes
the affinity α. We maximize α by iterative coordinate
ascent from a random initial clustering. On each
iteration, reassignment of a randomly selected image to
a randomly selected category is proposed. Proposals
that increase α, and therefore improve the agreement
between S and c, are accepted. This process is repeated
until no move increases α (i.e., until a stationary point
is reached). Because it is possible for our method to
converge at local maxima, this entire procedure is
repeated from a number of different starting positions
(initial clusterings).

Given n stimuli and k clusters, there are kn
possible clustering solutions, and, on every iteration
of coordinate ascent, the maximum number of
proposals before a single reassignment is n(k − 1).
We empirically tested the time complexity of our
method on simulated datasets of various sizes, and
found that time-to-convergence (i.e., stationarity)

increases linearly as a function of n, and increases with
k following a power law (see Supplementary Materials,
Supplementary Figure S1).

To find the globally optimal clustering, our method
can be implemented multiple times for different
numbers of clusters. To protect against overfitting, we
cross-validate clusterings on left-out data using the
adjusted form of the Rand index (ARI), which controls
for variation in chance-level agreement as a function
of the number of clusters (Hubert & Arabie, 1985).2 If
the validation data are a hard clustering, then the ARI
is calculated as in Hubert and Arabie (1985), but if
the validation data is a soft clustering (e.g., an average
of responses from multiple observers), which has an
undefined number of clusters, then the adjustment to
the Rand index can be calculated by simulating the
agreement between the validation set, and a random
clustering with the same number of clusters as the
model. The soft clustering formulation of the ARI is
then:

ARI = RIm − RIr
1 − RIr

(2)

where RIm is the rand index from the model, and RIr is
the rand index from the random clustering.

A comparison against popular alternative clustering
algorithms (k-medoids and spectral clustering), reveals
that our method is more robust against response
noise (Supplementary Materials, Supplementary
Figure S2). Moreover, we show that our method
tolerates high levels of interobserver disagreement,
and reproduces the exact clustering given an
internally consistent set of similarity judgements
(Supplementary Figure S3). The code for the MATLAB
implementation of this algorithm is available at:
https://github.com/mattanderson94/CIRCA_Clustering.

Statistical analyses
For the semantic, 3D spatial structure, and 2D

appearance sorting tasks, we identified the category
system that best represented the grouping judgements
of all participants. To this end, we i) identified the
optimal number of categories, ii) determined the
optimal category for each image, and iii) selected names
for each category from participants’ labels. We describe
our method of solving each of these problems in turn.
Identifying the optimal number of categories: First,
for a given task, we identified the optimal number of
categories using the CIRCA method. We considered
clusterings with between k = 1:20 distinct categories. To
avoid overfitting, we used leave-one-out cross validation
(LOOCV) over our 20 participants, leaving each
participant out in turn and calculating the averaged
80 × 80 similarity matrix from the remaining 19
participants. We applied our method 1,000 times (i.e.,

https://github.com/mattanderson94/CIRCA_Clustering


Journal of Vision (2021) 21(2):8, 1–31 Anderson et al. 8

from 1,000 different random initial clusterings) to find
the clustering that produced the highest agreement with
the left-out participant (measured using the ARI). The
optimal number of categories was then identified as
the k that produced the maximum ARI between the
optimized clustering and left-out participants’ data,
averaged across all (left-out) participants.
Defining the optimal group-level solution: Having
identified the optimal number of categories, we
determined the optimal group-level clustering using the
CIRCA method on a similarity matrix based on the
data from all 20 participants. (Here, we used 10,000
random initializations.)
Assigning participant-generated labels to each category:
Next, we assigned labels to the optimal group-level
categories. We used the ARI to quantify the agreement
between every group-level category and every raw
participant-generated category (and associated labels)
while holding all other participant-generated and
group-level categories constant. Consider, for example,
a participant that constructed four categories. First, we
isolate category 1—and partial out the rest—2, 3 and
4—by assigning them all to a common, second category,
and then we apply the same treatment to the group-level
categories. The ARI determines how well the selected
participant’s category (and associated label) describes
the selected group-level category. ARIs for categories
with matching labels from different participants
(i.e., multiple uses) were summed. Pluralisms, nouns,
adjectives, and verbs with a common stem were treated
as the same—for example, one observer might have
used the label “Farms,” and another observer, “Farm,”
or “Farming.” The “winning” label with the greatest
summed ARI was assigned to each category.

To ensure that the final labels represented all images
in the category, a secondary label was assigned to a
category where it i) conferred novel meaning beyond
the primary label, and ii) was strongly associated
with the images within the category. To quantify
requirement (i), we determined the semantic similarity
between the primary label (i.e., the label with the
greatest ARI per category), and every other label using
spaCy v2.0 (https://demos.explosion.ai/similarity/).
Labels with similarity scores of less than 0.50 were
deemed sufficiently low to capture a new or different
meaning. For example, “Beach” and “Seaside” describe
semantically overlapping concepts (semantic similarity
= 0.71) and thus provide redundant information,
whereas “Car Park” and “Commercial” (semantic
similarity = 0.43) refer to different scene types.
Requirement (ii) was met by normalizing per-label
ARIs to range from 0 to 1, and rejecting values of less
than 0.65.

Data can be downloaded from: https://doi.org/10.
5258/SOTON/D1649.

Figure 4. The optimal number of categories per dimension was
determined via LOOCV. The y-axis gives the maximum ARI
averaged over 20 participants (from 1,000 random
initializations of LOOCV) as a function of the number of clusters,
k (x-axis). Shaded regions represent ±1 participant standard
error. Vertical dashed lines identify the global maximum for
each dimension.

Results

Figure 4 summarizes the results of the LOOCV
analyses used to identify the optimal number of
categories. Within each task or dimension, a single
peak in the average ARI can be observed: the optimal
number of categories for the semantic, 3D spatial
structure, and 2D appearance categories were six,
four, and five, respectively (vertical dashed lines).
Interobserver agreement (as indexed by agreement
between the derived group-level categories and each
observer’s data) was substantially higher in the semantic
task (ARI = 0.59) than the 3D spatial structure (ARI =
0.35) and 2D appearance tasks (ARI = 0.37).

Semantic categorization
The images associated with each group-level derived

category are presented in Figure 5, with the optimal
label(s). The category labels are “Nature,” “Road,”
“Residence,” “Farm,” “Beach,” “Car Park,” and
“Commercial.”

Three-dimensional 3D spatial structure categorization
The optimal 3D spatial structure categories

are presented in Figure 6. The category labels are
“Cluttered” or “Pointy,” “Closed Off,” “Flat,” and
“Tunnel” or “Navigable Routes.”

https://demos.explosion.ai/similarity/
https://doi.org/10.5258/SOTON/D1649
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Figure 5. Images assigned to the six optimal semantic categories. Above each category we present the category labels, which were
derived by summing the ARIs over the multiple uses across different participants, and picking the maximum/maxima.

Two-dimensional appearance categorization
The optimal 2D appearance categories are presented

in Figure 7. The category labels are: “Dark,” “Bright,”
“Blue,” “Green,” and “Brown.”

Discussion

Experiment 1 included only 80 images—a
manageable number for our grouping task. In
Experiment 2, we asked observers to use the labels
derived in Experiment 1 to categorize a larger set of
images from the SYNS dataset. We then i) test how well
the categories developed in Experiment 1 generalize to
the new stimuli and new observers, and ii) evaluate the

relationships between the category members across our
category systems for the three dimensions.

Experiment 2

Methods

Participants
Thirty-three naïve undergraduate and postgraduate

students, 27 female; age range: 18 to 23 years, from the
University of Southampton, none of whom participated
in Experiment 1, were recruited as volunteers, or
in return for course credits. Twenty completed the
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Figure 6. Images assigned to the four optimal 3D spatial structure categories. Above each category, we present the category labels,
which were derived by summing the ARIs over the multiple uses across different participants, and picking the maximum/maxima.

semantic categorization task, 20 completed the 3D
spatial structure task, and 20 completed the 2D
appearance task (participants performed one or
two tasks each; the order was counterbalanced).
Informed consent was obtained before experimentation,
and ethical approval was acquired from the
Research Governance Office, University of
Southampton.

Materials
For each of the 80 outdoor scenes in the SYNS

database (Adams et al., 2016), 18 stereo pairs
compose a 360° panorama of each environment.
Adjacent stereo pairs overlap, so we selected every
other image—nine from each scene—to obtain a
total of 720 images. Participants viewed full-size

stereoscopic images, subtending 31.12 × 22.36° of
visual angle (the same size as the large-scale images in
Experiment 1).

Procedure
Separately for semantics, 3D spatial structure,

and 2D appearance, participants classified every
image according to the category labels derived in
Experiment 1. Participants viewed one image at a time
and used a mouse to select the appropriate category
label from the list displayed to the side of the image.
Once a label was chosen, participants continued to
the next image or trial. Participants categorized all
720 images. The image order was randomized between
participants.
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Figure 7. Images assigned to the five optimal 2D appearance categories. Above each category we present the category labels, which
were derived by summing the ARIs over the multiple uses across different participants, and picking the maximum/maxima.

Semantic 3D spatial structure 2D appearance

Chance 16.67% 25% 20%
80 images from Experiment 1 82.19% 70.19% 71.13%
Remaining 640 images 82.30% 71.71% 68.19%

Table 1. Average interparticipant agreement in Experiment 2 by category systems (columns) and image subset (rows).

Results

Per-image category membership was determined by
the most frequently selected category label. To quantify
how well the categories derived in Experiment 1
generalized to a separate group of participants, and a

separate set of images, we examined interparticipant
agreement for the 80 images used in Experiment 1,
and the 640 remaining images (Table 1). Category
judgements for the 80 images from Experiment 1
showed high agreement across the new participants in all
three category systems. As in Experiment 1, agreement
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Figure 8. We examined the strength of the relationship between categories from different dimensions by (A) computing the phi
coefficients between different categories and (B) testing the performance of a Bayes classifier trained to predict the category of an
image, via leave-one-out cross-validation. In A, the left, middle, and right panels show the association between semantics and spatial
structure, semantics and 2D appearance, and spatial structure and 3D appearance respectively. In B, confusion matrices show the
predictions from three non-naïve Bayes classifiers: Spatial structure and 2D Appearance → Semantics (left), Semantics and 2D
Appearance → Spatial Structure (middle), and Spatial structure and Semantic → 2D appearance (right). Rows are model
predictions and columns are the true categories.

was greatest in the semantic task. This result thus
shows that our category systems generalize well to new
observers.

Agreement for the new set of 640 images was similar
to that for the original 80 images from Experiment 1.
Note, however, that for each new image, there is an
image from Experiment 1 taken from the same location,
but with a nonoverlapping field of view. This result
thus shows that our category systems generalize well to
new images, but it remains uncertain how well they will
generalize to entirely new locations.

Intercategory relationships
Phi coefficients (rϕ) quantify the Pearson correlation

between images with binary-coded categorical identity
(images were either a member or not a member of a
specified category). Positive values correspond to high
categorical similarity (images were frequently placed
in both categories), and negative values correspond to
low categorical similarity (images frequently placed
in one category were seldom placed in the other
category). Figure 8A illustrates the intercategory
correlations for our three category dimensions. Using
this metric, intuitive intercategory relationships emerge
(e.g., Nature and Green, Beach and Blue, Residence
and Closed Off, and so on, are all positively correlated).

Next, we determined whether the relationships
between category systems for the three dimensions were
sufficient to drive reliable classification. In other words,
we asked whether we can predict an image’s category in
one dimension from its category in one or both of the
other dimensions. To explore this hypothesis, we used
Bayes classifiers trained and tested via LOOCV. Table 2
presents the average classification accuracy over 720
left-out images for every combination of the category
systems.

Reliable relationships between category membership
across the three dimensions are indicated by the
fact that all classifiers performed better than chance
(1/k), and better than a prior-only model in which
the most prevalent or probable category is always
selected. The two-predictor classifiers outperformed the
single-predictor classifiers, with the exception of 3D
spatial structure, which was more accurately classified
from semantic structure alone than both semantics and
2D appearance.

Accuracy alone offers a limited picture of the
behavior of these models. Consequently, for each
of the non-naïve classifiers, we plot confusion
matrices between the true categories and predicted
categories (from two predictors). The results are
shown in Figure 8B. We found that categories vary
substantially in difficulty. The semantic classifier
accurately discriminated most “Nature” images, and
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Predictor dimension(s)

Predicted dimension Chance Prior-only Semantic Structure Appearance Both (naïve) Both (non-naïve)

Semantic 16.67% 37.36% – 53.47% 49.72% 55.97% 57.36%
Structure 25.00% 31.53% 60.00% – 44.72% 58.19% 57.92%
Appearance 20.00% 35.69% 43.75% 42.22% – 45.83% 50.56%

Table 2. Bayes classification accuracy per dimension. Classifiers tested using LOOCV on individual images.

Predicted dimension Prior-only Semantic Structure Appearance Naïve Non-naïve

Semantic 37.36% – 42.27% 44.65% 48.44% 48.08%
Structure 31.53% 15.33% – 30.58% 26.05% 50.69%
Appearance 35.69% 39.49% 33.24% – 39.60% 41.27%

Table 3. Naïve and non-naïve LOOCV (on individual participants) Bayes classification accuracy per dimension (i.e., category system).

produced reasonable predictions for “Car Park”
images, but performed much more poorly on the
other categories. A similar picture emerges for spatial
structure classifier, which discriminated only the
“Closed Off” and “Flat” categories well, and for the
2D appearance classifier, which discriminated only the
“Green” categories well. These results indicate that
the relationships observed between the three category
systems may be limited to a subset of categories; not all
categories are equally predictable.

We then explored two different ways to combine
the two predictors. Let C j represent the set of possible
categories for dimension j and Cij represent the category
of image i in this dimension. In a naïve Bayes model,
we assume that the two predictors are independent and
factor the likelihoods. For example, when predicting
the category membership for dimension one from
dimensions two and three, we compute:

Ci1 = arg max
c∈ CC1

p (Ci1 = c|Ci2) p (Ci1 = c|Ci3) (3)

In our non-naïve Bayes model, we do not assume
independence, and use the joint distribution:

Ci1 = arg max
c∈ CC1

p (Ci1 = c|Ci2,Ci3) (4)

The non-naïve Bayes model performed better than
the naïve Bayes model when predicting category
membership within two of the three dimensions,
and only marginally worse for the third (3D spatial
structure). This reveals a non-trivial interdependence
between the classification systems for each dimension.

To assess the consistency of this interdependence
across participants we tested naïve and non-naïve
classifiers using LOOCV on N – 1 participants,
evaluating how well each classifier predicted the left-out
human categorization judgements (see Table 3). Again,

predictions were well above chance and prior-only
predictions, and the non-naïve Bayes model performed
better than the naïve Bayes model for two of the three
category systems, and only marginally worse for the
third (semantic). This shows that the interdependence
between classification systems is relatively stable across
participants.

Typical exemplar classification
Typical category instances can be defined as images

with high interparticipant agreement; atypical images
can be defined by low interparticipant agreement,
that is, they are associated with multiple categories.
Typical exemplars have a special status in category
representations: they share many features with
other members of the same category, and few with
members of other categories (Rosch & Mervis, 1975).
Global image features—including color and spatial
structure—are more predictive of typical category
exemplars than atypical category members (Ehinger,
Xiao, Torralba, & Oliva, 2011; Torralbo et al., 2013).

We examined classification accuracy as a function
of typicality by selecting the 30 images from each
category with the highest interparticipant agreement.
This produces a uniform prior, such that chance and
“prior-only” performance is equated across categories
as 1/k. Classification accuracy for these typical images
was compared against accuracy for two other images
subsets: one consisting of 30 atypical images, that is,
those with the lowest interparticipant agreement per
category, and one consisting of 30 randomly selected
images per category. Once again, we used LOOCV to
train and test each classifier.

The typical exemplar classifier outperformed
the random and atypical image classifiers in every
combination of categories (see Figure 9). This
typicality advantage was particularly large for
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Figure 9. Bayes classification accuracy for random, atypical, and typical images. Most classifiers exceeded chance (1/k, dashed line),
and typical exemplar classification was consistently more accurate than atypical and random image classification.

semantic classification using 3D spatial structure
and 2D appearance (left panel), and 3D spatial
structure classification (middle panel) using semantic
categories. Most of the typical exemplar classifiers also
outperformed the full-dataset classifiers from Table 2,
despite comparatively small training dataset sizes (120–
180 vs. 720). These results confirm that relationships
between dimensions are strongest for typical category
exemplars.

Discussion

In Experiment 2, we demonstrated that the categories
developed from 80 images in Experiment 1 generalized
well to 640 additional images, and different participants.
Our category systems were not only representative
of the 80 images they were derived from, they also
captured the categorical structure of new images.
However, given that generalization was only tested for
images sampled from the same dataset, it is still possible
that each category system reflects idiosyncrasies of
the images used to develop them (in our case, the
SYNS dataset). The SYNS scenes were randomly
sampled from a diverse range of outdoor environments
identified in the UKLand dataset (GeoInformation
Group, www.geoinformationgroup.co.uk) to capture a
wide variety of real-world scenes (Adams et al., 2016).
Although we hope that this careful sampling will lead
to good generalization, it remains to be seen how the
category systems derived from our first experiment
generalize to other image datasets.

A second question is how the categories we derived
in Experiment 1 relate to existing models of scene
categorization. We address this issue in our third
experiment. The spatial envelope model (Oliva &
Torralba, 2001) serves as a good comparison for

our 3D spatial structure categories. Spatial envelope
properties (e.g., Roughness and Openness) are thought
to dominate early scene representations (Greene &
Oliva, 2009a, 2009b, 2010) and may be encoded in
a distinct cortical pathway that represents spatial
boundaries (Harel, Kravitz, & Baker, 2012; Park,
Brady, Greene, & Oliva, 2011). Moreover, prior work
has found that spatial envelope properties predict
semantic categories, but—notably—using a different
set of semantic categories than those we derive from
SYNS in Experiment 1 (Greene & Oliva, 2006, 2009b;
Oliva & Torralba, 2001). Here we ask whether spatial
envelope properties predict our SYNS-derived 3D
spatial structure and semantic categories.

The relationship between low-level features that
comprise an image’s GIST (see Figure 2), and spatial
envelope properties, may vary across datasets. Hence,
we also test whether GIST features are consistently
diagnostic of spatial envelope properties (regardless of
the dataset), or whether this relationship is unstable and
idiosyncratic. Previous computational work suggests
that cluster-weighted models (CWMs) applied to GIST
features are “well suited to encoding structural scene
priors” (Ross & Oliva, 2010, p. 21), so we examined
whether we could apply CWMs to the GIST features
of SYNS images to predict human spatial envelope
ratings.

To summarize, in Experiment 3 we ask human
observers to directly estimate three spatial envelope
properties of SYNS images (mean depth, openness
and perspective). We examine how well these spatial
envelope properties can be used to classify the SYNS
images across the three category systems developed in
Experiment 1, and assess improvements in classification
as a function of typicality (as in Experiment 2). Finally,
we quantify the relationship between SYNS image
GIST features and spatial envelope properties, with an

http://www.geoinformationgroup.co.uk
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aim to replicate and generalize the results from Ross
and Oliva (2010).

Experiment 3

Methods

Participants
Three postgraduate students, 2 male (including M.A,

who was the only non-naïve participant), age range:
23–27 years, from the University of Southampton
participated as volunteers. Informed consent was
obtained before experimentation, and ethical approval
was acquired from the Research Governance Office,
University of Southampton.

Materials
Image and display specifications matched those

reported in Experiment 2.

Procedure
We replicated the task performed by Ross and Oliva

(2010), wherein participants viewed one monoscopic
image at a time, and used three sliders to quantify the
“Mean Distance,” “Openness,” and “Perspective” on
a scale of 1 to 7.3 Participants rated all 720 images in
random order.

Statistical analyses
First, we report human-rated spatial envelope

properties across the image categories developed
in Experiments 1 and 2. Second, we explore the
relationship between image GIST features (see Figure 2)
and human-rated spatial envelope properties.
Specifically, we test whether CWMs operating on image
GIST features provide a good, generalizable model
of human perception of spatial layout, as suggested
by Ross and Oliva (2010). Accordingly, we predicted
spatial envelope properties from image GIST features
using CWMs: i) trained and tested on SYNS images
and ratings or ii) trained on Ross & Oliva’s images
and ratings, and tested on SYNS images and ratings
(see Table 4). Our procedure, detailed elsewhere in
this section, replicates Ross & Oliva’s cross-validation
method.

By dividing an image into spatial grids of varying
size (e.g., 2 × 2 or 4 × 4) and computing the GIST
features at every grid location, we can obtain GIST
representations with different spatial resolutions.
Ross and Oliva (2010) found that the strength of
the relationship between GIST features and spatial

Subset

All 720 Typical Atypical Random

Semantic 45.76% 44.44% 37.22% 39.44%
3D spatial structure 67.73% 85.83% 64.17% 62.50%
2D appearance 39.08% 40.14% 45.77% 45.07%

Table 4. Naïve Bayes classification accuracy per dimension (i.e.,
category system). Models were trained to predict each
dimension from three human-rated spatial envelope
dimensions, namely, openness, mean depth, and perspective.

envelope properties is modulated by this spatial
resolution. We therefore determined the optimal spatial
resolution for (independently) predicting the three
spatial envelope properties from SYNS image GIST
features. First, we projected the GIST features onto
the PCA bases derived by Ross and Oliva (computed
from an independent, third dataset—a measure taken
to facilitate model generalization). Subsequently, using
five-fold cross validation, we trained CWMs to predict
the human-generated spatial envelope properties from
these GIST features, recording mean squared prediction
errors over each left-out fold. Because CWMs are
optimized for estimating data with context-dependent
relationships between inputs and outputs (e.g., in
our case, an enclosed forest scene may have different
low-level features to an enclosed street scene; for details,
see Ross & Oliva, 2010), we also cross-validated, within
each spatial resolution, the optimal number of model
clusters. An additional set of models, trained on Ross
and Oliva’s (2010) dataset and tested on the SYNS
dataset, were developed to test generalization of the
relationship between GIST features and spatial envelope
properties (reflected in prediction accuracy relative to
models trained and tested on the same dataset).

Results

Human ratings
Figure 10 shows the human spatial envelope ratings

and the CWM-estimated ratings separated by 3D spatial
structure category over all 720 SYNS images. Intuitive
patterns are evident in the human ratings. For example,
the closed off category has low values on all three spatial
envelope properties, whereas the flat category is high in
openness and mean depth, and low in perspective. These
results confirm that our 3D spatial structure categories
capture environmental regularities also conveyed by
human-rated spatial envelope properties. Indeed, a
Naïve Bayes classifier trained to predict 3D spatial
structure categories from the three human-rated spatial
envelope properties (via LOOCV, as in Experiment 2),
achieved 67.73% accuracy (Table 4)—substantially
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Figure 10. Mean human ratings (‘Human’) and CWM-estimates
(‘SYNS-Est’ and ‘Oliva&Ross-Est’) for three spatial envelope
properties separated by 3D spatial structure category. Error
bars show ±1 standard deviation.

better than “prior-only” classification, predictions from
semantics, 2D appearance, or both (Table 2).

Semantic and 2D appearance categories were
classified from human spatial envelope ratings with
45.76% and 39.08% accuracy, respectively (see Table 4).
It is worth noting that classifiers using only an image’s
3D spatial structure category to predict its semantic
and 2D appearance category performed better than
predictions from these spatial envelope properties
(Table 2).

Typical exemplars only
Experiment 2 demonstrated that typical category

exemplars have more predictable features. Isolating
the 30 images from each category with the highest
interobserver agreement, and using the human-rated

spatial envelope properties to predict 3D spatial
structure, semantic, and 2D appearance categories, we
achieved 85.83%, 44.44%, and 40.14% classification
accuracy, respectively (see Table 4). Although 3D
spatial structure classification showed a substantial
improvement, semantic and 2D appearance categories
produced negligible changes. This pattern was also
found for atypical and randomly sampled images: 3D
spatial structure classification was substantially poorer
for atypical and random exemplars, but semantic and
2D appearance classification was relatively unaffected
(Table 4).

CWM performance
Table 5 shows the CWM prediction errors and

optimal CWM parameters for predicting human-rated
spatial envelope properties from GIST, within and
across datasets. CWMs learn optimal regression
functions to apply for specific contexts, thereby
obtaining more accurate predictions than standard
linear models (Ross & Oliva, 2010). Ross and Oliva’s
(2010) images required higher spatial resolutions than
SYNS images to optimally estimate spatial envelope
properties (see Table 5). Moreover, training and testing
across different datasets caused a substantial increase in
prediction error (compare the SYNS/SYNS and Oliva &
Ross/SYNS mean squared prediction errors in Table 5).
These results suggest that the relationship between
GIST features and spatial envelope properties varies
between datasets. This finding cannot be attributed to
weaker relationships between GIST features and spatial
envelope properties, or poor suitability of CWMs
for the SYNS images, because CWMs trained and
tested on SYNS produce smaller errors across all three
dimensions.

Inspection of the model-estimated spatial envelope
properties across our 3D spatial structure categories
in Figure 10 illustrates that the CWMs trained on SYNS
data generated predictions that, for the most part,
preserved category-specific patterns of spatial envelope
ratings: the closed off category produced relatively low
values across all three dimensions, and the flat category
was low in perspective, but high in openness and mean
depth (i.e., like the human ratings). By contrast, the
CWMs trained on a different dataset markedly distorted
these patterns: spatial envelope properties vary little
between categories, and across every category, mean
depth is substantially overestimated, and openness and
perspective are underestimated. To explore this further,
we trained two naïve Bayes classifiers to predict our
3D spatial structure categories from spatial envelope
ratings i) estimated from the SYNS-trained model,
and ii) estimated from the Oliva and Ross-trained
model. Classification was considerably more accurate
using SYNS-trained estimations (57.16% vs. 44.92%),
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SYNS/SYNS Oliva & Ross/Oliva & Ross Oliva & Ross/SYNS

Training/test data Resolution Clusters MSE Resolution Clusters MSE MSE

Mean depth 1 × 1 8 0.47 4 × 4 6 0.56 1.81
Openness 4 × 4 5 0.35 8 × 8 6 0.87 1.91
Perspective 1 × 1 5 0.99 2 × 2 4 1.95 1.30

Table 5. Optimal CWM parameters and mean-squared prediction errors (MSEs) for estimating human-rated spatial envelope
properties from GIST. Note: The cross-validation method for identifying the optimal CWM parameters (spatial resolution and number
of clusters) for predicting the spatial envelope properties of Oliva & Ross’ images is described in Oliva & Ross (2010). The model
trained on Oliva & Ross’ dataset and tested on SYNS used the optimal model parameters for the training data.

confirming that the relationship between GIST and
spatial envelope properties is unstable between datasets.

Discussion

Human-rated spatial envelope properties are closely
related to our 3D spatial structure categories. Indeed,
the impressive classification performance found for
typical 3D spatial structure exemplars (i.e., 85.83%)
suggests that spatial envelope properties and our
categorical description of spatial structure encode
similar scene properties. However, the relationship
between spatial envelope properties and our other
category systems (semantic, 2D appearance) was
weak—weaker in fact than the relationship between
our 3D structure categories and those category
systems.

Notably, the GIST features that predict spatial
envelope properties vary between datasets, thereby
impeding generalization. Although low-level differences
between the datasets may account for this effect,
the sensitivity of GIST to these low-level properties
suggests that GIST features may not provide a robust
route to scene understanding.

Experiment 4

In a final experiment, we examine the flexibility of
the CIRCA method by applying it to data collected
from a larger image set, using a different experimental
task. Databases like ImageNet (Deng et al., 2009), SUN
(Xiao et al., 2010), and Places (Zhou et al., 2014) use
semantic labels to search crowd-sourced photography
sites (e.g., Google images), enabling large-scale image
sampling from a wide range of environments (albeit
at the expense of control over intrinsic and extrinsic
camera properties). These large-scale databases are
popular in computer vision and behavioral research,
and the categories that organize these databases are
frequently used as class labels to evaluate model/human

performance (e.g., in the burgeoning field of deep
learning). In Experiment 4 we test i) whether our
clustering method can be applied to larger datasets
and ii) how well the resultant labels capture human
classification judgements, relative to the existing ground
truth labels for large datasets.

Clearly, our sorting task of Experiment 1 would
become infeasible for datasets containing thousands
of images. However, our method can be applied
to data from various experimental paradigms that
produce pairwise similarity judgements. Fortunately,
appropriate data already exist from a same–different
experiment conducted by Greene et al. (2016).

Method

Participants, materials, and procedure
Here we provide a short summary of the study

conducted by Greene et al. (2016). For a complete
description of the study, please refer to the original
paper.

A total of 2,296 participants were recruited from
Amazon Mechanical Turk (AmTurk), and stimuli were
obtained by pooling 62,468 images from ImageNet
(Deng et al., 2009), SUN (Xiao et al., 2010), Corel, and
an additional 15-scene database (Fei-Fei & Perona,
2005; Lazebnik, Schmid, & Ponce, 2006; Oliva &
Torralba, 2001).

For each trial, participants viewed two images side
by side, and were asked to determine whether they
belonged to the same or different category (via button
press). Categories were defined by the instructions to
participants: “Consider the two pictures below, and the
names of the places they depict. Names should describe
the type of place, rather than a specific place and
should make sense in finishing the following sentence
‘I am going to the. . . .’ ” Participants also named the
category of every left image (as a free-text response).
Image pairs were selected randomly, and participants
were remunerated per trial, completing as many trials
as they liked.



Journal of Vision (2021) 21(2):8, 1–31 Anderson et al. 18

Statistical analyses
To validate the CIRCA method, we compared it

against two competing models.

(i) The SUN category system (Xiao et al., 2010).
The majority (68.14%) of Greene et al.’s (2016)
pooled dataset contains images taken from the SUN
database. The SUN database was constructed by
finding 2,500 unique terms in WordNet (Miller,
1995) that describe real-world environments. After
collapsing over synonyms and expanding categories
with multiple visual subtypes (e.g., indoor vs.
outdoor views of churches), 899 category labels
emerged, and images for each category were
retrieved by downloading the images returned by
various search engines (e.g., Google Images).

(ii) Greene’s (2019) clustering method. Greene (2019)
proposed a simple clustering method using the
same–different judgements in the dataset described
above (Greene et al., 2016). First, images are
assigned to their respective SUN, ImageNet, and
Corel categories, and the proportion of trials in
which observers responded “same” is computed
for images from the same category, and images
from different categories. This process is completed
for every pair of categories to build a by-category
similarity matrix. Categories (and the corresponding
images) that produce within-category similarities
of less than 0.75 are removed. Pairs of categories
that produce between-category similarities of greater
than 0.5 are merged. Note that this method removes
and merges whole categories, and does not operate
on individual images.

For a fair comparison with both of these models,
we only retained the 42,927 images retrieved from
the SUN database, used by Greene et al. (2016).
Of the approximately 921 million possible pairwise
combinations of these 42,927 images, approximately 2.5
million (0.27%) were presented to participants at least
once. Because the vast majority of image pairs never
occurred in this experiment, the resulting 42,927 ×
42,927 similarity matrix is highly sparse. Missing data
introduces uncertainty: two images without similarity
data could belong to the same or different categories.
To minimize sparsity, we used an iterative sampling
procedure to find the most densely connected subset of
images (i.e., with the largest number of observations).
We first selected the single image with the largest
number of unique pairings with other images. Further
images were iteratively added to our sample, by finding,
on each iteration, the image with the maximum number
of connections (i.e., same–different judgements) with
the images already in the sample. For the current study,
we selected the 1,000 maximally connected images. Of
the 499,500 possible unique pairings, 31,884 (6.38%—a

Figure 11. The optimal number of categories was determined
via 10-fold cross-validation. The y-axis gives the ARI averaged
over 10 folds, and 1,000 different random initializations of the
CIRCA method per fold. Shaded areas around each line
represents ±1 standard deviation. The optimal number of
categories (vertical dashed lines) is 55 for all 1,000 images, and
24 for Greene’s subset.

vast improvement over 0.27%) had similarity data in
this sample.

In Experiment 1, we protected against overfitting
while finding the optimal number of clusters by testing
model predictions against data produced by left-out
participants (i.e., leave-one-out cross-validation). As the
current dataset omits participant identifiers, we used
k-fold cross-validation on individual trials instead. In
most other respects, we simply replicated the analyses
described in Experiment 1. In short, we determined the
optimal number of clusters by splitting the trial-by-trial
data (i.e., individual similarity judgements) into 10
equally sized folds, training on nine folds, and testing
on each left-out fold in turn.

Results

Figure 11 (purple line) shows the resulting ARI using
our 10-fold cross validation over the 1,000 selected
images, as a function of the number of clusters. The
curve has been smoothed by kernel regression, with
kernel scale optimized by leave-one-out cross-validation
on the mean ARIs. We find that the ARI peaks at 55
clusters, somewhat less than the 72 SUN categories
present in our sample of 1,000 images.

After fixing the number of clusters to the optimal
number, the CIRCA method was rerun with all of
the data included from 10,000 random initializations,
to find the clustering that maximized the ARI. The
resulting ARI is slightly higher than the ARI produced
by the SUN category system (see Table 6, rows 1–2).
When we (suboptimally) increased the number of
categories to 72, to match the number of represented
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Figure 12. Cluster similarity between models quantified using the ARI. (A) In the 1,000-image subset, our model produced clusterings
that were highly similar to the SUN model. (B) In the 712-image subset, we observed similarly high agreement with the SUN
clusterings, particularly when we matched the number of clusters. Greene’s method produces markedly different clusterings.

Model No. of images No. of categories ARI

CIRCA 1,000 55 0.7703
SUN 1,000 72 0.7354
CIRCA 1,000 72 0.7697
CIRCA 712 24 0.8331
Greene 712 22 0.8196
CIRCA 712 22 0.8328
SUN 712 35 0.8326
CIRCA 712 35 0.8338

Table 6. The ARI evaluates how well each model predicts
similarity judgements in the same–different task. For the
sample of 712 and 1,000 images, the CIRCA method
outperforms the two alternative models: the SUN category
system, and Greene’s (2019) clustering method.

SUN categories, the ARI decreased as expected, but
remained favorable compared with the SUN system
(Table 6, row 3).

Greene’s (2019) method removes 26.17% of trials by
excluding categories with an average within-category
similarity rating of less than 0.75, leaving 712 images
organized into 22 categories (merging 35 SUN
categories). For a fair comparison against Greene’s
method, we repeated the CIRCA method with this
reduced sample of 712 images. Cross-validation revealed
that 24 clusters was optimal for this subset (Figure 11,
green line) and the resulting optimal clustering ARI
compares favorably with Greene’s categories and
the SUN categories (Table 6, rows 4–6). Finally, we
compared these alternative models to our method for
this image subset when we matched the number of
clusters (Table 6, rows 7–8). Our method outperformed
the two competing models, regardless of sample size,

and regardless of whether we used the optimal number
of clusters, or simply matched the number of clusters.

We can also examine the similarity of the clusterings
produced by the different methods using the ARI. Our
method produced clusterings highly similar to the SUN
model, whereas Greene’s method produced clusterings
that differed from the other two (see Figure 12). When
the number of clusters was matched, there was very
close agreement between our method, derived using
human same-different judgements, and the SUN
system, derived entirely independently, via label-driven
image searches (ARI = 0.96, Figure 12B).

Examples of agreements and disagreement between
the three models are illustrated in Figure 13. While the
SUN system separates ‘Grotto’ and ‘Underwater Ice’
images, our category system combines both into a “Sea”
category (our labelling method is described elsewhere in
this article). Also, our method splits “Flight of Stairs,
Natural” into “Mountain” and “Forest” categories
based on the global context in which the stairs occur.
Greene’s method subsumes “Underwater Ice” and
“Underwater Pool” under a single “Sea” category.
Importantly, however, many categories are identical
across all three models (green bounding boxes).

Another way of comparing our clustering method
to existing models is to analyse/analyze the category
labels that observers assigned to every left image in
Greene’s experiment. A good category system should
maximize the variance in word meaning between
category labels, and should minimize variance within
categories. Put simply, categories should represent
independent concepts, but members of the same
category should be relatively homogenous. We quantify
word meaning using Word2Vec (Mikolov, Sutskever,
Chen, Corrado, & Dean, 2013). Word2Vec is a family of
shallow, two-layer neural networks that produce word
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Figure 13. Example categories produced by our clustering method (left column), the SUN system (middle column), and Greene’s
method (right column). To generate these examples, we sampled a small subset of images used in Experiment 3, and assigned them
to their respective categories according to the three different category systems. Bounding boxes show the different categories, and
labels above each box are the category labels either retrieved from the SUN database (middle column), or derived by computing the
mean word-vector of the participant-generated labels. In the left column, we provide a small number of example labels assigned to
the images by observers. Green bounding boxes (bottom) signify that all three models generated the same category.
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embeddings. These models are trained to predict the
identity of single words from neighboring words taken
from the same sentence (using large-scale corpora).
The hidden layer varies in dimensionality (from 100 to
1,000; Mikolov, Chen, Corrado, & Dean, 2013) and
represents a vector space. Each unique word inputted
during training is assigned a corresponding “word
vector,” or embedding, in this vector space. A useful
property of these embeddings is that they are organized
semantically, and can be manipulated algebraically (a
well-established example is king − man + woman =
queen). For our purposes, Word2Vec offers a useful
quantitative representation of word meaning to evaluate
clusterings.

We used the GloVe model, which represents each
label as a 300-dimensional word vector (Pennington,
Socher, & Manning, 2014), to derive word embeddings
for all the participant-generated labels. Word vectors
were converted to unit vectors, and organized into
categories based on the category of the images they
describe. We calculated the grand-mean word-vector,
and, for each category system, the category-mean word-
vectors. Then, we computed i) the (summed) squared
Euclidean distance between the grand-mean and the
category-means (Dbetween) and ii) the (summed) squared
Euclidean distance between the category-means,
and the individual word-vectors within categories
(Dwithin). These two distances are the same as to the
between-group and within-group variance estimates in
the standard F-test. Accordingly, we tested model fit by
calculating the ratio between Dbetween and Dwithin:

F = Dbetween / d f1
Dwithin / d f2

(5)

where df1 and df2 are the degrees of freedom: df1 = k −
1, and df2 = N − k, where N represents the number of
observations or labels, and k represents the number of
categories.

Our clustering method produces higher F-ratios
when we use the optimal (cross-validated) number of
clusters, or match the number of clusterings in Greene’s
method (see Table 7). However, when we match the
number of clusters in SUN, the SUN model achieves a
higher F-ratio.

Using the Word2Vec representation, we can derive
single-word category terms by computing the centroid
(i.e., mean) word-vector for each category.4 Examples of
category terms produced using this method, alongside
the raw participant-generated labels, are presented
in Figure 13 (left and right columns, above each
box/category). Compared with the category terms used
in the SUN database, these terms are more general. For
example, for the SUN category “Gatehouse,” human
participants preferred to use the more general term
“Castle” (gatehouses are typically in the same grounds

Model No. of Images K categories F

CIRCA 1,000 55 537.22
SUN 1,000 72 447.36
CIRCA 1,000 72 417.68
CIRCA 712 24 1127.15
Greene 712 22 1121.06
CIRCA 712 22 1190.57
SUN 712 35 815.49
CIRCA 712 35 794.52

Table 7. The F-ratio quantifies the variance in word meaning
captured by the models. Our CIRCA method produced a
superior fit to labelling data when we used the optimal number
of clusters (24 and 55), but performed worse when we matched
the number of clusters in SUN.

as castles). This process of simplification is similarly
borne out in the clustering results: our method produces
fewer clusters than the SUN category system.

Discussion

In Experiment 4, we investigated the scalability
of our proposed clustering algorithm. We applied
our method to human data from a large-scale
same–different experiment, and tested our clusterings
against two alternative models: the SUN taxonomy,
and a simple thresholding method proposed by Greene
(2019). We found that our method outperformed both
models. Moreover, we tested whether our category
system was more consistent with the labels used by
participants in the same experiment. When we used
the optimal number of clusters—determined via
cross-validation—our clusterings outperformed the
SUN category system. These results suggest that our
method can be applied to data from different tasks, and
larger datasets.

General discussion

We proposed a behaviorally grounded method of
deriving category systems for real-world scenes, and
validated it on the SYNS (Adams et al., 2016), and
SUN databases (Xiao et al., 2010). In Experiment 1, we
instructed participants to categorize 80 SYNS images
by their i) semantic content, ii) 3D spatial structure,
and iii) 2D appearance, in a free-sorting task. We
determined the optimal category structure for each
task and assigned participant-generated labels to each
category.

In Experiment 2, a separate set of participants used
the optimal labels from Experiment 1 to categorize a
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larger set of 720 SYNS images. We produced strong
evidence that our category systems generalized over
a larger set of images. Moreover, we found stable
category associations that enabled predictions of
category membership in one dimension from categorical
properties across other dimensions.

In Experiment 3, we labelled the SYNS dataset
using three spatial envelope properties and found a
reliable relationship with the 3D spatial structure
categories, and weaker relationships with the semantic
and 2D appearance categories. We showed that
without dataset-specific training, GIST features are
not diagnostic of spatial envelope properties or scene
category.

In Experiment 4, we tested our method on data from
a same-different task using 712 to 1,000 images from
the SUN database. Our method generated categories
that predict same/different judgements more accurately
than the SUN taxonomy, and an alternative clustering
method (Greene et al., 2016). Moreover, our method
generated categories that captured a greater amount of
variance in the meaning of participant-generated labels.

Deriving participant-driven category systems

Image categorization is a popular metric for scene
recognition, yet potential problems with contrived
categorical taxonomies of real-world scenes are seldom
discussed. In most categorization research, participants
are presented with category labels that ostensibly
represent the ground-truth categorical structure of
real-world environments. However, different studies
use different category systems, under an implicit
assumption that variations in categorical structures
have little or no effect on participant behavior.
Surprisingly, this assumption is maintained despite the
known inequality of different categorical descriptions
(e.g., between basic-level and superordinate category
systems; Sofer et al., 2015). We have argued that
different category systems codify different visual
features and thus experimental categorization tasks will
produce unnatural behavior insofar as applied category
systems fail to reflect human-preferred taxonomies
of real-world environments. Our participant-driven
method of deriving category systems directly identifies
these human-preferred taxonomies and thereby
provides a means of obtaining a more principled
ground-truth.

Properties of the SYNS category systems

Applying our method to the semantic categorization
task in Experiment 1 generated intuitive labels like
“road,” “car park,” “residence,” and “beach”—all
of which resemble commonly applied categories

in past research (e.g., “highway,” “coast,” etc.;
Fei-Fei et al., 2007; Fei-Fei & Perona, 2005; Oliva &
Torralba, 2001). Interestingly, however, most existing
category systems discriminate between forest and
countryside categories. Forests and countryside are
basic-level members of the superordinate nature
category; existing scene taxonomies assume a sharp
division between these two levels of representation,
partitioning categories into discrete multilevel
hierarchies (Rosch & Lloyd, 1978; Tversky &
Hemenway, 1983). Our “nature” category unifies
forest and countryside scenes, thereby intermingling
superordinate and basic basic-level categories. This
finding suggests that the accepted demarcation between
superordinate and basic-level scene categories may be
fuzzier than previously thought. Although it is also
possible that the “nature” category was produced by
averaging over two types of participant, namely, i) those
that generated superordinate categories, and ii) those
that generated basic-level categories, we introduced
a constraint on the number of categories to prevent
this problem. Within the specified range of three
to 10 categories, the minimum number of semantic
categories used by any participant was five. Hence, it is
doubtful that some participants were just performing
superordinate categorization.

The variability in the granularity of individual
categories within a category system can be interpreted as
an extension of what Rosch and Lloyd (1978) described
as the economic balance between low cognitive effort
and maximum discriminability (although they asserted
that this was limited to basic-level category systems).
Representing some categories coarsely, and other
categories at a finer level, may be optimal under
certain conditions. For example, plants and animals
are hierarchically classified according to species, genus,
family, and so on, in Western scientific taxonomies.
Many non-Western cultures share similar taxonomies,
but eschew some redundant distinctions in favor of
more generic categories that have greater cultural
utility (thereby generating sets of categories with mixed
granularity; for a review, see Malt, 1995). Real-world
scene categories may vary with similar observer
characteristics, such as stimulus familiarity, motivation,
expertise, and of course, culture, that cause humans to
use mixtures of coarse and fine distinctions.

Our 3D spatial structure categories strongly resemble
Oliva and Torralba’s (2001) spatial envelope properties.
Categories of “flat”and “closed off”seem to correspond
to opposing poles along the openness dimension,
“cluttered” or “pointy” corresponds with “roughness,”
and “tunnel” or “navigable routes” resembles the
“expansion/navigability” dimensions (Greene & Oliva,
2006; Oliva & Torralba, 2001). In Experiment 3, we
verified this mapping by testing the performance of
Bayes classifiers trained to predict 3D spatial structure
category by encoding variations in human-rated
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spatial envelope properties. We found that spatial
envelope properties were strong predictors of category
membership, achieving 85.83% classification accuracy
for typical category exemplars. The convergence of our
3D spatial structure categorical model and the spatial
envelope model (Oliva & Torralba, 2001, 2006) suggests
that both capture a robust vocabulary of natural scene
statistics.

A key tenet of the spatial envelope model is that
humans compute an intermediate representation of 3D
spatial structure, which is in turn used to infer semantic
category during early visual processing (Greene &
Oliva, 2006, 2009a, 2009b, 2010; Oliva, 2005; Oliva
& Torralba, 2001, 2006; Torralba & Oliva, 2002). In
support of this model, previous work has shown that
scene structure is extracted from natural scenes before
semantic categories are accessed (Greene & Oliva,
2009a), and that humans use spatial structure cues to
inform judgements of semantic category (Greene &
Oliva, 2009b, 2010). Although we did not manipulate
presentation duration directly, in Experiment 2, we
did find that a classifier trained to predict semantic
category from 3D spatial structure category produced
reasonable results: 57.36% accuracy on all images,
and 68.33% accuracy on only the typical category
exemplars. However, in Experiment 3, we also found
that, human-rated spatial envelope properties are poor
predictors of semantic categories (45.76% correct).
The reduced discriminative power of spatial envelope
properties (compared with our spatial structure
categories, and other classification results; e.g., Greene
& Oliva, 2009b) may be due to the taxonomical
structure of our empirically derived semantic category
system. Perhaps the impressive performance of
previously reported spatial envelope-driven semantic
classification (e.g., Greene & Oliva, 2009b) is produced,
in part, by the selection of semantic categories that
are discriminable based on spatial envelope profiles
(i.e., spectral signatures; see Oliva & Torralba, 2001).
It is also possible that this result is caused by an
idiosyncratic set of SYNS categories. Future research
should examine whether empirically derived category
systems from other datasets also produce a weak
association between spatial envelope properties and
semantic content. Or, perhaps a simpler explanation
exists: prior studies testing semantic classification
from spatial envelope properties have used up to seven
properties (Greene & Oliva, 2006, 2009b), while we
used three (used by Ross & Oliva, 2010). We would
likely see an improvement in classification performance
if we used additional properties like “navigability” and
“temperature” (Greene & Oliva, 2006, 2009b).

Although observers were instructed to sort images
based on multiple, complex, feature dimensions,
including “patterns,” “textures,” and “color,” our 2D
appearance categories contain only two distinguishable
feature dimensions: color (blue, green, brown) and

global luminance (bright and dark). Although color
is known to be informative for scene understanding
(Castelhano & Henderson, 2008; Goffaux et al., 2005;
Goffaux et al., 2003; Oliva & Schyns, 2000), no prior
studies have investigated the importance of global
luminance properties. Furthermore, no efforts have
been focused on formulating chromatic/luminance
categories for real-world scenes (although Oliva &
Schyns [2000] did use color histograms to examine
the diagnosticity of color between different semantic
categories).

The open endedness (i.e., multidimensionality) of
the 2D appearance task instructions may explain the
greater disagreement between observers relative to the
semantic task (Figure 4), although it does not explain
why agreement was higher than for the 3D spatial
structure task (which was more constrained). Either
way, it is entirely possible that different observers
were grouping images based on different feature
dimensions—a problem that highlights the importance
of carefully designing and standardizing observer
instructions.

Various characteristics of the sorting task in
Experiment 1 may undesirably bias human behavior
away from natural categorization. The task instructions,
number of images, constraints on the number of
images allowed per category (more than one), and
the range of permitted categories (three to 10) may
influence observer sorting patterns. While it is difficult
to conduct a categorization experiment with no
constraints on behavior, it would be beneficial for future
work to investigate how various task demands bias
categorization.

Estimating spatial envelope properties using
cluster weighted models

Ross and Oliva (2010) previously suggested that
CWMs are “well suited to encoding structural scene
priors” (pp. 21). Yet, in Experiment 3, we showed that
the relationship between low-level GIST features and
spatial envelope properties—a relationship encoded
by the proposed CWMs—varied with the chosen
dataset. We demonstrated that models trained on
Ross & Oliva’s dataset produce inaccurate estimations
of spatial envelope properties in the SYNS dataset.
Similarly, the optimal spatial resolutions for estimating
spatial envelope properties varied between the datasets.
Although the cause of this dataset-dependency is
unclear, it is conceivable that the perception of mean
depth, openness and perspective co-vary with the
photographic field of view, that is, the focal length
of the camera, which will determine the amount of
perspective apparent in the image. While the field
of view of the stereoscopic SYNS images we used
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was fixed at 31.12 × 22.36° (Adams et al., 2016), the
spatial envelope literature is based on crowd-sourced
photography—images taken from multiple different
cameras, presumably with varying focal lengths.
Spatial perception may also depend upon camera
pose. The SYNS stereo pairs were all taken at eye
height, with a horizontal optical axis. In contrast, the
crowd-sourced images used for spatial envelope work
vary substantially in camera height and angle. The
sensitivity of the GIST representation to low-level
differences caused by camera properties, or even simpler
changes like modifications to global contrast (which
also affects the GIST [Oliva & Torralba, 2001], but has
no effect on the spatial structure of an image), suggest
that they may be poor at representing scene layout
information.

GIST is a popular low-level summary statistic in
computer vision, yet recent advances in convolutional
neural networks (CNNs) has produced better models
of spatial structure processing. For example, Cichy
et al. (2017) measured the correlation between human
MEG responses to the dimension of scene size (i.e.,
the expansiveness of a scene), and the predictions of
three competing models: GIST, HMAX (a biologically
inspired hierarchical model; Serre, Wolf, & Poggio,
2005), and a CNN trained to classify scenes from the
Places database. The CNN produced layer activations
that correlated more strongly with human responses
than the other two models. It is plausible then, that,
with a state-of-the-art model of spatial structure
estimation (e.g., an appropriately trained CNN), we
might observe less dataset dependency and stronger
predictions of spatial structure properties. A thorough
analysis of how CNN feature representations relate to
spatial structure categories is beyond the scope of this
paper, but future research may address this problem.

Typicality enhances category discrimination

Some images or scenes are clearer category members
than others. Prototype theory conceptualizes category
membership as the proximity of an instance to a
central exemplar (Rosch, 1999; Rosch & Mervis, 1975).
Typical category instances have the “most attributes
in common with other members of the category and
[the] least attributes in common with other categories”
(p. 573; Rosch & Mervis, 1975). Real-world scene
categorization behavior supports this theory: Torralbo
et al., (2013) found that the variance in spatial structure
and color for typical images is smaller than atypical
images. Typical category exemplars are categorized
more efficiently than atypical images (Torralbo et al.,
2013), and classifiers trained on global image features
achieve greater accuracy for typical category exemplars
(Ehinger et al., 2011). Our findings are consistent with
these results. In Experiments 2 and 3, we demonstrated

that typical category exemplars are easier to classify
than atypical or randomly sampled images.

The scalability of our clustering method

The categories derived from the SYNS database may
not be suitable for application to all other databases.
Large-scale image repositories such as Places (Zhou
et al., 2014), ImageNet (Deng et al., 2009), and SUN
(Xiao et al., 2010) have a greater range of environments
than SYNS, and while the SYNS dataset was designed
to maximize environmental variation, some scenes such
as deserts and mountains—that would conceivably
comprise independent categories—are not included, as
they do not occur in the sampled region of southern
England (Adams et al., 2016). In Experiment 2, we
tested the generalizability of our category systems on
novel images taken from the same locations and using
the same camera, with the same focal length, and so on.
A stronger test of generalization might draw data from
additional image repositories, but this introduces the
problem of applying unsuitable taxonomies to new and
different datasets.

To circumvent this problem, in Experiment 4, we
applied our method to a distinct dataset used in a same–
different psychophysical task, in which participants
viewed pairs of images sampled from the SUN database
and i) judged whether they were drawn from the
same or a different semantic category and ii) typed a
category label for the left image (Greene et al., 2016).
We found that the categories generated by our method
outperformed the SUN taxonomy, and a competing
clustering method (Greene, 2019), in predicting human
same/different judgements, and in capturing variance in
the meaning of participant-generated image labels.

It is worth noting, however, that performance
differences were sometimes minor (see Tables 6 and
7). In fact, we observed a strikingly high agreement
(near-perfect, when the number of clusters is matched)
between the clusters generated by our method,
and the SUN taxonomy. This result is impressive
because the SUN taxonomy was developed completely
independently of the experimental data used to derive
our categories. The SUN categories were determined
by identifying place names represented in WordNet,
collapsing over synonyms, and then using these as
search-terms in various search engines to retrieve
images (Xiao et al., 2010).

WordNet organizes words into concepts by grouping
synonyms into sets termed synsets. These synsets are
structured hierarchically—a design decision inspired
by early investigations of semantic memory (Collins
& Loftus, 1975; Miller, 1990). Expert lexicographers
generated these synsets manually. Consequently, the
similarity between the category systems produced by the
“WordNet approach” and our data-driven approach,
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may reflect the universality of how category systems are
represented by humans, lexicographers and psychology
participants alike. Moreover, these results suggest that
linguistic taxonomies generalize to visual scenes—a
finding consistent with research showing that long-term
semantic memory is modality independent (Coccia,
Bartolini, Luzzi, Provinciali, & Lambon Ralph, 2004;
Simanova, Hagoort, Oostenveld, & Van Gerven,
2014).

One prominent difference between the SUN
taxonomy and our category systems is the number of
categories. Using k-fold cross-validation, we found
that the optimal number of categories for 1,000 and
712 images was 35 and 24, respectively. The SUN
taxonomy has more than twice this number (72 and
55 categories for 1,000 and 712 images, respectively).
Our method generated simpler category systems
with a larger number of images per category. This
difference may reflect the fine-grained differentiation
between different word meanings in WordNet. Humans
show substantial disagreement regarding the meaning
denoted by different WordNet Synsets (Chklovski &
Mihalcea, 2003), and, in the NLP literature, merging
synsets into simpler taxonomies improves word-sense
disambiguation (Navigli, 2006; Snow et al., 2007).

In terms of human behavior, the preference for
coarse-grained taxonomies may relate to basic-level
categorization. Humans show a reliable bias toward
categorizing stimuli (visual and nonvisual) at the basic
level (Hajibayova, 2013; Rosch, 1999; Rosch & Lloyd,
1978; Rosch & Mervis, 1975; Rosch, Mervis, Gray,
Johnson, & Boyesbraem, 1976; Tversky & Hemenway,
1983), and previous work has demonstrated that
visual scenes involuntarily activate basic-level semantic
concepts (Greene & Li, 2014). An inspection of the
category labels assigned to our categories supports this
explanation: the SUN gatehouse category is labelled
“castle” and the outdoor newsstand is labelled “shop”
(see Figure 13). Because gatehouses are typically
enclosed within the grounds of castles and outdoor
newsstands are a subtype of shop, participants seem
to be collapsing over more fine-grained categories.
Similarly, the SYNS semantic category system
derived in Experiment 1 is mostly comprised of basic
level-categories, with the exception of the superordinate
“Nature” category. Taken together, our findings suggest
that humans represent large numbers of visual scenes
using a relatively small set of coarse-grained categories.

Greene’s (2019) category systems showed weaker
agreement with the SUN taxonomy and the categories
generated by our method (see Figure 12). This result
may relate to the constraints within Greene’s clustering
method: SUN categories can be eliminated or merged,
but new categories cannot be created by dividing
SUN categories into smaller units. For example, our
method produced two separate categories: “Forest” and
“Mountain” for the single SUN category: “Flight of

Stairs, Natural,” based on the environmental context.
By contrast, Greene’s method simply reproduced
the original SUN category (see Figure 13). Despite
these differences, both clustering methods frequently
produced identical categories (Figure 13, green boxes),
and can be used for different purposes: our method
can be used to derive clusterings in the absence of any
assumptions about the taxonomical structure of the
dataset; Greene’s (2019) method can be applied as an
inexpensive method of simplifying and refining existing
category systems.

The limits of our clustering method

Our method produced reasonable clusterings for
a sparse dataset (see Figure 13) in which more than
90% of the datapoints were missing. Moreover, as
reported in the Supplementary Materials, we tested our
clustering method on simulated data, and compare
the results against two alternative methods (k-medoids
and spectral clustering). We found that our method
was more robust against high levels (50%) of response
noise. We also tested the behavior of our method under
conditions of high interparticipant disagreement, and
found that our method produced the correct number of
clusters even when interparticipant disagreement was
as high as 25%. Thus, our method can be safely applied
to experimental data: i) containing a large amount of
missing data, ii) with high levels of response noise, and
iii) collected from a heterogenous population, where
interparticipant agreement may be low.

We tested our method on 80, 712, and 1,000 images,
but many large-scale databases contain hundreds of
thousands or even millions of images. The sorting
task in Experiment 1 works well for a small number
of images (in our case, 80), but with larger sets of
images, the workspace would quickly become cluttered
and unmanageable. A physical sorting task, where
participants arrange pictures of scenes in a large, open
space, might fare better, but this comes with its own
limitations (e.g., error-prone manual data entry, time
consuming to run).

The same–different task described in Experiment 4
may seem better, but the number of judgements
needed to “fill” a similarity/confusion matrix increases
quadratically with the number of images—a fact
highlighted by Greene et al. (2016), who recruited more
than 2000 participants, and only managed to collect
data for 0.27% of the possible image combinations (of
42,000 images).

Assuming a full, large-scale dataset can be practically
collected, an additional limiting factor is computational
efficiency. Because the number of possible clusterings
given n stimuli and k clusters is kn, the search space
grows rapidly as the dataset size increases. In the
Supplementary Materials, we examine the efficiency
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of our method as a function of the number of stimuli
(n), and number of clusters (k), and show that, while
runtime increases with both these variables, our method
is still computationally feasible for large datasets (albeit
slow when n and k are large, for example, n = 50,000,
k = 500).

Our method is also not limited to the domain of
scene categorization: it can be applied to data collected
from any psychophysical experiment that yields
similarity judgements between pairs of stimuli. For
example, our method could be used to derive object,
color, and texture categories, and could be applied to
other modalities to investigate auditory, tactile, and
olfactory processing.

Further questions regarding the utility of
categories

Although it is evident that humans use categorical
descriptions in everyday life to communicate notions
of place or location using labels like “Beach” and
“Residential,” categorical representations do not
capture intracategory variations. Further, we have
assumed that any given image must belong to exactly
one category within a category system, whereas it
may be more natural to allow images to belong to
multiple categories (Patterson, Xu, Su, & Hays, 2014).
For example, a scene of a house on the seashore may
belong to both “Beach” and “Residential” categories.
In contrast, attributes (e.g., materials or functions) can
traverse category boundaries and capture intracategory
variation. Attribute perception may complement
category representations by providing the fine-grained
information that categories lack (Ferrari & Zisserman,
2008).

Nativist approaches to category systems posit
that categorization behavior reflects a universal taxa
of perceptual ordering (Berlin & Kay, 1991; Rosch
& Lloyd, 1978). Other investigators have stressed
that labelling systems vary to a large extent across
individuals and cultures (Hajibayova, 2013; Levelt,
2014). For example, highly familiar category instances
(e.g., to a Neapolitan, Mt Vesuvius may be a familiar
instance of “mountain”) are accessed at the individual,
rather than the categorical level (Anaki & Bentin,
2009). Personal expertise may therefore determine
whether a scene is identified categorically or not. This
factor casts doubt over the generality of not only our
categorization system, but fixed categorical taxonomies
in general. Future research will benefit from assessing
how individual, geographical and cultural variables
shape psychological category representations (Nisbett
& Masuda, 2006). Our category formation method
could serve as a useful tool for investigating these
problems.

Conclusion

Scene understanding is commonly measured
by assessing categorization behavior, but these
measurements will only be useful if the right category
system is used. We have proposed a novel method for
generating participant-driven category systems. Using
stereoscopic images of real-world scenes from the
SYNS database (Adams et al., 2016), we established
ground-truth categories across three dimensions
(semantics, 3D spatial structure, 2D appearance). We
explored some basic characteristics of our categories,
and presented results that suggest color and spatial
structure provide intermediate representations useful
for determining semantic category. We then tested our
method on a larger dataset, and observed a superior
agreement with human judgements than rival category
systems, but also a surprising degree of agreement
between our clusterings, and the categories represented
in the SUN taxonomy. Further simulations revealed
that our method is robust against response noise and
participant heterogeneity. This method may be useful
for creating and/or evaluating class label systems
for existing databases and for investigating specific
hypotheses regarding the organization of categorical
constructs.

Keywords: high-level scene perception, scene
categorization, clustering
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Footnotes
1The fact that power spectra can be encoded efficiently, and discriminate
semantic categories well, does not mean they are necessarily used by
humans. Indeed, humans process the presence or absence of animals in
natural scenes without exploiting the information available from the power
spectrum (Wichmann, Drewes, Rosas, & Gegenfurtner, 2010).
2We use the standard Rand index for coordinate ascent, and the ARI for
cross-validation because, for S, the number of categories is undefined
and has to be approximated by c. For c and the categories generated by
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the left-out subject, the number of categories is defined, so ARI is the
preferred metric.
3Ross and Oliva (2010) additionally instructed subjects to perform a
natural vs. man-made categorization, but, because the semantic category
system from Experiment 1 challenges the assumption of a sharp division
between superordinate categories and finer categorical representations, we
omitted this judgement.
4In Experiment 1, participants assigned labels to whole categories, whereas
in Experiment 4 they were assigned to single images. Therefore, we cannot
use the same method as in Experiment 1.
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Appendix

Participant instructions

You will view a large number of images from different
scenes. Your task is to organize them into groups by
using the mouse to drag and drop the images. You are
free to organize the images into between three and
10 groups. All groups should contain more than one
image, but they do not have to all match in size.

How to Group

Semantic
Your task is to group the images according to type of

place. Think about the themes across the images. Put
together images that share a common place category.
One possible example is the category of ‘mountains.”
In this case, all mountain images would be placed in a
single group.

Three-dimensional spatial structure
Your task is to group together images that share

similar 3D properties. Think about the structure of the

real scene depicted in each image. Consider the model
that you would have to physically build to represent
each scene. For example, you might decide that some
scenes are made of one uniform surface—the ground
plane.

Two-dimensional image appearance
Your task is to group together images that contain

similarities in their 2D appearance. For example, you
might think commonalities in the colors, patterns, or
textures.

It is key to remember that there are no right or wrong
judgements—choose whichever image combinations
make sense to you. Try not to focus on particular
objects within the images. For example, do not group
images according to whether or not they contain a car
or a person. However, it is possible that your groups or
labels may be influenced by the type of objects within
the scenes.

To group multiple images together, all you need to
do is overlap them in the central workspace in front of
you. Press down the mouse wheel to reverse the order
of the images, revealing the hidden ones that have other
images stacked on top of them. To get a better, 3D
view of any image, select it with the left mouse button
and simultaneously press down the mouse wheel. We
encourage you to view the larger, 3D images when
making your grouping judgements. When you have
finished moving the images around and you are happy
with your groups, you can press the ‘GROUP’ tab on
the bottom of the display. You will see that each image
within a group will be shown with the same color frame.
This is to help you catch any sorting errors. If any of
your groups have a wide, black frame around them,
this means that you have created either i) too many
categories, ii) too few categories, or iii) not enough
images in one or more categories. Please return to the
‘SORT’ stage if you see any black frames. You can only
manipulate the images when the ‘SORT’ tab on the
bottom of the display is highlighted. Finally, assign
each of the categories a label/set of labels. You are
limited to one to five labels for each group, and each
group must have a corresponding label. Once this is
done, you have completed the task.


