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Neisseria gonorrhoeae infection of the female lower genital tract can present with
a spectrum of phenotypes ranging from asymptomatic carriage to symptomatic
cervical inflammation, or cervicitis. The factors that contribute to the development of
asymptomatic or symptomatic infections are largely uncharacterized. We conducted
a pilot study to assess differences in the cervicovaginal microbial community of
patients presenting with symptomatic vs. asymptomatic N. gonorrhoeae infections to
a sexually transmitted infections (STI) clinic. DNA was isolated from cervicovaginal
swab specimens from women who tested positive for N. gonorrhoeae infection using
a clinical diagnostic nucleic acid amplification test. We performed deep sequencing
of 16S ribosomal RNA gene amplicons, followed by microbiome analyses with
QIIME, and species-specific real-time PCR to assess the composition of microbial
communities cohabitating the lower genital tract with the infecting N. gonorrhoeae.
Specimens collected from asymptomatic individuals with N. gonorrhoeae infection
and no co-infection with Chlamydia trachomatis and/or Trichomonas vaginalis carried
Lactobacillus-dominant microbial communities more frequently than symptomatic
patients without co-infection. When compared to asymptomatic individuals,
symptomatic women had microbial communities characterized by more diverse
and heterogenous bacterial taxa, typically associated with bacterial vaginosis (BV)
[Prevotella, Sneathia, Mycoplasma hominis, and Bacterial Vaginosis-Associated
Bacterium-1 (BVAB1)/“Candidatus Lachnocurva vaginae”]. Both symptomatic and
asymptomatic N. gonorrhoeae patients with additional STI co-infection displayed a BV-
like microbial community. These findings suggest that Lactobacillus-dominant vaginal
microbial community may protect individuals from developing symptoms during lower
genital tract infection with N. gonorrhoeae.
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INTRODUCTION

Neisseria gonorrhoeae is a sexually transmitted bacterial pathogen
responsible for 90 million infections globally each year (Rowley
et al., 2019). N. gonorrhoeae is a strictly human pathogen
and infections are typically localized to the lower genital tract.
Although acute symptomatic infection is often recognized and
treated with antibiotic therapy, a surprisingly large proportion
of N. gonorrhoeae infections are asymptomatic (Handsfield et al.,
1974; Platt et al., 1983; Sandstrom et al., 1984). Upwards of 50%
of lower genital tract infections in females are asymptomatic
(Kent et al., 2005; Lovett and Duncan, 2018). While the prevailing
dogma is that male urethral infections are symptomatic,
compelling reports have documented that asymptomatic genital
gonorrhea is prevalent in both biological sexes and across a
wide range of settings (Handsfield et al., 1974; Potterat et al.,
1987; Sherrard and Barlow, 1996; Hazel et al., 2014; Ong et al.,
2017; Martin-Sanchez et al., 2020). Asymptomatic infection is not
without consequence. Untreated asymptomatic infections can
ascend to the upper genital tract leading to health complications
including pelvic inflammatory disease and infertility in women
(Wiesenfeld et al., 2012; Reekie et al., 2018, 2019). Asymptomatic
genital N. gonorrhoeae poses a risk of onward transmission
to sex partners and ascending infection. Mathematical models
of gonorrhea transmission have confirmed unequivocally the
significant contribution of subclinical infections in maintaining
community transmission (Hazel et al., 2015). The determinants
and mechanisms that underlie asymptomatic and symptomatic
gonorrhea infection are unknown. This knowledge gap greatly
hinders efforts to develop new strategies for gonorrhea control.

Symptomatic N. gonorrhoeae infection most commonly leads
to localized host inflammation at the site of infection, urethritis in
males, and cervicitis in females. N. gonorrhoeae itself is resistant
to many host antimicrobial responses, which may contribute to
its ability to cause infection under these conditions of localized
inflammation. During an infection,N. gonorrhoeaemust compete
with the natural microbial community at the mucosal surface
to establish infection (Aroutcheva et al., 2001). Cervicovaginal
microbial communities play an important role in sexual and
reproductive outcomes, including protection from pathogens,
as the composition of the cervicovaginal microbiota has been
shown to modify susceptibility to several sexually transmitted
pathogens (STI) (Sha et al., 2005; Coleman et al., 2007; Atashili
et al., 2008; Masson et al., 2014, 2015; Anahtar et al., 2015;
McClelland et al., 2018). For example, human vaginal microbiota
dominated by Lactobacillus crispatus is associated with reduced
risk of acquisition of STI, like HIV (Borgdorff et al., 2014;
Gosmann et al., 2017; van der Veer et al., 2017; Tamarelle et al.,
2019). In addition, women with clinically apparent bacterial
vaginosis (BV), a clinical condition characterized by depleted
levels of Lactobacillus species and an increased abundance of
diverse groups of facultative anaerobes, have an increased risk
of acquiring and transmitting STI, including N. gonorrhoeae
(Wiesenfeld et al., 2003; Gallo et al., 2012; Borgdorff et al.,
2014; Bautista et al., 2017) and at an increased risk of adverse
reproductive and obstetric outcomes (Brotman, 2011; Elovitz
et al., 2019; Fettweis et al., 2019), irrespective of whether the
BV is symptomatic or not (Atashili et al., 2008; Brotman, 2011;

McKinnon et al., 2019). These factors indicate a mechanistic
contribution of L. crispatus to protection from STI, presumably
through the production of lactic acid and thus the maintenance
of a low-pH vaginal microenvironment (Tuddenham et al., 2021).
The reasons why the microbiota of some women is dominated by
Lactobacillus species, whereas that of others becomes dominated
by anaerobes are not completely understood.

Molecular definitions of the cervicovaginal microbiota of
reproductive age women, with respect to microbial composition
and diversity, are now standard (Ravel et al., 2011; Anahtar
et al., 2015; Gosmann et al., 2017). Using 16S rRNA sequencing
or metagenomics, distinct cervicovaginal microbial community
types (CTs) have been classified (Ravel et al., 2011; Anahtar
et al., 2015; Gosmann et al., 2017). The “optimal types” CT1 and
CT2 are dominated by L. crispatus and L. gasseri, respectively.
The other two Lactobacillus-dominant molecular community
types are L. iners (CT3) and L. jensenii (CT5). Notably, not
all Lactobacillus-dominant types are equal in their protective
effect against STI, as L. iners-dominated vaginal microbiotas
may actually place patients at higher risk of STI infection, like
chlamydia or HIV, when compared to L. crispatus-dominant
microbiotas (Gosmann et al., 2017; van der Veer et al.,
2017; Tamarelle et al., 2019). Finally, CT4 communities are
characterized by a diverse and heterogenous group of anaerobes
(e.g., Atopobium, Prevotella, Dialister, Gardnerella, Megasphaera,
Peptoniphilus, Sneathia, Eggerthella, Aerococcus, Finegoldia, and
Mobiluncus; Ravel et al., 2011) and this vaginal environment is a
significant risk factor for having clinically diagnosed BV (Amsel
et al., 1983; Srinivasan et al., 2012; Peebles et al., 2019) and is
termed molecular BV (McKinnon et al., 2019).

Studies examining the impact of vaginal microbiomes on
inflammatory states found that women with clinical BV or
molecular BV (i.e., CT4 microbial communities) had higher
cervicovaginal levels of pro-inflammatory cytokines (IL-1α, IL-
1β, IL-6, IL-12, and IL-8) than BV-negative or Lactobacillus-
dominant women, respectively (Masson et al., 2014; Gosmann
et al., 2017; Joag et al., 2019). Notably, the more the vaginal
microbiota shifts away from a state dominated by L. crispatus
toward dysbiosis (i.e., toward CT3 and CT4 types), the more
marked the inflammation (Cohen et al., 2010; Anahtar et al.,
2015; Lennard et al., 2018), independently of concurrent STIs,
including gonorrhea (Anahtar et al., 2015). This indicates that
the variations in vaginal microbial diversity that are common
in women with BV could influence inflammatory responses that
characterize symptomatic N. gonorrhoeae infection.

We sought to understand whether differences in microbial
composition of the genital tract were associated with
symptomatic or asymptomatic presentation of N. gonorrhoeae
infection, by utilizing 16S ribosomal RNA (rRNA) amplicon
deep sequencing of clinician-collected cervicovaginal specimens
from females diagnosed with gonorrhea.

MATERIALS AND METHODS

Study Population and Sample Collection
Specimens used in this study were remnant specimens collected
from female patients that attended a public STI clinic located

Frontiers in Microbiology | www.frontiersin.org 2 February 2022 | Volume 12 | Article 790531

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-790531 February 5, 2022 Time: 14:46 # 3

Lovett et al. Cervicovaginal Microbiota Predicts Gonorrhea Symptoms

in Durham, North Carolina in 2011 and tested positive for
N. gonorrhoeae using the clinical diagnostic assay Aptima
Combo 2 R© assay (for CT/NG) by Hologic. Clinician-collected
cervicovaginal swabs used for diagnosis were collected as per
routine care prior to any treatment. The age, race, reported
symptoms, and diagnosis for each study subject were linked to
each specimen by a study clinician when a positive specimen
was identified. The de-identified remnant cervical swab samples
were stored in Aptima buffer in their respective transport tubes
at−80◦C until DNA extraction was performed.

DNA Extraction
Two hundred microliters of Aptima buffer from each sample
were transferred to sterile 2-ml tubes containing 200 mg of≤100-
µm glass beads (Sigma), 0.3 ml of 20 mg/ml lysozyme solution
(Thermo Fisher), and 0.3 ml of Qiagen ATL buffer. Bead-beating
was then carried out for 10 min in a Qiagen TissueLyser II at
30 Hz to ensure optimal DNA yield from Gram-positive bacteria.
Subsequently, samples were incubated at 37◦C for 30 min. After a
brief centrifugation, supernatants were aspirated and transferred
to a new sterile tube with Qiagen AL buffer containing Proteinase
K (600 IU/µl). Samples were then incubated at 70◦C for 10 min.
DNA was purified using a standard on-column purification
method using Zymo-spin mini columns and Qiagen buffers AW1
and AW2 as washing agents. DNA was eluted in 100 µl of
10 mM Tris (pH 8.0).

16S Ribosomal RNA Gene Sequencing
For amplicon library preparation, we used fusion
primers composed of Ion Torrent adapter 5′-
CCATCTCATCCCTGCGTGTCTCCGACTCAG-3′ for the
forward primer and 5′-CCTCTCTATGGGCAGTCGGTGAT-
3′ for the reverse primer, and universal bacterial primer
8F 5′-AGAGTTTGATCCTGGCTCAG-3′ and 338R 5′-
GCTGCCTCCCGTAGGAGT-3′. The forward primer also
included a 10-bp IonXpressTM barcode, unique to each sample.
Each bacterial DNA sample was run in duplicate in a 25-µl
PCR reaction containing: 4 µl of 5 × MyTaq Reaction Buffer
(Bioline); 0.6 µl each of 15 µM Forward Primer and 15 µM
Reverse Primer (Integrated DNA Technologies); 0.5 µl of MyTaq
HS DNA Polymerase (Bioline); 100 ng of template DNA; and
water to 25 µl. Samples were denatured at 94◦C for 5 min,
followed by 35 cycles of 94◦C for 45 s, 55◦C for 45 s, and 72◦C
for 90 s, followed by an extension at 72◦C for 10 min and a 4◦C
hold. Each sample was visualized on a 2% agarose gel. Bands
were excised and duplicate bands were combined into one tube.
Gel purification was performed using the Qiagen Gel Extraction
Kit (Qiagen) according to the manufacturer’s protocol. Samples
were quantified using an Agilent 2100 Bioanalyzer (Agilent).
Quantification information was used to create a library by
combining equimolar concentrations of each sample. The
prepared library was sequenced on the Ion Torrent PGM
Instrument (Life Technologies) according to the manufacturer’s
protocol at UNC-CH High Throughput Sequencing Facility.

Sequence Data Analysis
Sequencing output was demultiplexed and the resulting
paired-end reads were joined using the QIIME 1.9.0

(Caporaso et al., 2010b) by invocation of fastq-join with the
default parameters. Index and linker primer sequences were
trimmed, and the reads were subsequently filtered for quality
using a sliding window of 50 bases, moving by five bases,
requiring an average quality score of 20 or above. Quality
control of both raw and processed sequencing reads was verified
by FastQC (FastQC, 2015). Sequences were clustered into
operational taxonomic units (OTU) based on the de novo OTU
picking algorithm using the QIIME implementation of UCLUST
(Edgar, 2010) at a similarity threshold of 97%. OTUs identified
as chimeric by vsearch (Rognes et al., 2016) of the ChimeraSlayer
"gold" reference database (Haas et al., 2011) and those composed
of a single read (singletons) were eliminated. The remaining
OTUs were assigned taxonomic identifiers with respect to the
Greengenes database (DeSantis et al., 2006), and their sequences
were aligned using template alignment through PyNAST
(Caporaso et al., 2010a), and a phylogenetic tree was built
with FastTree 2.1.3 (Price et al., 2010). If after the Greengenes
taxonomic assignment a taxon of interest was ambiguous at
the genus level or when putative species taxonomy was sought,
we consulted the 16S sequences in the National Center for
Biotechnology Information (NCBI) GenBank repository with
the Basic Local Alignment Search Tool (BLAST) (Altschul
et al., 1990) and/or with the multiple sequence comparison by
log-expectation method (MUSCLE) implemented in Geneious
using reference genomes.

Microbiome Analyses
Alpha diversity was measured by three different metrics (Chao1;
and observed species; phylogenetic diversity, PD) using QIIME.
Beta diversity estimates were calculated within QIIME using
weighted and unweighted Unifrac distances (Lozupone and
Knight, 2005) between samples. Results were summarized and
visualized through principal coordinate analysis (PCoA) in
QIIME. Cervicovaginal community types (CTs) were assigned
using established definitions (Ravel et al., 2011; Anahtar et al.,
2015; Gosmann et al., 2017) based on diversity and relative
abundance of bacterial taxa. These definitions classify samples
with relative majority abundance assigned to L. crispatus,
L. gasseri, L. iners, or L. jensenii as CT1, CT2, CT3, and CT5,
respectively. According to the same definitions, low Lactobacillus
communities comprising a diverse and heterogenous group of
anaerobes (e.g., Atopobium, Prevotella, Dialister, Gardnerella,
Megasphaera, Peptoniphilus, Sneathia, Eggerthella, Aerococcus,
Finegoldia, and Mobiluncus are classified as CT4 or “molecular
bacterial vaginosis”) (McKinnon et al., 2019).

Microbial DNA qPCR Array
The Vaginal Flora Microbial DNA qPCR Array (Cat. no. 330261
BAID-1902Y, Qiagen) was used for vaginal microbiome profiling.
Each specimen was processed and run on the 96-well array
plate format. The array contained assays for the detection of 90
microbial species, 2 Pan bacteria controls (Pan Bacteria 1, Pan
Bacteria 3), 1 Pan Fungi control (Pan Aspergillus/Candida), 2
host controls (Hs/Mm.GAPDH Hs/Mm.HBB1), and a positive
PCR control (PPC). Five hundred nanograms of genomic DNA
was mixed with 1,275 µl of microbial qPCR Mastermix and
water as needed to bring the total volume to 2,550 µl, using the
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manufacturer’s instructions. Individual reaction mix aliquots of
25 µl were added to each well of the plate, and the array plate was
tightly sealed, centrifuged at 1,000 rpm for 1 min, and loaded onto
the Real-Time PCR machine. PCR was performed with an initial
PCR activation step at 95◦C for 10 min, followed by 2-step cycling
of denaturation for 15 s at 95◦C, with annealing and extension for
2 min at 60◦C for 40 cycles. The CT values for each well were
imported into the Microbial DNA qPCR Array Excel template
(Qiagen) for analysis. The 1CT between the patient sample
DNA and no DNA template negative control was calculated for
each set of species-specific primer sets, following manufacturer’s
instructions for analysis. A species was reported as “present,+” if
1CT was >3, an eightfold increase in signal over background.

Statistical Analyses
Statistical analyses were performed in PRISM 9 or STATA 16.
Differences in donor characteristics and between sample groups
were investigated using the Fisher’s exact test. We compared
α-diversity between sample groups with non-parametric two-
sample t-tests using 1,000 Monte Carlo permutations to calculate
the p-values. To test whether sample groups were statistically
different, we used non-parametric ANOSIM (ANalysis Of
Similarities) tests and non-parametric two-sample t-tests with
1,000 Monte Carlo permutations to derive p-values implemented
in QIIME. For comparisons between multiple groups, one-way
ANOVA was used, correcting for multiple comparisons with
Tukey post hoc tests.

RESULTS

Cohort Characteristics of Neisseria
gonorrhoeae-Infected Women
In this pilot study, we used remnant nucleic acid material
from cervical swabs collected from a convenience sample of
19 women deemed to be N. gonorrhoeae-positive by Aptima
clinical diagnostic testing. Of these, ten individuals reported
symptoms to the provider (defined as symptomatic) and nine
did not (defined as asymptomatic) (Table 1). The reported
symptoms at the time of cervical swab sampling included vaginal
discharge (9/10, 90.0%), genital irritation (1/10, 10.0%), and
dysuria (2/10, 20%). There was a trend for younger women
to report symptoms (p = 0.090). Of the 19 specimens, 17
(89.5%) were collected from women who identified as having
African American race. Among the African American women,
the proportion of symptomatic and asymptomatic individuals
was comparable (p = 0.211). The presence or absence of
C. trachomatis, another STI pathogen, was assessed by NAAT
testing in conjunction with clinical N. gonorrhoeae testing, and
no difference in C. trachomatis prevalence was observed between
asymptomatic and symptomatic presentation (p = 0.590).

Since other STI pathogens could also be responsible for
causing lower genital tract symptoms (e.g., Trichomonas vaginalis
or Mycoplasma genitalium), we used a commercial microbial
qPCR array to test for the presence of other STI pathogens
(Table 2). Specimens from two women did not provide evaluable
results due to insufficiently recovered DNA material. Among

TABLE 1 | Study population characteristics at baseline.

Baseline
characteristics

Symptomatic Asymptomatic p-value

n = 10 n = 9

Age, mean (range) 21.1 (15–37) 26.6 (16–40) 0.09

Black (10) Black (7) n/a

Race (n) Latina (0) Latina (1)

White (0) White (1)

Symptoms (%) Vaginal discharge (90.0) None (100.0) n/a

Genital irritation (10.0)

Dysuria (20.0)

The age, race, and self-reported symptoms of 19 women positive for
N. gonorrhoeae infection by clinical test who presented at a local STI
clinic are provided.

the 17 specimens that gave analyzable results on this array,
6 of 7 (85.7%) asymptomatic specimens and 8 of 10 (80.0%)
symptomatic specimens had detectable Neisseria species DNA
(Table 2). Because these specimens all tested positive for
N. gonorrhoeae using the Aptima Combo 2, these results indicate
that the sensitivity of the microbial qPCR array may be lower
for detecting N. gonorrhoeae in this specimen type than the
Aptima Combo 2. The technical sensitivity of the Aptima assay
for detection of N. gonorrhoeae is reported as 50 colony-forming
units (Aptima R© G-P), while the qPCR array is reported to
be less than 100 copies of the 16S genomic target (Qiagen,
2021), which would correlate with 25 bacterial cells or colony-
forming units. However, the potential interference of materials
from clinical specimens is not documented for the qPCR array,
which is not approved for clinical diagnostic purposes, while
the published sensitivity and specificity of the Aptima assay
for the detection of N. gonorrhoeae in clinical specimens are
97.7 and 99.0%, respectively (Hologic, 2016). C. trachomatis
was detected in three of three specimens that were positive by
Aptima Combo 2 test and had evaluable qPCR results in the
qPCR array (Table 2). T. vaginalis was detected in 4 of 10
(40.0%) evaluable symptomatic individuals and 2 of 7 (28.6%)
asymptomatic individuals (Table 2). M. genitalium was not
detected by qPCR array in any of the specimens (Table 2). When
accounting for both clinical C. trachomatis testing by Aptima
Combo 2 and real-time PCR array results, the proportion of
STI co-infection with C. trachomatis or T. vaginalis was not
significantly different between symptomatic (5/10, 50.0%) and
asymptomatic (5/9, 55.6%) individuals (p = 0.625). Because co-
infection with other STI pathogens was not associated with
symptomatic presentation, we next sought to assess whether the
non-STI vaginal microbial community was associated with the
presence or absence of symptoms.

Neisseria spp. Abundance Represents a
Small Proportion of Bacterial
Communities in Both Symptomatic and
Asymptomatic Patients
The genital microbial community of the 19 study participants
was characterized with 16S amplicon deep sequencing. A total
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TABLE 2 | Results of clinical Aptima (NAAT) test results and microbial DNA real-time PCR (qPCR) array.

N. gonorrhoeae only N. gonorrhoeae and STI co-infections

Clinical test Asymptomatic Symptomatic Asymptomatic Symptomatic

Aptima GC + + + + + + + + + + + + + + + + + + +

Aptima CT – – – – – – – – – – + + + – – + – + –

qPCR

N. gonorrhoeae + + + + + + – + + + + n/a n/a – + + – + +

C. trachomatis – – – – – – – – – – + n/a n/a – – + – + –

M. genitalium – – – – – – – – – – – n/a n/a – – – – – –

T. vaginalis – – – – – – – – – + – n/a n/a + + + + – +

Each column across the categories reflects one individual participant.
+, Detected; – not detected; n/a, insufficient sample for qPCR; GC, N. gonorrhoeae; CT, C. trachomatis.

157,006 paired-end reads were obtained. After demultiplexing
and elimination of low-quality reads, 100,216 reads were retained
for downstream analyses of alpha diversity and beta diversity
(mean number of reads per sample = 5,274; range = 2,470–
9,528 reads). Paired reads were deposited in the Sequence Read
Archive (SRA) under the accession PRJNA768436. The individual
microbial communities of N. gonorrhoeae-infected patients were
compared to those who presented with and without symptoms.
Because other STI pathogens might be associated with different
microbial community profiles, we also compared specimens from
individuals without co-infecting C. trachomatis or T. vaginalis (by
clinical test and/or real-time PCR) separately from those with co-
infection. We first examined whether the relative abundance of
Neisseria spp. assigned reads was associated with symptomatic
presentation. Neisseria-assigned reads made up only 0.24% of all
reads in the dataset and were a minor component of the bacterial
community in each individual (Figure 1). In this limited set of
specimens, the point estimate of the relative of abundance of
reads from Neisseria spp. was highest in symptomatic individuals
without C. trachomatis or T. vaginalis co-infection, though no
significant difference in relative abundance between any group
was observed (Figure 1).

Microbial Community Diversity Is
Different Between Symptomatic and
Asymptomatic Neisseria gonorrhoeae
Infection
The overall alpha diversity did not differ when observed taxa,
Chao1, and phylogenetic diversity were compared between
individuals with symptomatic and asymptomatic N. gonorrhoeae
infection (Figure 2A and Supplementary Figures S1A–C) and
between individuals with and without other STI (Figure 2B
and Supplementary Figures S1D,E). However, the number
of dominant taxa comprising the majority of the microbial
community (i.e., 90% of all detected taxa) was significantly
lower in individuals with asymptomatic N. gonorrhoeae infection
without STI co-infection vs. both individuals with symptomatic
N. gonorrhoeae and with STI co-infection (Figure 2C).

Differences between symptomatic and asymptomatic patients,
but not between patients with and without C. trachomatis
and/or T. vaginalis co-infection, were reflected in beta diversity

analyses, with statistically significant ANOSIM tests and clear
separation on PCoA plots by two different methods: weighted
Unifrac (ANOSIM R = 0.20, p-value = 0.032, Figure 3A)
and unweighted Unifrac (ANOSIM R = 0.24, p-value = 0.011,
Figure 3B).

Asymptomatic Patients Without an STI
Co-infection Are More Frequently
Characterized by Low-Diversity,
Lactobacillus-Dominant Genital
Communities
The relative abundance of Lactobacillus spp. assigned reads
differed by patient group. The distribution of Lactobacillus spp.

FIGURE 1 | Reads assigned to the Neisseria genus comprise a small
proportion of the cervicovaginal microbial community. We characterized the
genital microbial communities of 19 females with clinically confirmed
gonorrhea using 16S amplicon deep sequencing and microbiome analysis
with QIIME. After demultiplexing and eliminating low-quality reads, 100,216
reads were retained for downstream analyses (mean number of reads per
sample = 5,274; range = 2,470–9,528 reads). Neisseria-assigned 16S
ribosomal RNA gene reads made up only 0.24% of all reads in the dataset
and are plotted for each individual’s microbial community. No significant
differences in relative abundance of 16S reads from Neisseria spp. between
any group was observed using one-way ANOVA with Tukey’s correction for
multiple comparisons.

Frontiers in Microbiology | www.frontiersin.org 5 February 2022 | Volume 12 | Article 790531

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-790531 February 5, 2022 Time: 14:46 # 6

Lovett et al. Cervicovaginal Microbiota Predicts Gonorrhea Symptoms

FIGURE 2 | Alpha diversity analyses with respect to clinical presentation and other STI co-infection. Alpha diversity was measured by three different metrics (Chao1;
observed species; and PD, phylogenetic diversity) at a depth of 2,270 reads and visualized as rarefaction plots. Overall alpha diversity are plotted for the
symptomatic and asymptomatic N. gonorrhoeae infection patient groups (A) and for the co-infection patient groups (i.e. with and without other STI) (B). The number
of dominant taxa comprising the majority of the microbial community (i.e., 90% of all detected taxa) is plotted for individuals with asymptomatic and symptomatic
N. gonorrhoeae infection with and without STI co-infection (C). Statistically significant differences between patient groups were explored with one way ANOVA with
Tukey’s correction for multiple comparisons.

relative abundances was as follows: 92.2% among asymptomatic
individuals with no co-infection, 35.3% among asymptomatic
individuals with co-infection, 21.6% among symptomatic

individuals with no co-infection, and 11.5% among symptomatic
individuals with co-infection (Figure 4A). This was evident
when inspecting the individual taxa plots (Figure 4B), as the
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FIGURE 3 | Beta diversity analyses with respect to clinical presentation and other STI co-infection. Beta diversity estimates were calculated within QIIME using
weighted (A) and unweighted Unifrac (B) distances between samples. Results were summarized and visualized through principal coordinate analysis (PCoA) in
QIIME. ANOSIM tests were used to assess the strength of the clustering patterns and statistical significance. Differences between symptomatic and asymptomatic
patients, but not between patients with and without C. trachomatis and/or T. vaginalis co-infection, were found, with clear separation on PCoA plots by two different
methods: weighted Unifrac (ANOSIM R = 0.20, p-value = 0.032, A) and unweighted Unifrac (ANOSIM R = 0.24, p-value = 0.011).
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four asymptomatic patients with only N. gonorrhoeae infection
and no detected co-infection were dominated by Lactobacillus
taxa, whereas Lactobacillus-predominance was observed less
frequently in specimens from women with symptomatic
N. gonorrhoeae infection regardless of the presence of additional
STI (2/10, 20.0% symptomatics vs. 6/9, 66.7% asymptomatics,
p = 0.040, Figure 4A). Differences in within-patient relative
abundance of Lactobacillus spp. in symptomatics with gonorrhea
only vs. asymptomatics with gonorrhea were statistically
significant (p = 0.019, Figure 5A). Similarly, the within-patient
relative abundance of Lactobacillus spp. in symptomatics with
gonorrhea only vs. that of symptomatic with co-infections also
varied significantly (p = 0.007, Figure 5A).

Using BLAST and MUltiple Sequence Comparison by Log
Expectation (MUSCLE) (Edgar, 2004), we investigated the 16S
sequences of each taxa that was assigned Lactobacillus taxonomy
and identified L. iners as the likeliest species (Supplementary
Table 1). This led us to define Lactobacillus-dominant samples
(n = 8) as community-type 3 (CT3), using standard definitions
of vaginal microbial structure (Ravel et al., 2011; Anahtar et al.,
2015; Gosmann et al., 2017; Figure 4B).

The presence of specific Lactobacillus species was further
assessed by presence/absence real-time PCR (Figure 5B). The
Lactobacillus species most commonly detected among all women
were L. iners, L. crispatus, L. jensenii, and L. gasseri (Figure 5B).
In line with our microbiome analyses and BLAST homology
searches, all asymptomatic women were positive for L. iners,
and in 85 and 75% of symptomatic women with and without
co-infection, respectively. Although L. crispatus was not the
predominant Lactobacillus species in any of the specimens using
16S sequencing, L. crispatus was detected by real-time PCR
only in N. gonorrhoeae-infected individuals with asymptomatic
presentation (Figure 5B).

Symptomatic Neisseria gonorrhoeae and
STI Co-infection Are Associated With a
Diverse Cervicovaginal Microbial
Community Composed of Bacterial
Vaginosis-Associated Bacteria
Having established that 8 of 19 samples (42.1%) were L. iners-
dominated (CT3) and more commonly associated with
asymptomatic N. gonorrhoeae infection, we investigated in more
detail the remaining 11 samples, which were dominated by a
diverse group of non-lactobacilli (Prevotella, a Lachnospiraceae
genus, Sneathia, or Mycoplasma). We used BLAST and MUSCLE
alignments to further characterize the composition of the
non-Lactobacillus communities dominated by Lachnospiraceae
and Mycoplasma. By applying BLAST on representative
reads assigned to each genus of interest, we found that
the likeliest species for Lachnospiraceae and Mycoplasma
OTUs were Bacterial Vaginosis-Associated Bacterium-1
(BVAB1)/“Candidatus Lachnocurva vaginae” and M. hominis,
respectively (Supplementary Table 1). Samples dominated
by Prevotella (n = 6), Sneathia (n = 1), BVAB1 (n = 3), and
M. hominis (n = 1) were classified as CT4/molecular BV. The
Mycoplasma-dominant sample was included in the CT4 and

molecular BV classifications. The CT4/molecular BV samples
were more frequently found in symptomatic patients (8/10, 80%
of symptomatics vs. 3/9, 33.3% of asymptomatics, p = 0.040)
(Figure 4B). Among STI co-infected individuals, 7/10 (70.0%)
carried CT4 microbial communities compared to patients
without co-infections (4/9, 44.4%), though this difference did not
attain statistical significance (p = 0.255).

The prevalence of common BV-associated bacteria was also
assessed by commercially available microbial DNA real-time
PCR assay (Figure 6). Of the BV-associated species included
in the panel, Gardnerella vaginalis was present in all samples.
Other species commonly associated with BV, like Atopobium
vaginae, certain Prevotella spp., and Sneathia sanguinegens
were also highly prevalent among this cohort of women,
regardless of symptoms or STI co-infection status. Asymptomatic
women infected only with N. gonorrhoeae (n = 4) carried
the following species less frequently than symptomatic women
infected only with N. gonorrhoeae (n = 5): M. hominis (25%
vs. 80%), Prevotella buccalis (25% vs. 80%), and Ureaplasma
urealyticum (0% vs. 100%). Similarly, asymptomatic females
without co-infections also carried BV-associated bacteria less
frequently when compared to those with symptoms or STI co-
infections (Figure 6).

DISCUSSION

A large body of evidence links vaginal dysbiosis, such as
clinical BV, to the risk of acquisition of several STIs, including
gonorrhea (Martin et al., 1999; Atashili et al., 2008; Brotman,
2011; Bautista et al., 2017; Tamarelle et al., 2019). Despite
the clear association between BV and STI acquisition risk,
treatment of asymptomatic BV has not been found to reduce
the incidence of N. gonorrhoeae or C. trachomatis infection
incidence, raising the question whether a suboptimal vaginal
environment is a modifiable biological cause of gonorrhea
risk (Schwebke et al., 2016). However, Lactobacillus-based live
probiotic therapy of vaginal dysbiosis has been recently shown
to reduce not only BV (Aroutcheva et al., 2001; Witkin and
Linhares, 2017), but also bacterial STI incidence (van de
Wijgert and Verwijs, 2020). To the best of our knowledge,
this report is the first to examine the association between
the cervicovaginal microbiota composition and symptomatic
N. gonorrhoeae infections in women. Using 16S ribosomal RNA
gene deep sequencing approaches on patient samples confirmed
to be infected with N. gonorrhoeae by Aptima clinical testing,
we show that the cervicovaginal microbiome is predictive of
gonorrhea clinical presentation in women attending an STI clinic
in the United States. These findings were confirmed by real-time
polymerase chain reaction assays specific for several Lactobacillus
species and BV-associated bacteria deployed in parallel on the
same clinical samples.

Specimens collected from asymptomatic individuals with
N. gonorrhoeae infection and no co-infection with Chlamydia
trachomatis and/or Trichomonas vaginalis carried Lactobacillus-
dominant microbial communities more frequently than
symptomatic patients without co-infection. Notably, this
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FIGURE 4 | Community composition of symptomatic and asymptomatic individuals with and without C. trachomatis and/or T. vaginalis co-infection. The mean
relative abundances of the top five most prevalent bacterial genera identified within each patient group of interest are plotted as pie charts with each pie representing
a group of interest (A). The relative abundances of the top ten taxa (genera- or family-level taxa, as applicable) identified across all 16S rRNA sequencing reads in the
dataset are shown for each of the 19 participants included in the study. These top 10 taxa comprised ł 99% of all reads in the entire dataset. We used BLAST and
MUSCLE alignments to determine the likely species of communities dominated by Lactobacillus, Lachnospiraceae, and Mycoplasma and found them to be L. iners,
Bacterial Vaginosis-Associated Bacterium-1 (BVAB1)/“Candidatus Lachnocurva vaginae,” and M. hominis, respectively. The microbial community type (CT)
designated for each participant, using standard definitions in the field, is provided (B).

Lactobacillus dominance was due to L. iners, and these
microbiotas were classified as community type 3 (CT3),
according to established definitions in the field (Ravel et al., 2011;
Anahtar et al., 2015; Gosmann et al., 2017). Previous studies
have established that L. iners-dominated vaginal microbiotas
compared to L. crispatus-dominated vaginal microbiotas may
place patients more at risk of STI infection, like chlamydia or
HIV (Gosmann et al., 2017; van der Veer et al., 2017; Tamarelle
et al., 2019). Interestingly, none of the females in our study had
cervicovaginal microbiomes dominated by L. crispatus, which

may be consistent with a protective effect by L. crispatus on
STI infection risk. This is supported by in vitro studies with
clinically isolated and lab strains of L. crispatus have been shown
to inhibit the growth of N. gonorrhoeae in vitro (Vielfort et al.,
2008), possibly through the effects of lactic acid acidification
of the growth environment (Graver and Wade, 2011). While
L. crispatus produces both isomers of lactic acid, L. iners and
human cells only make l(+) lactic acid (Spurbeck and Arvidson,
2010; Tachedjian et al., 2017). Accumulating evidence also
suggests that d(−) lactic acid may impart greater protection
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FIGURE 5 | Lactobacillus spp. detection with respect to clinical presentation and other STI co-infection. The fraction of reads assigned to Lactobacillus among all
sequence reads comprising an individual’s microbial community is shown (A). Participants have been grouped by symptom and co-infection status. Statistically
significant differences between patient groups were explored with one-way ANOVA with Tukey’s correction for multiple comparisons. The presence of specific
Lactobacillus spp. was also assessed by the presence/absence of commercially available real-time PCR assay (B). Participants have been grouped by symptom and
co-infection status. The fraction of individuals within each group positive for each of the seven Lactobacillus species in our panel (L. acidophilus, L. crispatus, L.
gasseri, L. iners, L. jensenii, L. salivarius, and L. vaginalis) are shown as a heatmap, with values ranging from “0” (i.e., none of the women in the group positive for
that species) to “1.0” (i.e., all women in the group positive for that species).

against STI pathogens than l(+) lactic acid potentially via effects
on human host cells rather than pathogen cells (Nunn et al.,
2015; Edwards et al., 2019). In humans, L. crispatus-dominant
vaginal microbiota is associated with reduced risk of acquisition
of other STI, like HIV (Borgdorff et al., 2014; Gosmann et al.,
2017; van der Veer et al., 2017; Tamarelle et al., 2019).

Neisseria gonorrhoeae-infected patients who reported
symptoms were found to have genital microbiomes composed
of a mixture of various bacterial anaerobes, such as Prevotella,
Sneathia, Mycoplasma hominis, and BVAB1/“Candidatus

Lachnocurva vaginae” (Holm et al., 2020). These women with
genital microbiomes composed of anaerobes were deemed to
have molecular BV, as defined by established classifications in
the field based on diversity and relative abundance of bacterial
taxa (Ravel et al., 2011; Anahtar et al., 2015; Gosmann et al.,
2017). This included the Mycoplasma-dominant sample because
of three main reasons that definitions of molecular BV take into
account: like Prevotella and Sneathia, it can overgrow in cases of
BV (Fredricks et al., 2005; Onderdonk et al., 2016), its prevalence
in BV patients is three times higher compared to healthy women
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FIGURE 6 | Prevalence of common bacterial vaginosis-associated bacteria detected with commercially available microbial DNA real-time PCR assay. The presence
of the indicated BV-associated bacterial species was assessed by the presence/absence of commercially available real-time PCR assay. Participants have been
grouped by symptom and co-infection status. The fraction of individuals within each group positive for each of the seven BV-associated bacteria in the panel are
shown as a heatmap, with values ranging from “0” (i.e., none of the women in the group positive for that species) to “1.0” (i.e., all women in the group positive for
that species).

(Rumyantseva et al., 2019) and it is associated with severe genital
mucosal inflammation (Martin et al., 2013).

A possible explanation for the association of symptoms
in N. gonorrhoeae infection and BV-associated microbial
communities relates to the known increase of inflammation
and inflammatory mediators in women with BV. Several studies
have shown that females with clinical BV or low Lactobacillus
abundance and high diversity of anaerobes also harbor higher
concentrations of pro-inflammatory cytokines in their genital
tract (Anahtar et al., 2015) and higher levels of the pro-
inflammatory cytokines (IL-1α, IL-1β, IL-6, IL-12, and IL-8)
when compared to BV-negative women (Kyongo et al., 2015).
Furthermore, symptoms of abnormal vaginal discharge were also
found to associate with elevated levels of IL-1β, IP-10, IL-8,
and GCSF, linking inflammatory cytokines to vaginal symptoms,
particularly vaginal discharge (Kyongo et al., 2015). Notably, the
more the vaginal microbiota shifts toward dysbiosis, the more
marked the inflammation (Cohen et al., 2010; Anahtar et al.,
2015; Lennard et al., 2018), independently of concurrent STIs,
including HIV and gonorrhea (Anahtar et al., 2015).

We recognize that our study had limitations. Because of
the nature of the study design, we had no information on
whether our symptomatic subjects also had clinically defined
BV. However, the association between BV-associated microbes
and cervicovaginal community type suggests that further studies
of the association of BV with symptomatic N. gonorrhoeae

infection are needed. Because we lacked specimens from N.
gonorrhoeae-negative women, our study was limited to analyses
among N. gonorrhoeae-positive women. Thus, despite a strong
association between low-Lactobacillus vaginal communities
(molecular BV) and risk of acquisition of STIs like HIV and
chlamydia (Borgdorff et al., 2014; Gosmann et al., 2017; van
der Veer et al., 2017), as well as a strong association between
clinical BV and risk of N. gonorrhoeae infection (Brotman, 2011;
Gallo et al., 2012; Bautista et al., 2017), our study could not
examine whether the vaginal microbiota composition associates
in characteristic ways with risk or protection from N. gonorrhoeae
infection. Instead, we focused on characterizing the relationship
between vaginal communities and clinical presentation among
women with clinically diagnosed N. gonorrhoeae infection.
Future prospective studies are needed to determine the protective
effect of Lactobacillus-dominated vaginal composition against
N. gonorrhoeae infection. Finally, the majority of our study
participants identified as African American. Previous BV
prevalence studies reported that compared to Caucasian women,
low-Lactobacillus vaginal microbiotas are more common in
African American and Latin women (Zhou et al., 2007; Ravel
et al., 2011; Fettweis et al., 2014) and that up to 50% of African
American women may harbor vaginal microbiotas deplete in
Lactobacillus species (Allsworth and Peipert, 2007). Future
studies on how race, the vaginal microbiota, and N. gonorrhoeae
risk intersect are needed.
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Overall, our study showed that symptomatic vs. asymptomatic
gonorrhea presentation is correlated with having molecular BV,
leading to two possible explanations. First, that the molecular
BV community type compared to the L. iners dominated
community type may have predisposed to the development
of gonococcal-associated symptoms. Second, that the BV state
developed after or was even caused by the establishment of
N. gonorrhoeae infection due to the promotion of the growth
of BV-associated bacteria or a loss of Lactobacillus species.
Thus, our findings suggest that the cervicovaginal microbiota
is a determinant, or at least a contributor, to gonorrhea
clinical presentation in women. Further studies defining the
relationship between genital tract microbiomes and the pro-
inflammatory immune responses in symptomatic presentation
of N. gonorrhoeae infection are needed to elucidate whether
Lactobacilli or BV-defining microbial communities serve as a
biomarker for symptoms in N. gonorrhoeae infections or directly
impact symptoms.
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