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Abstract

We present a new, computationally efficient framework to perform forward

uncertainty quantification (UQ) in cardiac electrophysiology. We consider

the monodomain model to describe the electrical activity in the cardiac tis-

sue, coupled with the Aliev-Panfilov model to characterize the ionic activity

through the cell membrane. We address a complete forward UQ pipeline,

including both: (i) a variance-based global sensitivity analysis for the selec-

tion of the most relevant input parameters, and (ii) a way to perform uncer-

tainty propagation to investigate the impact of intra-subject variability on

outputs of interest depending on the cardiac potential. Both tasks exploit sto-

chastic sampling techniques, thus implying overwhelming computational

costs because of the huge amount of queries to the high-fidelity, full-order

computational model obtained by approximating the coupled monodomain/

Aliev-Panfilov system through the finite element method. To mitigate this

computational burden, we replace the full-order model with computationally

inexpensive projection-based reduced-order models (ROMs) aimed at reduc-

ing the state-space dimensionality. Resulting approximation errors on the

outputs of interest are finally taken into account through artificial neural

network (ANN)-based models, enhancing the accuracy of the whole UQ

pipeline. Numerical results show that the proposed physics-based ROMs out-

perform regression-based emulators relying on ANNs built with the same

amount of training data, in terms of both numerical accuracy and overall

computational efficiency.
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1 | INTRODUCTION

High-performance computing has enhanced, in the past decade, organ-level numerical simulations of the heart, inte-
grating complex multi-scale phenomena – ranging from the subcellular to the tissue scale – with multi-physics interac-
tions, such as the electromechanical coupling.1 Computational cardiology is nowadays a recognized tool of clinical
utility regarding risk stratification, decisions' support and personalized medicine. It relies on physics-based mathemati-
cal models and accurate discretization techniques: the former usually depend on several inputs, that can be either
directly measured or indirectly estimated according to experimental data; the latter often requires extremely small mesh
sizes and time steps.

Model inputs such as physical and/or geometrical parameters – and more generally speaking problem data – cannot
be treated, in this context, as completely known quantities, because of both (i) intrinsic randomness affecting physical
processes, and (ii) intra-subject variability – that is, differences between individuals.2-6 Variability and lack of knowl-
edge are the two main causes1 of uncertainty – this latter being commonly defined as the confidence by which a quan-
tity can be assigned a value. Whenever interested to move towards data-model integration, embedding uncertainties
carried by subject-specific features into the computational models, and quantifying their impact on the computed
results are crucial steps, thus motivating the application of global sensitivity analysis (GSA) and uncertainty quantifica-
tion (UQ) techniques to cardiovascular problems.7

In this paper we focus on cardiac electrophysiology, that is, the description of the cardiac electrical activity,8-11 using
the monodomain system coupled with the Aliev-Panfilov ionic model. Despite the input parameters of these models
often have a direct physical interpretation, setting their values can be extremely troublesome. For instance, electrical
conductivities are tensor fields depending on tissue anisotropy, induced by the presence of fibers and sheets12; on the
other hand, repolarization properties are not easily measurable and ionic models are extremely sensitive to the values
of some of their parameters, thus making some pathological conditions hard to reproduce accurately. More generally
speaking, uncertainty might affect any input parameter related to the geometrical configuration of the domain where
the model is set, model coefficients, sources, initial and boundary conditions. As a result, quantifying the sources of var-
iability and uncertainty in model inputs is of paramount importance to obtain reliable outputs of clinical interest, such
as voltage or activation maps, through the numerical approximation of the cardiac models. The task of forward UQ is
that of providing a statistical model consisting of a probability distribution of model outputs as a function of uncertain
model inputs, and related statistics of interest. Sensitivity analysis can be used instead, prior to forward UQ, to identify
model inputs that have either a dominant influence (and so should be measured as precisely as possible), or a mild
effect (in which case uncertainty in those inputs may be neglected) on a given output. Even if this work focuses on UQ,
we highlight that this latter is only one of the three pillars – verification, validation, and uncertainty quantification –
providing the so-called VVUQ framework, aiming at improving processes in computational science. Verification and
validation of models in cardiac electrophysiology, however, are beyond the scope of the present work.

UQ and sensitivity analysis entail tremendous computational costs because of the need to rely on stochastic sam-
pling (e.g., Monte Carlo or quasi Monte Carlo) techniques,13 requiring a large number of queries to the state problem
(given in our case by a nonlinear, time-dependent, coupled PDE-ODEs system). To improve the performances we can
follow different strategies such as, (i) replacing computationally expensive high-fidelity full-order models (FOMs) with
computationally inexpensive surrogate or reduced-order models (ROMs), (ii) to improve sampling procedures exploi-
ting, for example, (adaptive) sparse grid,14-16 multi-level or multi-fidelity17 Monte Carlo techniques18,19 or (iii) to adopt
different stochastic procedures,20 such as stochastic Galerkin and stochastic collocation methods.21,22 In this paper we
focus on the first strategy for its ease of implementation and flexibility.

Among surrogate models, several options are available, such as (i) data fits or emulators, obtained via artificial neu-
ral network (ANN) regression,23 polynomial chaos expansions24 or Gaussian process regression,25 that directly approxi-
mates the input–output mapping by fitting an emulator to a set of training data – that is, a set of inputs and
corresponding outputs obtained from model runs; (ii) lower-fidelity models, introducing modeling simplifications
(e.g., coarser meshes or simplified physics, such as the Eikonal or reaction-Eikonal models26); and (iii) ROMs obtained
through a projection process on the equations governing the FOM to reduce the state-space dimensionality. Although
typically more intrusive to implement, ROMs often yield more accurate approximations than data fits and usually gen-
erate more significant computational gains than lower-fidelity models, requiring less training data. Since we are inter-
ested to deal with complex depolarization and repolarization patterns including sustained or non-sustained reentries,
we avoid using simplified physical models, because they might fail in describing such complex patterns.26,27 We instead
compare data fits and projection-based ROMs when dealing with sensitivity analysis and forward UQ. In particular, we
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assess the effect of parameters (and related uncertainty) on tissue activation patterns and tissue refractoriness, leading
to sustained and non-sustained reentry waves. Despite several works have proposed computational models to enhance
understanding of cardiac arrhythmias, focusing on both two-dimensional geometries28-32 and three-dimensional,
patient-specific configurations,33-36 uncertainty propagation in these applications has been seldom taken into account
systematically; we mention, for example, Reference 6 for the estimation of the local tissue excitability of a cardiac elec-
trophysiological model and Reference 37 for the quantification of the uncertainty about the shape of the left atrium
derived from cardiac magnetic resonance images. On the other hand, several works have focused on the way uncer-
tainty can be quantified and propagated within single-cell models.4,38

In this paper, we propose a novel, physics-based computational pipeline to perform global sensitivity analysis and
forward UQ in cardiac electrophysiology, aiming at investigating the effect of model parameters (related with both the
stimulation protocol and the ionic activity) on complex patterns including spiral waves reentry, simulating the presence
of tachycardia. Our framework features several novelties compared to existing literature:

• First of all, we exploit efficient and accurate ROMs built through the reduced basis (RB) method for parametrized
PDEs as physics-based surrogate models to speed up our UQ analysis, rather than data fits or emulators. In this way,
we reduce the computational complexity entailed by stochastic sampling approaches by relying on less expensive
queries to the full-order state problem, still preserving the fidelity of an accurate model such as the monodomain
equation.

• Moreover, we properly account for the approximation error with respect to the FOM – which can also be seen as a
form of simulator uncertainty – by means of inexpensive ANN regression models. Then, we perform a variance-based
global sensitivity analysis, taking into account the simultaneous variation of multiple parameters and their possible
interactions.

• Furthermore, we propagate uncertainty from the most relevant inputs (among several parameters affecting the ionic
model, the coefficients and data of the monodomain model) to outputs of interest related with the activation map.

• Finally, we show that a purely data-driven emulator of the input–output map, built through an ANN regression
model, does not ensure the same accuracy reached by the proposed physics-based ROM strategy.

The structure of the paper is as follows. In Section 2 we formulate the monodomain system coupled with the Aliev-
Panfilov ionic model, the high-fidelity FOM, and an efficient ROM based on the POD-Galerkin method. Moreover, we
show how to take advantage of the proposed ANN and ROM strategies to perform variance-based GSA and forward
UQ. In Section 3 we assess the computational performances of the proposed methods on a two-dimensional benchmark
problem, where the parameters of interest are related to the stimulation protocol and the ionic activity. A discussion on
the obtained numerical results, and a comparison with existing literature, are reported in Section 4, followed by some
Conclusions in Section 5.

2 | METHODS

After formulating the problem we focus on, we show how to solve it efficiently through an efficient ROM. Then, we
recall some fundamentals in sensitivity analysis and forward UQ, showing how reduction errors propagate through the
forward UQ process.

2.1 | State problem, input uncertainties and outputs of interest

Mathematical models of cardiac electrophysiology describe the action-potential mechanism of depolarization
and repolarization of cardiac cells, which consists in a rapid variations of the cell membrane electric potential
with respect to a resting potential. Indeed, the generation of ionic currents at the microscopic scale through the
cellular membrane produces a local action potential, which is propagated, at the macroscopic scale, from cell to
cell, in the form of a trans-membrane potential. This latter is described by means of PDEs – the bidomain model,
or the simplified monodomain model – suitably coupled with ODEs modeling the ionic currents in the cells. Sev-
eral ionic models have been investigated in the past decades, either providing a phenomenological description
of the action potential disregarding sub-cellular processes (such as the Rogers-McCulloch, Aliev-Panfilov,
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Bueno-Orovio models), or allowing explicit description of the kinetics of different ionic currents (see, e.
g.,8,10,39).

Throughout the paper, μ�P will denote an input parameter vector, whose components might represent physical
and/or geometrical features affecting the coupled ODE-PDE model; P�ℝp will denote the parameter space. Here we
are interested to quantify the uncertainty in the evolution of the electric potential for a range of physical parameters
affecting both electric conductivities at the tissue level and the ionic dynamics at the cellular scale. The state problem is
obtained by coupling the monodomain model for the (dimensionless2) transmembrane potential u(μ) with a ionic
model – here involving a single gating variable w(μ) – in a domain Ω�ℝd, d = 2, 3, representing, for example, a portion
of the myocardium.

This results in the following time-dependent nonlinear diffusion–reaction problem: for each t � (0, T),

∂u μð Þ
∂t

−div D μð Þru μð Þð Þ+ Iion u μð Þ,w μð Þ;μð Þ= Iapp μð Þ inΩ

∂w μð Þ
∂t

+ g u μð Þ,w μð Þ;μð Þ=0 inΩ

∂u μð Þ
∂n

=0 on ∂Ω

u 0;μð Þ= u0, w 0;μð Þ=w0:

ð1Þ

Here t denotes a rescaled time, Iapp is an applied current providing the (initial) activation of the tissue, while the
reaction term Iion and the function g both depend on u and w, thus making the PDE and the ODEs system two-ways
coupled. The diffusivity tensor D depends on the fibers-sheets structure of the tissue, and affects conduction velocities
and directions. Among several possible choices of ionic models, we consider the Aliev-Panfilov model, for which

Iion u,wð Þ=Ku u−að Þ u−1ð Þ+wu, g u,wð Þ= ε0 +
c1w
c2 + u

� �
−w−Ku u−b−1ð Þð Þ; ð2Þ

the coefficients K, a, b, ε0, c1, c2 are related to the cell.

2.2 | High-fidelity, full-order model

We consider the Galerkin finite element (FE) method as high-fidelity FOM. To this goal, problem (1) is first discretized
in space using linear finite elements for the transmembrane potential; the number of degrees of freedom related to the
spatial discretization is denoted by Nh and corresponds in this case to the number of mesh vertices. The time interval
[0, T] is partitioned in Nt = T/Δt time steps, t(k) = kΔt, k = 0, …, Nt, and a semi-implicit, first order, one-step scheme is
then used for time discretization41; the nonlinear term Iion�ℝNh at each time t(k+1) is then evaluated at the solution
already computed at time t(k). At each time step t(k), k = 1, …, Nt, a system of Nh (independent) nonlinear equations
must then be solved, arising from the backward (implicit) Euler method: given w0(μ) = w0(μ), solve

w k+1ð Þ μð Þ−Δtg u kð Þ μð Þ,w k+1ð Þ μð Þ;μ
� �

=w kð Þ μð Þ, k=0,…,Nt−1: ð3Þ

The so-called ionic current interpolation strategy is used to evaluate the ionic current term, so that only the nodal
values are used to build a (piecewise linear) interpolant of the ionic current. This yields a sequence in time of
μ-dependent linear systems,

 μð Þ
Δt

+ μð Þ
� �

u k+1ð Þ μð Þ+ Iion u kð Þ μð Þ,w k+1ð Þ μð Þ;μ
� �

=
 μð Þ
Δt

u kð Þ μð Þ+ I k+1ð Þ
app μð Þ, k=0,…,Nt−1, ð4Þ

where u kð Þ μð Þ�ℝNh and w kð Þ μð Þ�ℝNh denote the FOM vector representation of the transmembrane potential and the
state variables, respectively, at time t(k). The vectors u0 =u0 μð Þ�ℝNh , w0 =w0 μð Þ�ℝNh provide instead the initial
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conditions. Here  μð Þ�ℝNh ×Nh denotes the mass matrix,  μð Þ�ℝNh ×Nh encodes the diffusion operator appearing in
the monodomain equation, whereas I k+1ð Þ

app �ℝNh encodes the applied current at time t(k+1).
The major computational costs are entailed by assembling the terms Iion and g at each time step and by the solution

of the linear system (4); indeed, extremely small spatial mesh sizes h and time steps Δt must be chosen to capture the
fast propagation of sharp (and, possibly, μ-dependent) moving fronts correctly,29,42,43 thus yielding an extremely large
dimension Nh.

2.3 | Reduced-order models for parametrized systems

To speed up the solution of the state problem (1) and make both GSA and UQ feasible for the application at hand, we rely
on the reduced basis (RB) method for parametrized PDEs. This technique performs a Galerkin projection onto low-
dimensional subspaces built from a set of snapshots of the high-fidelity FOM, by, for example, the Proper Orthogonal Decom-
position (POD) technique. We refer to the resulting projection-based ROM as to POD-Galerkin ROM. In this case, snapshots
are obtained by FOM solutions calculated for different values of the parameters (selected through Latin hypercube sampling),
at different time steps. Then, suitable hyper-reduction techniques, such as the Discrete Empirical Interpolation Method
(DEIM)44 and its matrix version MDEIM,45 allow us to efficiently handle nonlinear and parameter-dependent terms.46,47

For the sake of brevity, here we only sketch the main aspects involved in the RB approximation of the problem at
hand. Regarding the PDE system (4), we assume that the RB approximation of the transmembrane potential at time t(k)

is expressed by a linear combination of the RB basis functions,

u kð Þ μð Þ≈u kð Þ
n μð Þ, ð5Þ

where �ℝNh ×n collects the (degrees of freedom of the) reduced basis functions. In the case of POD,  is made by the

first n singular vectors of the snapshot matrix S= u 1ð Þ μ1ð Þ … u Ntð Þ μ1ð Þ … …u 1ð Þ μNsnap

� �
… u 1Ntð Þ μNsnap

� ���� i���������������h
.

After updating the state variables to its current value w(k + 1)(μ) at time t(k + 1) by solving (3), the Galerkin-RB prob-
lem reads as:

n μð Þ
Δt

+n μð Þ
� �

u k+1ð Þ
n +TIion u kð Þ

n ,w k+1ð Þ;μ
� �

=
n μð Þ
Δt

u kð Þ
n + I k+1ð Þ

app μð Þ, k=0,…,Nt−1,

where n μð Þ=T μð Þ and n μð Þ=T μð Þ. Since the μ-dependence shown by these matrices is nonaffine, we rely
on MDEIM to get an approximate affine expansion. Then, we can take advantage of DEIM to avoid the evaluation of
the full-order array Iion �ℝNh and preserve the overall ROM efficiency. We thus approximate

Iion u kð Þ
n ,w k+1ð Þ

h ;μ
� �

≈~Iion μð Þ=
Xm
q=1

θq t kð Þ;μ
� �

zq

once m � Nh μ-independent vectors zq�ℝNh , 1≤ q≤m basis vectors have been calculated, from a set of Nsnap �Nt snap-
shots Iion u kð Þ

n μk
� �

,w k+1ð Þ
h μk

� �
;μk

� �
, k=1,…,Nsnap, ℓ=0,…,Nt−1

n o
; the μ-dependent weights θq :P7!ℝ are then

computed by imposing m interpolation constraints. Basis vectors are computed by means of POD,44 whereas the set of
points (in the physical domain) where interpolation constraints are imposed are iteratively selected by employing the
so-called magic points algorithm.48,49 The ionic term in the potential equation can be thenapproximated by

TIion u kð Þ
n μð Þ,w k+1ð Þ μð Þ;μ

� �
≈TΦ PTΦ

� �−1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Nh ×m

Iion PTu kð Þ
n μð Þ,PTw k+1ð Þ μð Þ;μ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m× 1

where Φ= z1 … zmj ��ℝNh ×m
��


and P= eℐ1 … eℐmj ��ℝNh ×m
��


, with eℐi = 0,…,0,1,0,…,0½ �T �ℝNh , being ℐ the set of
m interpolation indices ℐ� {1, � � �,Nh}, with jℐ j = m. Note that the matrix Φm =TΦ PTΦ

� �−1
is μ-independent and
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can be assembled once for all. This way of proceeding also enhances the solution of the ODE system (3). Indeed, only
m components ℐ1, …, ℐm must be advanced in time, thus resulting in a reduced ODEs system for the vector
w kð Þ

m =PTw kð Þ �ℝm.
Finally, the ROM for the monodomain system (1) reads as: given μ�P , find u k+1ð Þ

n μð Þ,w k+1ð Þ
m μð Þ

� �
�ℝNh ×ℝm

such that u0
n μð Þ=T u0(μ), w0

m =PTw0 μð Þ, and, for k = 0, …, Nt− 1,

w k+1ð Þ
m μð Þ−Δtg PTu kð Þ

n μð Þ,w k+1ð Þ
m μð Þ;μ

� �
=w kð Þ

h μð Þ,

n μð Þ
Δt

+n μð Þ
� �

u k+1ð Þ
n μð Þ+ΦmIion PTu kð Þ

n μð Þ,w k+1ð Þ
m μð Þ;μ

� �
=
n μð Þ
Δt

u kð Þ
n μð Þ+TI k+1ð Þ

app μð Þ:

Despite several works have exploited POD-Galerkin ROMs for the simulation of the cardiac function,50-54 for the
sake of computational efficiency here we consider a generalization of the usual POD approach, requiring the construc-
tion of local RB spaces, as proposed in Reference 47. In this respect, clustering algorithms, such as the k-means algo-
rithm, are employed, prior to performing POD, to partition snapshots (of both the solution to the parametrized coupled
monodomain-ionic model (1), and the nonlinear terms) into Nc clusters, for a chosen number Nc ≥ 1; then, a local
reduced basis is built for each cluster through POD.55

For instance, in the case of solution snapshots, we employ k-means to partition the columns of S into Nc submatrices
S1,…,SNc
� �

in order to minimize the distance between each vector in the cluster and the cluster sample mean. In other
words, the objective is to find:

S1u,…,SNc
u

� �
=argmin

Su

XNc

ℓ=1

X
u � Sℓu

ku−cℓk2, cℓ =
1

j Sℓu j
X
u � Sℓu

u, ℓ=1,…,Nc,

before computing the POD basis. Here, cℓ
� �Nc

ℓ=1 are the so-called centroids (i.e., the cluster centers) selected by the
k-means algorithm. Then, when solving the ROM, the local basis �ℓ is selected at each time step k = 0, …, Nt− 1 with
respect to the current solution of the system Vu kð Þ

n μð Þ by minimizing the distance between Vu kð Þ
n μð Þ and the centroids,

that is, �ℓ=argminℓ kVu kð Þ
n μð Þ−cℓk2 . It is possible to show (see Reference 47) that this latter task can be performed

inexpensively only relying on the ROM arrays. A similar procedure is then applied for the construction of local bases to
treat nonlinear terms through the DEIM.

We highlight that more sophisticated bioelectrical activity models (e.g., ten Tusscher-Panfilov, O'Hara-Rudy, or others)
with many state variables would not impact on the construction of the ROM dramatically. In those cases, the ROM would
result even more efficient compared to the FOM, due to the large number of ODEs this latter would involve. This is due to
the use of the ionic current interpolation, and to the fact that the DEIM only requires to evaluate ionic variables at a set of
few, selected points in the domain, thus requiring the solution of few ODEs during the online stage.

2.4 | Sensitivity analysis and forward uncertainty quantification

Hereon, we assume that μ is a vector-valued random variable (or random vector), whose support is
P =P1 ×…×Pp , being Pi⊆ℝ , i = 1, …, p, enabling us to parametrize uncertain inputs of the ODE-PDE system; we
denote by π(μ) the probability density function (pdf) of μ. For the sake of simplicity, we consider all the parameters nor-
malized in the range [0, 1]. Therefore, the (approximated) solution of this latter system, uh(t; μ), is itself a random func-
tion of a random vector, besides spatial coordinates and time. In addition, we denote by yh μð Þ=Q uh t;μð Þð Þ�ℝ some
(random) output Quantities of Interest (QoI) we want to evaluate, which depends by the random input μ through the
state variable uh.

Because of the dependence on uh, the pdf of yh cannot be determined in closed form; therefore, we need to draw
samples from its distribution, and to compute statistics such as its expected value and its variance

 yh½ �=
ð
P
yh μð Þπ μð Þdμ, Var yhð Þ=

ð
P
yh μð Þ− yh½ �ð Þ2π μð Þdμ=

ð
P
yh μð Þð Þ2π μð Þdμ− yh½ �2:
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With this aim, we rely on Monte Carlo (MC) methods, which provide an approximation to  yh½ � and Var(yh) exploi-
ting a random sample {μq}, q = 1, …, Nmc, drawn from the distribution of μ, as follows:

 yh½ �≈ 1
Nmc

XNmc

q=1

yh μq
� �

, Var yhð Þ≈ 1
Nmc−1

XNmc

q=1

yh μq
� �

−
1

Nmc

XNmc

q=1

yh μq
� � !2

: ð5Þ

We also need to compute conditional expectations and conditional variances when dealing with variance-based sen-
sitivity analysis, since the sensitivities of the output with respect to the parameters are measured by looking at the
amount of variance caused by the parameter μi, i = 1, …, p. Indeed, assume to fix the parameter μi at a particular value
μ�i , and let Varμ�i

yhjμi = μ�i
� �

be the resulting variance of yh, taken over μ�i (all parameters but μi). We call this a condi-
tional variance, as it is conditional on μi being fixed to μ�i , and can use it as a measure of the relative importance of μi –
the smaller Varμ�i

yhjμi = μ�i
� �

, the greater the influence of μi on the QoI. To make this measure independent of μ�i , we
average it over all possible values μ�i , obtaining

μi Varμ�i
yh jμið Þ


 

=
ð
Pi

Varμ�i
yh jμið Þπi μið Þdμi, i=1,…,p, ð6Þ

which we also refer to as residual variance. According to the law of total variance (or variance decomposition formula),

Var yhð Þ=Varμi μ�i
yh μij �½ Þ+μi Varμ�i

yhjμið Þ

 


, i=1,…,p:
�

ð7Þ

The first term at the right hand side is the so-called explained variance, that is, the variance (with respect to μi) of
the conditional expectation

μ�i
yh μij �=

ð
P
yh μð Þπμ�i

μjμið Þdμ i=1,…,p,
�

that is,

Varμi μ�i
yh μij �½ Þ=

ð
Pi

μ�i
yh μij �½ Þ2πi μið Þdμi−

ð
P i

μ�i
yh μij �πi μið Þdμi½ Þ2:

���
ð8Þ

This term thus represents the reduction of the variance in the output QoI due to the knowledge of μi. We have den-
oted by πμ�i

μjμið Þ the conditional pdf of μ given μi, defined as πμ�i
μjμið Þ= π μð Þ=πi μið Þ, having assumed that the parame-

ter components μ1, …, μp are independent; here πi(μi) denotes the marginal pdf of μi. Also to compute the conditional
expectation and its variance we will rely on MC methods, see Section 2.4.1.

2.4.1 | Variance-based global sensitivity analysis

Sensitivity analysis quantifies the effects of parameter variation on the output QoI, providing a criterium to rank the
most influential input parameters.56 In this work we consider a variance-based global sensitivity analysis (GSA) which
describes the amount of output variance generated from the variation of any single parameter, and also from interac-
tions among parameters.57 In this setting, input parameters ranking is based on which input, if fixed to its true value,
yields the largest expected reduction in output QoI uncertainty. Compared to the elementary effect method, which com-
putes the effect associated with changes in the ith parameter by changing one parameter at a time, variance-based GSA
enables us to take into account interactions among parameters on the output QoI. While several applications of the ele-
mentary effect method related to cardiac electrophysiology can be found in literature, only few works have exploited
variance-based GSA methods in this context.3

In variance-based GSA, the sensitivities of the output with respect to the parameters are measured in terms of
the variance caused by each parameter μi. According to definitions (6) and (8), the first-order sensitivity index (or
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first Sobol index) of μi on yh can be defined as the ratio between the explained variance (by μi) and the total
variance:

Si =Varμi
μ�i

yh μij �½ Þ
Var yhð Þ , i=1,…,p:

�
ð9Þ

This quantity measures the effect (on the variance of the output QoI) of varying μi alone, averaged over
variations of the remaining input parameters, normalized over the total variance of yh. Hence, Si enables to
determine which parameter μi, i = 1, …, p, leads on average to the greatest reduction in the variance of the
output yh. If the total variance of yh cannot be explained by superimposing the first-order effects – that is, ifPp

i=1Si <1 – interactions among parameters are present. In this case, Var(yh) can be decomposed through the so-called
ANOVA decomposition into first-order effects and interaction effects, which are used to construct the interaction
indices

Si,j =Varμiμj μ�i,j yh μi,μj
�� ih �

−Varμi μ�i
yh μij �½ Þ−Varμj

μ�j
yh μj
�� ih �

Var yhð Þ , i, j=1,…,p, j≠i

0
@

0
@

0
@

between any couple (μi, μj) of parameters. However, evaluating all possible interaction indices Si,j, i, j = 1, …, p would
become soon impractical even for moderate values of p. It is then preferable to construct a total effect (or total sensitivity)
index, given by

STi = Si +
X
j≠i

Si,j +…, i=1,…,p:

To derive a direct formula for STi avoiding the calculation of higher-order effects due to interactions, we can con-
sider again the variance decomposition formula (7), this time rewritten as follows:

Var yhð Þ=Varμ�i
μi yh μ�ij �½ Þ+μ�i

Varμi yhjμ�ið Þ

 


, i=1,…,p:
�

Indeed, the residual quantity

Var yhð Þ−Varμ�i
μi yh μ�ij �½ Þ, i=1,…,p,
�

ð10Þ

is the remaining variance of yh that would be left if we could determine the true values of μj for all j ≠ i. The total effect
(or total sensitivity) index is then obtained by dividing the residual quantity (10) by the total variance Var(yh):

STi =1−Varμ�i

μi yh μ�ij �½ Þ
Var yhð Þ =

μ�i
Varμi yhjμ�ið Þ

 

Var yhð Þ , i=1,…,p:

�
ð11Þ

The total effect index (11) is much more informative than the first-order index (9), except when there are no interac-
tion effects, in which case they coincide. Large values of STi correspond to influential parameters μi for the output QoI;
instead, if STi≈0, μi is a non-influential parameter and can be fixed to any value in its range without affecting the value
of Var(yh).

We rely on the so-called Sobol method,58 a quasi MC method based on Sobol sequences of quasi-random numbers,
to numerically approximate the first-order and total effect indices (9)–(11). Given the desired sample size Ns > 0 of the
MC estimates,

1. generate a Ns × 2p matrix of numbers (where Ns is the Sobol sequence sample size), obtained as input realizations
from a Sobol’ quasi-random sequence (through, e.g., the Matlab function sobolset);
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2. define two matrices A,B�ℝNs × p each containing half of the samples

A=

μ11 μ12 � � � μ1p−1 μ1p

..

. ..
.

μNs
1 μNs

2 � � � μNs
p−1 μNs

p

2
664

3
775, B=

μ1p+1 μ1p+2 � � � μ12p−1 μ12p

..

. ..
.

μNs
p+1 μNs

p+2 � � � μNs
2p−1 μNs

2p

2
664

3
775;

3. construct p matrices Ci �ℝNs × p, i = 1, …, p, using all columns of B except the ith column taken from A

Ci =

μ1p+1 � � � μ1i � � � μ12p

..

. ..
.

μNs
p+1 � � � μNs

i � � � μNs
2p

2
664

3
775;

4. compute the output QoI for all the vectors of parameters given by the rows of A, B and Ci

The results are respectively p + 2 vectors of output QoIs yA, yB and yCi
of dimension Ns, which can be employed to

compute the following MC estimates of the first-order sensitivity and total-effect indices Si and STi , i = 1, …, p57:

Si =Varμi
μ�i

yh μij �½ Þ
Var yhð Þ ≈

yTAyCi
−�y2A

yTAyA−�y2A
, i=1,…,p,

�
ð12Þ

where �yA =
1
Ns

PNs
j=1y

jð Þ
A is the (sample) mean of the components of yA, and

STi =1−Varμ�i

μi yh μ�ij �½ Þ
Var yhð Þ ≈ 1−

yTByCi
−�y2A

yTAyA−�y2A
, i=1,…,p:

�
ð13Þ

The main drawback of this procedure is the need of evaluating the output QoI (and thus solving the state system)
(p + 2)Ns times, to compute all the indices. Since Ns must be large enough to minimize the statistical error generated by
MC sampling, surrogate or reduced order models are necessary to avoid repeated queries to the FOM, and make this
procedure feasible.

2.4.2 | Uncertainty propagation

The goal of uncertainty propagation is to quantify the impact of input uncertainties on the output QoI yh(μ), by com-
puting the empirical distribution of yh through sampling techniques, or some statistics – its mean and its variance
being the most common indicators. Regarding this latter task, MC sampling13 represents the standard approach3: a
large number Nmc of independent samples μq

n oNmc

q=1
are drawn from π(μ), then the output QoI is evaluated yielding the

sample yh μq
� �n oNmc

q=1
, to approximate the expected value and the variance according to (5). This approach has been suc-

cessfully adopted in a variety of applications, but suffers from slow performance in terms of convergence rate: since the

statistical error scales as 1=
ffiffiffiffiffiffiffiffiffi
Nmc

p
, a large number Nmc of samples is required. Instead of enhancing MC convergence by

relying on common variance reduction techniques64 or more recent multi-level Monte Carlo,18,19 we enhance the MC
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sampling techniques by replacing the high-fidelity FOM with surrogate models, and still relying on sufficiently large
sample sizes Nmc.

2.5 | Reduced-order and ANN-based models for uncertainty quantification

To speed up the MC sampling for both variance-based GSA and forward UQ, we introduce two surrogate models:

1. a physics-based surrogate model consisting of a ROM built though the RB method;
2. a data-driven emulator of the input–output map μ 7! yh(μ), built through an ANN regression,

and compare their performances. In the case a ROM is used, the high-fidelity FOM solution uh(t; μ) of the state
problem is replaced by a cheaper yet accurate approximation un(t; μ) built through the RB method, as shown in Sec-
tion 2.3. As a result, yn μð Þ=Q un t;μð Þð Þ�ℝ is the resulting output QoI, which depends by the random input μ through
the ROM approximation un(t; μ). Hereon, we will refer to yn as to the ROM output QoI.

Regarding GSA, the calculation of the indices Si and STi , i = 1, …, p through the Sobol method requires the compu-
tation of the ROM output QoI for all the vectors of parameters given by the rows of the matrices A, B and Ci, i = 1, …,
p, see Section 2.4.1. The resulting vectors yn,A, yn,B and yn,Ci

, i = 1, …, p will then replace yA, yB and yCi
, respectively, in

the formulas (12) and (13), thus enabling a more efficient evaluation of Si and STi , i = 1, …, p.
On the other hand, when dealing with uncertainty propagation, empirical distributions of the output QoI, as well as

statistics like the expected value and the variance, will be built by sampling yn instead of yh. For instance, given a set of

random samples μq
n oNmc

q=1
, the expected value and the variance of the ROM output QoI will be estimated, respec-

tively, by

 yn½ �≈ 1
Nmc

XNmc

q=1

yn μq
� �

, Var ynð Þ≈ 1
Nmc−1

XNmc

q=1

yn μq
� �

−
1

Nmc

XNmc

q=1

yn μq
� � !2

:

Alternatively, we could directly replace the output QoI yh(μ) by the prediction yMLP(μ; θ
*) of a NN regression model,

built by training an artificial neural network which emulates the input–output map μ 7! yh(μ). In this work we focus
on the multilayer perceptron (MLP), which is a feedforward neural network such that there are no cycles in the connec-
tions between the nodes. A MLP is made by a set of hidden layers (each layer being an array of neurons) and an output
layer; between each couple of layers, a nonlinear activation function is applied.23 Due to its form, a MLP can be viewed
as a forward map from the input to the output, which depends on a set of parameters θ, namely a set of weights and
biases; these latter are estimated during the training phase, starting from a training set T = μ,yh μð Þf gμ � Ptrain

, formed by
inputs and output QoIs evaluated at each μ�Ptrain �P, where Ptrain is a selected training sample of cardinality j Ptrain j
=Noffline.

During the training phase, the optimal weights and biases θ* are determined by minimizing a (mean squared error)
loss function given by the sum of the squared misfit between the target output yh and the output yMLP predicted by
the MLP:

θ� =argmin
θ

ℒMSE θð Þ, ℒMSE θð Þ= 1
Noffline

X
μ � Ptrain

yh μð Þ−yMLP μ;θð Þð Þ2:

The minimization of the loss function is performed through iterative procedures, such as the stochastic gradient
descent, the L-BFGS method, or the so-called ADAM optimizer, to mention the most popular options, exploiting mini-
batch learning.23 Once trained, the network is then used during the testing phase to provide evaluations of the output

QoI for any μ�P∖Ptrain . For instance, given a set of random samples μq
n oNmc

q=1
, the expected value and the variance of

the MLP output QoI will be estimated, respectively, by (omitting the dependence on θ* in the expression of yMLP)
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 yMLP½ �≈ 1
Nmc

XNmc

q=1

yMLP μq
� �

, Var yMLPð Þ≈ 1
Nmc

XNmc

q=1

yMLP μq
� �

−
1

Nmc−1

XNmc

q=1

yMLP μq
� � !2

,

We highlight that when performing UQ through ANN-based surrogate models, reliability and accuracy of the
results strongly depend on the quality and amount of training data. We will compare, in the following sections, a
projection-based ROM (POD-Galerkin ROM) and a MLP emulator, in terms of training costs, efficiency and accuracy of
computed indices.

Another option to enhance the evaluation of those indices would be to rely on a multi-fidelity framework, where
models of different fidelity (such as, e.g., FOMs and ROMs) are combined to compute sensitivity analysis and uncer-
tainty measures, as shown in Reference 65. However, multiple queries to a FOM in cardiac electrophysiology would be
extremely demanding, thus compromising the overall performance of the methodology. For this reason, we still rely on
a crude MC approach, exploiting an offline-online splitting, to avoid to query the FOM multiple times when sensitivity
indices (or uncertainty measures) are computed.

2.6 | Reduced-order error propagation

A relevant issue, arising when either MLP emulators or ROMs are exploited for the sake of sensitivity analysis and for-
ward UQ, is related to the propagation of approximation errors, that is, the error between the FOM output QoI and the
MLP or ROM output QoI. Approximation errors can also be seen as a form of model uncertainty, see, for example, Ref-
erence 66. As a matter of fact, neglecting this additional error source might easily yield biased sensitivity indices or
skewed distributions of the output QoIs.

wHere we focus on the physics-based POD-Galerkin ROM since it proves to be efficient and, compared to the
MLP emulator, provides an approximation of the whole potential field – rather than the single output QoI – whose
accuracy can be more easily controllable. Indeed, ROM error on the potential field – and, ultimately, the error on the
output QoI – can be related to the neglected POD modes, ordered by decreasing importance. To enhance the ROM
accuracy and correct the possible output bias, we equip the ROM with a suitable error surrogate. In this way, we
expect to improve the overall accuracy of the complete UQ workflow. In this Section we analyze the effect that the
ROM error on the output QoI yh(μ) − yn(μ) has on uncertainty indices such as the output QoI expected value and its
variance; indeed, these quantities are also relevant when dealing with the evaluation of the sensitivity indices. Fur-
ther details about the impact that the use of a surrogate model such as a ROM has on uncertainty indices can be
found, for example, in Reference 67.

In particular, we introduce a new, ANN-based surrogate model to correct the ROM output QoI, so that the impact
of the ROM error yh(μ) − yn(μ) on the output QoI expected value and its variance is mitigated. Once the ROM has been
built, we replace the ROM output QoI yn(μ) by the prediction yn,c μ,θ�c

� �
of a NN regression model, obtained by training

an artificial neural network which emulates the map (μ, yn(μ)) 7! yh(μ). Also in this case, we rely on a MLP architecture,
whose parameters (that is, weights and biases) are denoted by θc. These latter are estimated during the training phase,
starting from a training set T = μ,yn μð Þð Þ,yh μð Þf gμ � Ptrain,c

, formed by FOM and ROM output QoIs evaluated at each
μ�Ptrain,c �P , where Ptrain,c is a selected training sample of cardinality j Ptrain,c j =Noffline,c . Hence, after building the
ROM, we compute both the ROM and the FOM output QoIs at Noffline,c points in the parameter space, and minimize
the following loss function:

θ�c =argmin
θc

ℒMSE,c θcð Þ, ℒMSE,c θcð Þ= 1
Noffline,c

X
μ � Ptrain,c

yh μð Þ−yn,c μ;θcð Þ
� �2

:

Hereon, we refer to yn,c μ,θ�c
� �

as to the corrected ROM output QoI and, for the sake of notation, we omit the depen-
dence of yn,c on θc. This procedure can be seen as a more general way to perform a correction of the ROM output, than
the (additive) ROM error surrogate model proposed by the authors in Reference 68.

Let us now first consider the error on the expected value of the output QoI,
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 yh½ �− 1
Nmc

XNmc

m=1

yn,c μmð Þ=  yh−yn,c

 
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

approximation error

+ yn,c

 


−
1

Nmc

XNmc

m=1

yn,c μmð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
statistical error

,

which can be expressed as the combination of two terms. The former is the expected value of the ROM error on the out-
put QoI – that is, the bias introduced, on average, on the output QoI when replacing the FOM with the ROM – and
depends on the ROM accuracy; the latter is the statistical error, depending exclusively on the MC sample size Nmc.

Hence, provided that the corrected ROM output is such that

j yh−yn,c

 


j = j yh½ �− yn,c

 


j≤εexptol , ð14Þ

for a given tolerance εexptol >0, the overall error between the expected value of the output QoI and its MC approximation
relying on the corrected ROM output can be bounded as follows:

 yh½ �− 1
Nmc

XNmc

m=1

yn,c μmð Þ
�����

�����≤εexptol +  yn,c

 


−
1

Nmc

XNmc

m=1

yn,c μmð Þ
�����

�����:

On the other hand, the overall error between the variance of the output QoI and its MC approximation relying on
the corrected ROM output is given by

Var yhð Þ− 1
Nmc−1

XNmc

m=1

yn,c μmð Þ− 1
Nmc

XNmc

m=1

yn,c μmð Þ
 !2

=Var yhð Þ−Var yn,c
� �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

approximation error

+Var yn,c
� �

−
1

Nmc

XNmc

m=1

yn,c μmð Þ− 1
Nmc−1

XNmc

m=1

yn,c μmð Þ
 !2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
statistical error

:

The approximation error can be further decomposed as

Var yhð Þ−Var yn,c
� �

=Var yh−yn,c
� �

+2Cov yh−yn,c,yn,c
� �

where, according to Cauchy-Schwarz inequality, the last term can be bounded as

Cov yh−yn,c,yn,c
� �

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var yh−yn,c
� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var yn,c
� �q

,

so that

jVar yhð Þ−Var yn,c
� �

j≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var yh−yn,c
� �q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var yn,c
� �q

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var yh−yn,c
� �q� �

:

Hence, provided that the corrected ROM output is such that

Var yh−yn,c
� �

< εvartol ð15Þ

for a given tolerance εvartol >0 , we obtain that the overall error between the variance of the output QoI and its MC
approximation relying on the corrected ROM output can be bounded as follows:
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Var yhð Þ− 1
Nmc−1

XNmc

m=1

yn,c μmð Þ
� �

−
XNmc

m=1

yn,c μmð Þ
� � !2�����

�����
≤

ffiffiffiffiffiffiffi
εvartol

p
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var yn,c
� �q

+
ffiffiffiffiffiffiffi
εvartol

p� �
+ Var yn,c

� �
−

1
Nmc−1

XNmc

m=1

yn,c μmð Þ− 1
Nmc

XNmc

m=1

yn,c μmð Þ
 !2 !

:

Therefore, the purpose of correcting the ROM output QoI is to ensure that assumptions (14) and (15) are verified,
and in particular that

j yh½ �− yn,c

 


j≤ j yh½ �− yn½ � j , Var yh−yn,c
� �

≤Var yh−ynð Þ,

so that approximation errors are as small as possible. Assumptions (14) and (15) are crucial for both sensitivity analysis4

and uncertainty propagation, to mitigate the effect of approximation errors. Note that an estimate of j yh½ �− yn,c

 


j
and Var(yh− yn,c) can be obtained by directly inspecting the performance of the ANN on an additional test set during
the training procedure of the ANN which emulates the map (μ, yn(μ)) 7! yh(μ) and returns yn,c(μ).

3 | NUMERICAL RESULTS

To show the effectivity of the proposed strategy, in terms of both efficiency and accuracy, we consider a modified ver-
sion of the pinwheel experiment proposed by Winfree,69 consisting of a first rightward propagating planar wave gener-
ated by exciting the entire left edge of a square portion of the tissue (S1), followed by a second stimulus (S2) at the
center of the square. The effect of the S2 stimulus depends on the following parameters:

• -. the time interval μ1 = t2 � [480,520] ms, between S1 and S2 stimuli;
• -. the radius μ2 = r � [2.5,8.5] mm of the circular region in which S2 is applied;
• -. the tissue recovery properties, modeled by the coefficient μ3 = ε0 � [0.005,0.02] appearing in (2).

Three different scenarios might then arise as possible outcomes (see Figure 1):

1. tissue refractoriness: S2 is delivered when the tissue is still in a refractory state and is not yet excitable (see
Figure 1, left);

2. sustained reentries: S2 is delivered in the vulnerable window, such that the propagation of the circular depolarization
wave is blocked rightward when it encounters refractory tissue, but not leftward where the tissue has already recov-
ered its excitability after the passage of the first wave. This mechanism results in two reentrant circuits around each
singularity, forming the so-called figure of eight (see Figure 1, center);

3. non-sustained reentry: S2 is delivered after the vulnerability window, such that the propagation of the circular depo-
larization wave is not blocked rightward, but only slowed down. This mechanism results in a second activation of
the tissue, however without producing reentrant circuits (see Figure 1, right).

In order to construct a classifier of this three possible outcomes, we consider as output QoI the deviation between
the activation map from a reference value,

y μð Þ= kAT x;μð Þ−ATref xð Þk2
kATref xð Þk2

:

Here AT(x; μ) is the activation time, which provides information about the last recorded time when the electric
wavefront has reached a given point of the computational domain. Indeed, given the electric potential ~u= ~u x,~t;μð Þ, the
(unipolar) activation map at a point x�Ω is evaluated as the minimum time at which the AP peak reaches x; from a
practical standpoint, we can evaluate the activation time as the time at which the time derivative of the transmembrane
potential is maximized, that is,
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AT x;μð Þ=arg max
~t � T1,T2ð Þ

∂u
∂t

x,~t;μð Þ
����

����,
being (T1, T2) the latest time depolarization-polarization interval in which the potential exceeded a certain
threshold.

In our case, ATref is a reference activation map, obtained for μ3 = 0.0125, when no S2 stimulus is delivered. By construc-
tion, values of the output QoI y(μ) ≈ 0 indicate that the tissue is refractory; instead, reentries are induced when y(μ) > 0. In
our numerical tests, we observed that for values of the output close to 2 the reentry was not sustained, while for values of the
output larger than 2.5 the reentry was sustained. Figure 2 shows a summary of the considered input–output relationship.

All computational timings shown below are obtained by performing calculations on an Intel(R) Core i7-8700 K
CPU with 64 Gb DDR4 2666 MHz RAM using Matlab(R). The physical coefficients considered for the monodomain
(1) and the ionic (2) models are reported in Table 1.

3.1 | Full order model

We introduce on a square domain of size (0, 10) × (0, 10) cm2 a structured triangular grid made by 20,000 trian-
gular elements, and Nh = 10, 201 vertices, resulting by choosing a maximum element size equal to h = 1.0 mm
and consider over the time interval [0, 1000] ms a time step equal to Δt = 0.5 ms. We build the FOM (3) and (4)
through the finite element method, using linear finite elements; a single query to the FOM takes 2 min 25 s to
be computed.

In this respect, a comment about mesh resolution is in order. Indeed, we compare the activation times computed
for different choices of (h, Δt) = (1.0 mm,0.5 ms), (0.5 mm,0.25 ms), and (0.25 mm,0.125 ms). Results obtained for dif-
ferent choices of the parameters (representative of the different scenarios that will be discussed later) are reported in
Figure 3. Differences are almost negligible in terms of activation times among the three different setting, thus motivat-
ing the use of a discretization with (h, Δt) = (1.0 mm,0.5 ms) for the case at hand. However, we highlight how this
choice could reveal less appropriate when dealing with cardiac electrophysiology on realistic geometries – and, more
importantly, when using realistic cell models and tissue anisotropic and inhomogeneous conductivities; here, our focus

FIGURE 1 FOM solutions of the monodomain system coupled with the Aliev-Panfilov ionic model for different values of the

parameters, at t = 520 ms and t = 800 ms. The great variability of the solution with respect to the parameters μ1, μ2, μ3 is clearly visible: from

left to right, tissue refractoriness, sustained reentry and non-sustained reentry cases are reported
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is on a benchmark problem involving a simple two-dimensional slab. Another reason motivating our choice is the need
to compare the results obtained with the proposed reduced order (or surrogate) models with the ones provided by the
FOM. Indeed, the computational cost entailed by a single query to the FOM would increase to 6 min 51 s (resp., 60 min
22 s) when considering (h, Δt) = (0.5 mm,0.25 ms) (resp., (h, Δt) = (0.25 mm,0.125 ms)), thus making the numerical
comparisons impracticable.

3.2 | Physics-based ROMs

We then assess the computational performance and the accuracy of the ROM built by considering the k-means algo-
rithm for the construction of local ROMs in the state space, according to the strategy proposed in Reference 47. We start
from a training sample of 48 parameter vectors selected through Latin hypercube sampling to compute Nc = 6 centroids
and the transformation matrices 1,…,Nc for the PDE solution on each cluster. With a prescribed POD tolerance of
10−2, we obtain a maximum (over the Nc clusters) number of basis functions of 205 and a minimum of 51. Then, DEIM
is used to approximate the nonlinear term using a training sample of 66 random parameter vectors and exploiting the
same local reduced basis structure. In this case, we prescribed a tolerance of 10−6, resulting in a maximum (over the
clusters) number of basis functions of 2585 and a minimum of 950.

FIGURE 2 Graphical sketch of the input–output map. Input parameters (top) are related with the time interval between S1 and S2

stimuli (μ1), the radius of the circular region in which S2 is applied (), and the tissue recovery properties, modeled by the coefficient ε0
affecting the ionic model (μ3). The output quantity of interest y(μ) represents the deviation of the activation map from a reference value,

evaluated as a scalar index and acts as a classifier: small values of the output are related with tissue refractoriness, intermediate values with

non-sustained reentry, large values with sustained reentry. Being dependent of the transmembrane potential u(μ), the output y(μ) can be

evaluated exploiting one of the proposed models: a reduced order model (ROM), an ANN-based emulator (MLP), a ROM corrected with an

ANN-based emulator for the ROM error (ROM+MLP)

TABLE 1 Values (taken from

Reference 70) of the model physical

coefficients employed in the numerical

simulations

K a c1 c2 b Dii(mm2/ms)

8 0.01 0.2 0.3 0.15 0.2
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Compared to the FOM, the ROM computes a solution to the problem for any new selected parameter instance with
a speed-up of 25 times; see Figure 4 for the comparison between FOM and ROM solutions. The resulting ROM output
QoI yn(μ) approximates the FOM output QoI yh(μ) with a mean square error of 0.0308 evaluated over a test set formed
by 300 random parameter samples.

To have a better insight on the ROM accuracy, we report in Figure 5 the singular values of both the solution
and the nonlinear term snapshots set, after their partitioning into Nc clusters. The decay of the singular values is
directly related with the projection error of the snapshots onto the low-dimensional subspace spanned by the
first singular vectors; this can be seen (up to some constant) as an estimate of the error between the ROM
approximation and the FOM solution. Moreover, we report the errors between the ROM and the FOM solutions,
obtained on a test set of dimension Ntest = 25 sampled from P, for decreasing POD tolerances, in Figure 6, reflecting
an increasing accuracy of the ROM for smaller POD tolerances, and showing an almost exponential convergence of the
error.

To correct the ROM output QoI through a NN regression model, we adopt a MLP formed by two hidden
layers with 12 nodes each and sigmoids activation functions; the corrected ROM output QoI is denoted by yn,
c(μ). The net is trained using the BFGS quasi-Newton method to reproduce the FOM output QoI starting from a
training set T = μ,yn μð Þð Þ,yh μð Þf gμ � Ptrain,c

of Noffline,c = j Ptrain,c j =1700 output values. In particular, we precompute
2000 output realizations from the FOM and the ROM; the first 1400 realizations are used for the MLP training, 300 are
used for the validation and the last 300 for testing (so that Noffline,c = 1400+ 300 = 1700). In this setting the best perfor-
mance on the validation set is reached at epoch 434 with an MSE of 1.56 � 10−3 and a MSE of 2.7 � 10−3 on the test set
(see Figure 7).

FIGURE 3 Activation maps computed from the FOM solution for different choices of (h, Δt) = (1.0 mm,0.5 ms), (0.5 mm,0.25 ms), and

(0.25 mm,0.125 ms) (from left to right) and different parameter values describing sustained reentry, tissue refractoriness, or non-sustained

reentry (from top to bottom)
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3.3 | Black-box MLP model

As alternative to the (corrected) ROM output, we also consider the prediction yMLP(μ) of a NN regression model, built
by training a net which emulates the input–output map μ 7! yh(μ). Also in this case, we consider a MLP formed by two
hidden layers with 12 nodes each and sigmoids activation functions. The training dataset is formed by input–output
samples T = μ,yh μð Þf gμ � Ptrain

; also in this case, the training set (including validation points) has cardinality Noffline = j
Ptrain j =1700. The absence of the ROM output QoI as additional input to the net affects the accuracy of the output QoI
approximation: the best performance on the validation set is reached at epoch 122 with an MSE of 6.3 � 10−3 and a
corresponding MSE of 2.8 � 10−2 on the testing set (see Figure 8). Computational costs related to the evaluation of the
MLP output QoI are negligible: for each new μ�P , the computation of the output requires only a small number of
operations, since there are only 12 neurons per layer.

However, the computational bottleneck arising when training this MLP model is dataset generation, which
requires 1700 FOM queries. Such amount of FOM evaluations is feasible in this setting, but would be out of reach
when dealing with patient-specific 3D simulations with finer meshes and smaller time steps. On the other hand,
as the number of training samples decreases, we observe an increase in the MSE error on the test set (see Figure 9)
– hence, a MLP surrogate model can be reliable, for the case at hand, only provided it has been trained on a suffi-
ciently large dataset. Indeed, if we consider only Noffline = 100 training samples, the error is an order of magnitude
larger than the one given by the same MLP model trained on Noffline = 1700 data. On the other hand, the informa-
tion provided by a physics-based ROM helps in improving, by at least one order of magnitude, the accuracy of the
black-box MLP, hence giving the possibility to use also small samples for the MLP training (and, as a consequence,
to reduce the cost of the training phase dramatically).

From Figure 9 we also highlight that the ROM+MLP is more accurate than the MLP (in terms of MSE error), and
definitely outperforms the MLP for Noffline > 1000. Hence, provided a huge snapshots set from the FOM is available, the
ROM+MLP strategy (involving a physics-based ROM) is preferable with respect to the MLP (which is purely data-
driven), for the same online computational cost. Moreover, keeping the (offline) computational effort comparable, using
a MLP to obtain a corrected ROM output, rather than the output itself, is a better option. On the other hand, compared
to the ROM, a corrected ROM provides significant improvements only provided the number of FOM solutions used for
its training is sufficiently large.

FIGURE 4 ROM solutions of the monodomain system coupled with the Aliev-Panfilov ionic model for different values of the

parameters, at t = 520 ms and t = 800 ms
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FIGURE 6 Relative errors on solution obtained with ROMs of

increasing accuracy. For decreasing POD tolerances, ROMs of

increasing dimensions allow us to obtain decreasing error norms on

the solution. The (H1(Ω)) computed norm for the solution error

sums errors on both the solution and its spatial derivatives. Note

that the ROMs with POD tolerances 10−5 (resp., 10−4, 10−3) are

5 (resp., 4, 1.7) times slower than the ROM with POD tolerance 10−2

FIGURE 5 Singular values decay and cumulative expressed variance for the solution (top) and the nonlinear term (bottom) snapshot

sets, after their clustering obtained through the k-means algorithm. The query to extremely accurate ROM might be computationally

demanding due to the high number of retained POD modes
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FIGURE 7 MLP construction of the correction of the ROM output QoI. Left: convergence of the training in terms of MSE over the

epochs on the training, validation, and test sets. Right: testing performance of the MLP correction of the ROM output

FIGURE 8 MLP construction of the ANN-based input–output surrogate. Left: convergence of the training procedure in terms of MSE

over the epochs on the training, validation, and test sets. Right: testing performance of the MLP output

FIGURE 9 Accuracy of the MLP and ROM+MLP models in

terms of mean squared error (MSE) over the test set, plotted as a

function of the size Noffline of training+validation sample. The ROM

+MLP is more accurate than the MLP (in terms of MSE error), and

definitely outperforms the MLP for Noffline > 1000. The MSE error

provided by the ROM is also reported
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3.4 | Sensitivity analysis

We now perform the variance-based GSA for the case at hand, using the Sobol’ method with Ns = 104, comparing the
following options for the input–output map:

• the FOM output QoI μ 7! yh(μ);
• ROM, the ROM output QoI μ 7! yn(μ);
• MLP (100), the MLP output QoI μ 7! yMLP(μ), with Noffline = 100;
• MLP (1700), the MLP output QoI μ 7! yMLP(μ), with Noffline = 1700;
• ROM + MLP (100), the corrected ROM output QoI through a MLP model, (μ, yn(μ)) 7! yn,c(μ), with Noffline,c = 100;
• ROM + MLP (1700), the corrected ROM output QoI through a MLP model, (μ, yn(μ)) 7! yn,c(μ), with Noffline,

c = 1700.

FIGURE 10 Main effect plots obtained with the six considered models, showing the output mean (with respect to μ�i) as a function of

each input μi, i = 1,2,3. From top to bottom, from left to right: FOM, ROM; MLP (100); MLP (1700); ROM+MLP (100), ROM+MLP (1700).

Main effect plots are useful to visualize if different levels of each μi affect the output differently
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Regarding the ROM, the corrected ROMs and the MLP outputs, we group these options in two classes, depending
on the number of FOM snapshots used to build the corresponding ROM/surrogate model: the ROM, MLP (100) and
ROM+MLP(100) are characterized by a small dataset size, while MLP(100) and ROM+MLP (1700) are characterized by
a large dataset size. For each option, we report the main effect plots and compute the sensitivity indices defined in
(9) and (11).The so-called main effect plots, showing the output mean (with respect to μ�i) as a function of each input
μi, i = 1,2,3, are useful to visualize, intuitively, if different levels of an input affect the output differently. For the case at
hand, main effect plots are reported in Figure 10 considering 10 levels for each input and show that, in general, the out-
put QoI is strongly influenced by changes in the third parameter (modeling the recovery property of the tissue). More-
over, the output is close to 1 only for small values of the third parameter, thus indicating that there are several
scenarios of tissue refractoriness. From these results, we can also observe that when the stimulus is released later in the

TABLE 2 First order sensitivity

indices Si and total effect indices STi of

the parameters μi, i = 1,2,3, on the

output computed with the six

considered models

Ns S1 S2 S3 ST1 ST2 ST3

FOM 103 .0209 .0539 .4383 .4305 .2940 .9091

Small dataset size

ROM 103 .0109 .0623 .3649 .4562 .3616 .9012

ROM+MLP (100) 103 .0015 .0575 .4095 .4261 .3284 .9213

MLP (100) 103 .0355 .0737 .5243 .3676 .2936 .9094

Large dataset size

ROM+MLP (1700) 103 .0315 .0663 .4351 .4249 .2939 .9275

MLP (1700) 103 .0213 .0585 .4530 .4185 .2892 .9310

Note: In all cases, Monte Carlo (MC) estimates have been considered according to formulas (12) and (13), in

which Ns MC samples have been generated (for a total number of (p + 2)Ns queries to the model.

FIGURE 11 Output QoI distributions resulting from forward propagation obtained with the ROM, the ROM+MLP (100) and the MLP

(100) models (hence, in presence of a small dataset size), compared with the FOM output QoI distribution
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time window spanned by the first parameter (corresponding to high values of μ1), it is less likely that the reentry
is sustained. All the models allow to observe these main characteristics, except for the MLP (100), which shows
remarkable distortions of the curves with respect to the FOM ones (used as reference), hence leading to different
conclusions regarding the impact of parameter variations on the tissue response. Instead, the ROM yields only a
significant distortion of the third curve (yellow one). However, this error is only slightly reduced by the ROM-
MLP (100), but is almost eliminated by the ROM-MLP (1700), which is the closest one to the FOM results in
terms of accuracy.

The analysis of the first-order sensitivity and the total effect indices (see Table 2) shows that:

1. fixing the value of the tissue recovery property does not reduce considerably the output variance (in fact, S3 is close
to .45, while S1 and S2 are much smaller than S3);

2. the sum of first-order sensitivity indices Si is much lower than one, indicating the presence of interactions among
parameters;

3. ε0 is the most influential among the three parameters, as shown by the computed value of ST3 , which is
approximatively twice as the value of ST1 or ST2 ;

4. the sum of the total effect indices STi is greater than 1, meaning that the model is nonadditive.5

Note that the approximation error introduced by efficient input–output models impacts with some bias on the
resulting indices: for instance, S3 is overestimated using the MLP (100) (0.5243 instead of 0.4383), and underestimated
using the ROM (0.3649 instead of 0.4383). As remarked for the main effects plots, the corrected ROM-MLP (1700) is the
most accurate one when compared to the FOM (S3 = 0.4351). For this specific example, the observed bias on the indices
does not lead to different conclusions on the effects of the parameters on the output. However, when a larger number
of parameters is involved, biased sensitivity indices might lead to wrong analysis and conclusions about the role of the
parameters with respect to the output QoI.

FIGURE 12 Output QoI distributions resulting from forward propagation obtained with the ROM+MLP (1700) and the MLP (1700)

models (hence, in presence of a large dataset size), compared with the FOM output QoI distribution
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3.5 | Forward uncertainty quantification

We now consider uncertainty propagation on the output of interest by using Monte Carlo sampling based on
Nmc = 1000 evaluations of the input–output map. In a first test case, we consider six different configurations with uni-
form distributions, characterized by the following supports:

1. Case 1: {480} × [2.5,8.5] × [0.005,0.02], to describe scenarios with fixed early ectopic impulse;
2. Case 2: {520} × [2.5,8.5] × [0.005,0.02], to describe scenarios with fixed late ectopic impulse;
3. Case 3: [480,520] × {2.5} × [0.005,0.02], to describe scenarios with fixed small radius of the impulse;
4. Case 4: [480,520] × {8.5} × [0.005,0.02], to describe scenarios with fixed large radius of the impulse;
5. Case 5: [480,520] × [2.5,8.5] × {0.005}, to describe scenarios with fixed long APD;
6. Case 6: [480,520] × [2.5,8.5] × {0.02}, to describe scenarios with fixed short APD.

The resulting distributions of the output QoI obtained with the six options for the input–output map previously
described are reported in Figures 11 and 12; sample means, sample variances and resulting coefficient of variations are
reported in Table 3. We obtain that case (4), involving an impulse with a fixed large radius, is the one yielding to the
larger probability of having a sustained reentry. This result is shared by all the considered approximations of the input–
output map except for the MLP (100). In this latter case (see Figure 11, bottom-center plot) we obtain an output distri-
bution less skewed and with smaller mean. In general, the effect of the approximation error impacts on the output QoI
distributions: indeed, using less accurate models might result in distributions showing larger skewness or variances,
and in means affected by some discrepancies compared to the results obtained with the FOM.

In a second test case, we consider simultaneous variations of all parameters, and restrict the support of the input
parameter (uniform) distribution, after normalizing each parameter to the [0, 1] range, for the sake of variance shrink-
ing, thus aiming at reducing the effects of sampling variation. Denoting by

TABLE 3 Uncertainty propagation: sample mean, standard deviation and coefficient of variation of the output QoI computed with the

different models, in cases 1, …, 6

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
μ1 = 480 μ1 = 520 μ2 = 2.5 μ2 = 8.5 μ3 = 0.005 μ3 = 0.02

FOM Mean 1.8581 2.1607 1.6635 2.3927 .3588 2.0281

Standard deviation 1.1238 .3933 .8983 .5810 .8180 .2521

Coeff. of variation .6048 .1820 .54 .2428 2.2798 .1243

Small dataset size

ROM Mean 1.8580 2.1593 1.6273 2.4289 .4179 2.0207

Standard deviation 1.0830 .3455 .8482 .5598 .8553 .2550

Coeff. of variation .5829 .16 .5212 .2305 2.0466 .1261

ROM+MLP (100) Mean 1.8851 2.1305 1.6088 2.4229 .4041 2.0510

Standard deviation 1.1075 .3526 .8705 .4873 .8444 .2497

Coeff. of variation .5875 .1655 .5411 .2011 2.0896 .1214

MLP (100) Mean 1.9099 2.1297 1.6234 2.2949 .554 2.129

Standard deviation 1.1768 .3680 .8376 .4743 .8478 .3195

Coeff. of variation .6161 .1727 .5159 .2067 1.5303 .15

Large dataset size

ROM+MLP (1700) Mean 1.9336 2.2045 1.6141 2.4196 .3265 2.0376

Standard deviation 1.0773 .3367 .9246 .5595 .7778 .2188

Coeff. of variation .5571 .1527 .5728 .2312 2.3822 .1074

MLP (1700) Mean 1.8598 2.1848 1.6489 2.4247 .3693 2.0288

Standard deviation 1.1170 .3599 .9342 .4976 .8125 .2154

Coeff. of variation .6006 .1647 .5665 .2052 2.2001 .1062
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~μi =
μi−μmin
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μmax
i −μmin

i

� 0,1½ �, i=1,…,3,

we consider four different options, by sampling uniformly in the set

Ξα = α,1−αð Þ~μi, i=1,…,3f g�ℝ3

with α = 0.1,0.2,0.3,0.4, respectively. For each input distribution, we compute the output mean and standard deviation (see
Table 4) using all the approximations of the input–output map previously described. The most significant bias in the mean is
observed when using the MLP output QoI trained with only Noffline = 100 input–output observations, and when the input dis-
tribution support decreases. Regarding the variance, we observe that the largest discrepancies arise from the use of the MLP
output QoI, with a recurrent underestimation of the output variance when the MLP is trained on the smallest dataset. On the
other hand, a slightly greater variance is obtained when using the ROM output QoI, compared to the FOM case: the cause of
the mild variance increase might be related to the propagation of the ROM approximation error in the output. Once again,
correcting the ROM output QoI with a MLP model seems the best option, yielding the closest result to what we would obtain
if we relied on the FOM output QoI to perform forward uncertainty propagation.

TABLE 4 Uncertainty propagation: sample mean, standard deviation and coefficient of variation of the output QoI computed with the

different models, in cases 1, …, 6 (variance shrinking scenario)

U([0.1,0.9]3) U([0.2,0.8]3) U([0.3,0.7]3) U([0.4,0.6]3)

FOM Mean 2.2877 2.4545 2.5612 2.6369

Standard deviation .5701 .2875 .1943 .0161

Coeff. of variation .2492 .1171 .0759 .0061

Small dataset size

ROM Mean 2.2658 2.4031 2.5177 2.6365

Standard deviation .5277 .2935 .2218 .0461

Coeff. of variation .2329 .1221 .0881 .0175

ROM+MLP (100) Mean 2.2941 2.4517 2.5554 2.6382

Standard deviation .528 .2617 .1839 .0221

Coeff. of variation .2301 .1067 .072 .0084

MLP (100) Mean 2.2911 2.4542 2.4916 2.4764

Standard deviation .5163 .1965 .0737 .0421

Coeff. of variation .2253 .0801 .0296 .017

Large dataset size

ROM+MLP (1700) Mean 2.2880 2.4542 2.5642 2.6445

Standard deviation .5669 .2890 .2004 .0245

Coeff. of variation .2478 .1178 .0781 .0093

MLP (1700) Mean 2.2906 2.4579 2.5725 2.6586

Standard deviation .5592 .2912 .2027 .0106

Coeff. of variation .2441 .1184 .0788 .004
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4 | DISCUSSION

4.1 | Computational efficiency

The numerical results of the previous section show that, whenever available, a physics-driven reduced order model
approximating the primal variables of the problem can have a remarkable impact on the accuracy of an ANN-based
model, when used for the sake of sensitivity analysis and forward uncertainty quantification.

Regarding the online computational costs, the ROM provides a speedup of about 25 times compared to the FOM;
hence, sensitivity analysis can be performed in a CPU time of 8.3 h – rather than 208 h if relying on the FOM – while
forward UQ only requires a CPU time of 1.5 h, rather than 83 h. The same analyses performed with the MLP models
are even more faster, requiring their online evaluation less than 1 s. Similarly, the online CPU time required by the
ROM+MLP models is almost equal to the one employed by the ROM. See Figure 13 for the comparison between online
and offline costs entailed by a single query to the proposed models.

Regarding instead the offline computational costs, we remark that the proposed ROM only requires 114 evaluations
of the FOM for the sake of POD basis construction, resulting in a CPU time of about 5 h. MLP and ROM+MLP models
require instead many more FOM evaluations, with a CPU time of about 4 h for MLP (100), 9 h for ROM+MLP (100),
70 h for MLP (1700), 76 h for ROM+MLP (1700).

From the computed results, we have shown that ROM+MLP models are definitely better than MLP models, with a
remarkable gain in terms of accuracy, and one order of magnitude more accurate than the ROM model. Increasing the
ROM accuracy is of course possible by considering a large number n of basis functions. However, this option would
increase the online computational costs, yielding to a potentially smaller speedup compared with the use of a FOM. We
underline that the tradeoff between accuracy and efficiency is problem-dependent, and what really makes the differ-
ence is the computational speedup between the ROM and the FOM, rather than the relationship between the ROM
dimension and the corresponding online time. Otherwise said, for the case at hand, the speedup between the FOM and
the ROM is about 25, and a factor 5 extra computational cost for the ROM (that would ensure a factor 103 better error)
would drop the speedup to only 5, thus making the overall cost of the analysis extremely large.

FIGURE 13 Comparison between online and offline costs entailed by the proposed models. Performing forward UQ requires Nmc

evaluations of the output QoI, while GSA requires (p + 2)Ns evaluations of the output QoI. For the case at hand, Nmc = 1000, p = 3 and

Ns = 104
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On the other hand, the online evaluation of an ANN-based model for the error is almost inexpensive. Indeed, we
can obtain the same accuracy of a higher dimensional ROM (which is, however, computationally demanding online,
due to the high number of retained POD modes) by using a corrected ROM+MLP model built with a small ROM
dimension, provided a large solution dataset is available. On the other hand, provided the same number of FOM prob-
lems is solved offline, an approach involving a ROM like the ROM+MLP model, is definitely more convenient than a
purely data-driven model, like the MLP, in terms or resulting accuracy. For these reasons, we propose to rely on a suffi-
ciently accurate ROM with preferably smaller dimension, and to correct its outcome with an inexpensive ANN-based
model, rather than increasing the ROM dimension too much.

We also highlight that the purpose of our work is to set, analyze and apply physics-based and/or data-driven tech-
niques in order to enable UQ in cardiac electrophysiology; the other two pillars of VVUQ analysis – verification and val-
idation – do not fit among the goals of this work. The former task, verification, establishes how accurately a computer
code solves the equations of a mathematical model; the latter, validation, determines how well a mathematical model
represents the real world phenomena it is intended to predict. Nevertheless, results reported in Section 3 provide some
insights into: the FOM calculation verification, since spatio-temporal discretization convergence has been performed on
the FOM solution (Section 3.1); the ROM calculation verification, having assessed the ROM convergence with respect
to the number of basis functions for both the primal variable and the output quantity of interest (Section 3.2); the vali-
dation of the proposed framework against the results obtained with the FOM, here treated as truth high-fidelity solution
(Sections 3.4 and 3.5).

4.2 | Further extension to more realistic scenarios

The most common atrial arrhythmias, also called supraventricular arrhythmias, are atrial fibrillation and atrial flutter. In the
former, the atria are activated with a disorganized pattern, while in the latter the activation follows a regular, but self-
sustained and accelerated, pattern. The ectopic beats are considered as a common trigger of atrial arrhythmias. In order to be
effective, the ectopic foci must find a combination of factors, mainly related to the electrophysiological characteristics of the
tissue, such as conduction properties and refractory period duration.71 As shown in the simplified case we considered,
impulses persist to re-excite the tissue autonomously only provided that suitable conditions are verified – that is, whenever
there is an appropriate substrate for re-entry. The numerical results confirm that the duration of the refractory period (con-
trolled in our case by the physical coefficient of the ionic equation ϵ0) is a key factor for the sustainment of the reentry: the
longer the refractory periods, the less likely is the re-entry sustainment, due to the head-tail interaction of the impulse in the
reentry circuit. This kind of interaction can be also modified by considering different dimensions of the isthmus of the figure
of eight reentry, which is in our examples determined by the dimension of the ectopic foci.

Our study shows how to extract meaningful indices related to sustainability of reentry in a context of uncertain
inputs. The proposed framework, merging physics-based reduced-order models and artificial neural networks, could
enhance the quantitative description of a range of possible (physiological and pathological) phenomena, possibly
dealing with more complex scenarios, where also anisotropy in electric signal conduction and specific ionic concen-
tration variations are taken into account. We have realized a proof of concept showing a possible way to translate
our results into a more realistic scenario, where numerical simulations have been run on a left atrium geometry,
see Figure 14. As realistic geometry, we use the Zygote solid 3D heart model,72 a complete heart geometry
reconstructed from high-resolution CT-scans representing an average healthy heart. As shown in Reference 73, atrial
ectopic beats can be found mostly in the pulmonary veins (with the highest incidence in the left superior pulmo-
nary vein); a possible strategy to avoid that arrhythmias are induced consists of the electrical isolation of the veins
with radio-frequency ablation.73,74 Hence, we consider the case where the ectopic beat is located on the left superior
pulmonary veins, and explore different scenarios on the basis of the numerical results obtained in the previous,
two-dimensional case.

In Figure 14 we have reported the (normalized) electric potential computed on a template left atrium geometry, over
time, by fixing a value of μ3 = ε0 and thus considering two different scenarios (ε0 = 0.005 and ε0 = 0.02, respectively)
regarding the tissue recovery property. Since in these two cases the values of the output QoI are clustered around two
opposite values (see, e.g., the results obtained for Cases 5 and 6 in Figures 11 and 12), we randomly sample from the dis-
tributions of μ1 and μ2 and compute the corresponding electric potential over time. As highlighted in Figure 14, the con-
clusions reached for the two-dimensional case prove to be useful to classify possible scenarios occurring in a left atrium
geometry. Also in this case, we indeed obtain a sustained reentry provided that ε0 = 0.02, and the output QoI takes
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larger values. In this respect, the analysis performed on the simplified two-dimensional test case might be helpful in
view of a systematic investigation of the effect of physical parameters (related with both the stimulation protocol and
the ionic activity) on complex patterns including spiral waves reentry.

4.3 | Comparison with other existing approaches

The analysis we carried out is the first attempt of integrating a physics-based surrogate model built through rigorous
reduced-order modeling techniques such as the POD-Galerkin method, and an ANN regression model properly
accounting for the approximation error between the FOM and the ROM.

So far, only few papers have addressed a systematic uncertainty quantification (UQ) and propagation in cardiac elec-
trophysiology models, despite the very rapid growth of cardiac modeling and the need to deal with multiple scenarios,
towards model personalization. For instance, the role of infarct scar dimensions, border zone repolarization properties
and anisotropy in the origin and maintenance of cardiac reentry has been considered in Reference 75; the evaluation of
cardiac mechanical markers (such as longitudinal and circumferential strains) to estimate the electrical activation times
has been addressed in Reference 76. See, for example References 2,77, for a review of the possible sources of uncertainty
in these models at different spatial scales.

A systematic uncertainty quantification and sensitivity analysis in cardiac electrophysiology models must necessarily rely
on surrogate models, because of the computational bottlenecks entailed by the need to query the input–output map repeat-
edly. Usual paradigms for the construction of surrogate models have relied on either lower-fidelity models or emulators:

FIGURE 14 Electric potential computed on a 3D template left atrium geometry for different parameter values. The input–output
setting described for the two-dimensional case can represent a first step towards the classification of different conditions also on more

complex configurations
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• regarding the use of lower-fidelity models, forward UQ has been performed on a simplified Eikonal model in Refer-
ence 78, where statistics of the activation map (e.g., activation time at a specific point of the left ventricle) have been
computed given the uncertainty associated with the conductivity tensor modeling the fiber orientation, exploiting
Bayesian multi-fidelity methods combining the Eikonal model and a physics-based simplification of this latter.
Although possible – see, for example,79-81 – the use of the Eikonal model to describe re-entrant activity is not straight-
forward, if one aims at taking properly into account both activation and depolarization phases. A simplified one-
dimensional surrogate model providing a cable representation of a three-dimensional transmural section across the
ventricular wall has been considered in Reference 38, where a multi-fidelity Gaussian process (GP) regression has
been exploited to assess the effect of ion channel blocks on the QT interval;

• several papers have focused on the use of emulators such as GP regression or generalized polynomial chaos expan-
sions (PC) of the input–output map. For instance, the forward UQ problem of propagating the uncertainty in maxi-
mal ion channel conductances to suitable outputs of interest, such as the action potential duration, has been
addressed in Reference 3 by means of a Monte Carlo approach exploiting GP emulators. Similar techniques have
been used in Reference 5 to quantify the effect of uncertainty on input parameters like fiber rotation angle, ischemic
depth, blood conductivity and six bidomain conductivities on outputs characterizing the epicardial potential distribu-
tion. A GP surrogate of the exact posterior probability density function has been exploited in Reference 6 for the sake
of parameter estimation and model personalization, where the estimation of local tissue excitability in a 3D cardiac
electrophysiological model has been performed using input data from simulated 120-lead electrocardiographic (ECG)
data. See also, for example, Reference 82 for model parameter inference based on GP emulation on whole-heart
mechanics, Reference 83 for interpolation of uncertain local activation times on human atrial manifolds and Refer-
ences 84,85 for the analysis of the effect of wall thickness uncertainties on left ventricle mechanics.

Our technique represents a promising trade-off between the use of lower-fidelity models and emulators. Indeed, the
ANN regression model can be seen as an emulator, applied to the discrepancy between the FOM and the ROM; this lat-
ter might be seen as a lower-fidelity model, however keeping into account physical complexity (yet featuring a lower
computational cost) being built through a projection-based approach.

Regarding sensitivity analysis, very often elementary effects or one-at-a-time approaches have been preferred to global
(e.g., variance-based) methods when dealing with cardiac electrophysiology (and, more generally speaking, cardiac modeling).
For instance, one-at-a-time approaches have been considered in Reference 86, addressing the sensitivity of mechanical bio-
markers – like the ejection fraction, the longitudinal fractional shortening, or the wall thickening – to key model parameters
(such as, e.g., the end-diastolic pressure, Windkessel model parameters, active tension, angle of fiber distribution). The param-
eter uncertainty on two electro-mechanics coupled models for the excitation-contraction of the cardiac tissue has been
addressed by the authors in Reference 87, evaluating the impact of variability in key maximal conductances on action poten-
tial duration and ionic concentrations using generalized PC expansions and the elementary effects method. Sensitivity analy-
sis and parameter screening have been performed in Reference 88 to quantify the sensitivity of left ventricular activation and
the electrocardiogram to variation of parameters included in a bidomain system coupled with a Ten Tusscher-Panfilov model,
using local sensitivity analysis techniques. In all these cases, strong interactions among input parameters on the model
response cannot be evaluated; indeed, global techniques involving simultaneous changes in model parameters usually pro-
vide more detailed information about possible synergistic effects on the output QoI. Moreover, for the sake of computational
efficiency, global sensitivity analysis has been often applied to one-dimensional cardiac cell models, in order to quantify, for
example, the impact of (conductance and kinetic) model parameters on threshold, maximum upstroke velocity, time of maxi-
mum upstroke velocity, action potential amplitude and duration; see, for example References 4,38.

Sensitivity analysis through the evaluation of Sobol indices has been performed in Reference 89 on output QoIs such
as the inner cavity volume, apex lengthening, wall thickness and volume by considering material parameters that char-
acterize the global myocardial stiffness and the local muscle fiber orientation, however relying on PC expansions and
quasi Monte Carlo sampling techniques. A similar analysis, aiming at quantifying the importance of regional wall
thickness, fiber orientation, passive material parameters, active stress and the circulatory model in cardiac mechanics,
has been addressed in,90 where surrogate models have been again generated through PC expansions. However, this
approach might suffer from two limitations, namely (i) the assumption that the output is a smooth function of the input
parameters, and (ii) the need of constructing an emulator for each output QoI of interest. Regarding instead the number
of parameters that can be taken into account, both the proposed approach and data-driven emulators such as PC expan-
sions might suffer from this curse of dimensionality. However, as soon as the dependence of the primal variable on the
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(possibly, many) input parameters is smooth, a projection-based ROM might require less training data to reach the
same degree of accuracy of a PC expansion, hence resulting, overall, more efficient from a computational standpoint.

In this respect, the proposed methodology allows us to perform global sensitivity analysis by keeping computational
costs limited. Furthermore, exploiting physics-based ROMs to approximate the state variables (rather than the input–
output map itself) allows us, in principle, to perform sensitivity analysis and UQ on several output QoIs, still relying on
the same ROM. An additional training of the ROM must instead be performed as soon as (i) the accuracy on the output
QoI is found to be inadequate when dealing with UQ, or (ii) larger parameter variations must be considered. This is, in
our opinion, a possible limitation of the proposed approach, which represents, however, a major advancement com-
pared to purely data-driven emulator because of the possibility of controlling the ROM error, and the chance of con-
structing a physics-driven, low-dimensional approximation of the whole solution field. This facts indeed paves a new
way regarding the possibility to perform sensitivity analysis and forward UQ involving more complex (e.g., space and/or
time dependent) output quantities of interest in cardiac electrophysiology.

Finally, combining ROMs and ANN regression models enable us to consider output QoIs of arbitrary complexity,
which can be inexpensively evaluated once the ROM has been solved for any parameter instance, thus providing very
good accuracy despite the regularity of the input–output map. Of course, more advanced neural network architectures
could outperform the proposed local ROM (enriched with the ANN-based error model), or the considered ANN-based
input/output model. However, we highlight how in some cases being able to approximating (efficiently) the physics of
the problem – rather than only the input–output map – might compensate a lack of data (often occurring in biomedical
applications, and limiting the accuracy of surrogate models). Hence, the better the accuracy of the surrogate and/or
reduced-order models in emulating the physical behavior efficiently, and the less the amount of training data
(e.g., requiring the repeated solution of a FOM), the more feasible the sensitivity and forward UQ analyses.

5 | CONCLUSIONS

In this paper we have proposed new efficient computational strategies to perform forward uncertainty quantifi-
cation in parametrized problems arising in cardiac electrophysiology. We have addressed both a variance-based
sensitivity analysis for the selection of the most relevant input parameters, and uncertainty propagation to
investigate the impact of intra-subject variability on outputs related to the cardiac action potential. We have
taken advantage of reduced-order models built through the reduced basis method to enable both uncertainty
propagation and sensitivity analysis. The ROM has been finally equipped with artificial neural networks to pro-
vide accurate approximation of the output.

Compared to a purely data-driven approach consisting of ANN-based models emulating the input–output relation-
ship, the proposed approach provides better results in terms of both accuracy and offline costs. Indeed, numerical
results obtained on a two-dimensional benchmark yielding to a variety of different tissue activation patterns, ranging
from tissue refractoriness to sustained reentry waves, have shown that the proposed physics-based reduction framework
based on Noffline = 100 training samples is accurate as the black-box surrogate ANN-based models with Noffline = 1700,
but with much lower offline costs. The MLP model provides the best online efficiency, but its accuracy and offline costs
are highly influenced by the dimensions of the training and validation datasets. Finally, the corrected ROM output QoI
through a MLP model with Noffline = 1700 is the most accurate method with respect to the computationally expensive
full-order strategy, and is also able to provide a 25× speedup.

Thanks to a suitable integration of physics-based ROMs and data-driven machine learning techniques, the frame-
work proposed in this work can potentially lead to substantial advancements regarding both uncertainty quantification
and large-scale computations related with cardiac electrophysiology.
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ENDNOTES
1 A common distinction is made between aleatory and epistemic uncertainty, related with natural variations among subjects or lack of
knowledge, respectively.

2 Dimensional time and potential are ~t ms½ �=12:9t and ~u mV½ �=100u−80, see Reference 40. Indeed, u ranges from −80mV (resting state) to
+20mV (excited state).

3 For completeness, we also mention alternative approaches which have been proposed to enhance the solution of uncertainty propagation
problems, such as, for example, polynomial chaos expansion,59,60 stochastic collocation61 and stochastic Galerkin.62,63 However, the appli-
cation of these methods in cardiac electrophysiology is not straightforward due to the complexity of the electrophysiology models and the
large number of uncertain parameters.

4 The analysis carried out above can be extended also to conditional expectations and variances, whose evaluation is required to compute the
indices (9)–(11).

5 Indeed, the interaction effect between, for example, μi and μj is counted in both STi and STj , so that the sum of the STi is equal to 1 when
the model is purely additive.
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