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Vitiligo is a cutaneous depigmentation disease due to loss of epidermal melanocytes. Accumulating evidence has indicated that
oxidative stress plays a vital role in vitiligo via directly destructing melanocytes and triggering inflammatory response that
ultimately undermines melanocytes. Folic acid (FA), an oxidized form of folate with high bioavailability, exhibits potent
antioxidant properties and shows therapeutic potential in multiple oxidative stress-related diseases. However, whether FA
safeguards melanocytes from oxidative damages remains unknown. In this study, we first found that FA relieved melanocytes
from H2O2-induced abnormal growth and apoptosis. Furthermore, FA enhanced the activity of antioxidative enzymes and
remarkably reduced intracellular ROS levels in melanocytes. Subsequently, FA effectively activated nuclear factor E2-related
factor 2 (Nrf2) pathway, and Nrf2 knockdown blocked the protective effects of FA on H2O2-treated melanocytes. Additionally,
FA inhibited the production of proinflammatory HMGB1 in melanocytes under oxidative stress. Taken together, our findings
support the protective effects of FA on human melanocytes against oxidative injury via the activation of Nrf2 and the
inhibition of HMGB1, thus indicating FA as a potential therapeutic agent for the treatment of vitiligo.

1. Introduction

Vitiligo is an acquired depigmentation dermatosis with an
estimated prevalence of 1% worldwide [1]. To date, the rea-
son for the loss of epidermal melanocytes as the key event
in vitiligo is still unclear, which hinders the development of
effective therapeutic strategies [2]. Nevertheless, recent stud-
ies have indicated the involvement of oxidative stress in the
pathogenesis of vitiligo [3]. Along with the deficiency of anti-
oxidant system of melanocytes, especially nuclear factor E2-
related factor 2 (Nrf2) pathway that is a master regulator of
antioxidative response [4, 5], reactive oxygen species (ROS)
such as hydrogen peroxide (H2O2) is excessively accumu-
lated in vitiligo [6]. Accordingly, melanocytes are susceptible
to ROS-induced apoptosis in vitiligo [3, 5]. Moreover, ROS
facilitates the release of high-mobility group protein B1
(HMGB1) that belongs to damage-associated molecular pat-
terns (DAMPs) with strong proinflammatory effects from

melanocytes [7–10]. HMGB1 subsequently causes the pro-
duction of chemokines in adjacent keratinocytes and the
maturation of dendritic cells (DCs) in a paracrine way, which
ultimately promotes the formation of cytotoxic T cells
(CTLs) that undermine melanocytes in vitiligo [7]. There-
fore, oxidative stress plays a vital role in vitiligo via not only
direct oxidative damages on melanocytes but also triggering
cutaneous T cell response that targets melanocytes.

Folic acid (FA), a synthetic oxidized form of folate with
high bioavailability, is well known for its protective effect
against neural tube defects [11]. FA digested at intestine is
ultimately converted to 5-methyltetrahydrofolate with the
help of methylenetetrahydrofolate reductase (MTHFR) and
then involved in the remethylation of homocysteine (Hcy)
to methionine [12]. In 2014, our group reported an associa-
tion between single-nucleotide polymorphisms (SNPs) in
MTHFR gene and vitiligo susceptibility [13]. Furthermore,
Hcy was observed to accumulate in vitiligo and induce the
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apoptosis of melanocytes via endoplasmic reticulum stress
[14]. These findings indicate that the disruption of folate
metabolism plays a role in the pathogenesis of vitiligo. Nota-
bly, some recent studies have found that FA possesses excel-
lent antioxidant property and is effective in maintaining
cellular redox status [15, 16]. However, the effect of FA on
melanocytes under oxidative stress in vitiligo has not been
investigated before.

Herein, we initially observed that FA did protect mela-
nocytes from oxidative damages. Furthermore, the influence
of FA on the antioxidant response of melanocytes was eval-
uated. In addition, the effect of FA on the status of HMGB1
in melanocytes under oxidative stress was also investigated
in the present study.

2. Materials and Methods

2.1. Cell Culture and Treatment. The immortalized normal
human epidermal melanocyte cell line PIG1 (a gift from
Dr. Caroline Le Poole, Loyola University, Chicago, USA)
was maintained in Medium 254 (M254500, Gibco, USA),
supplemented with human melanocyte growth supplement
(Gibco) and 5% fetal bovine serum at 37°C amid 5% CO2.
Oxidative stress was induced by adding H2O2 (7722841,
Sigma-Aldrich, USA) at 800 or 500μM into the culture
medium for 48h. To determine the protective effect of FA
(F8758, Sigma-Aldrich, USA) on melanocytes against oxida-
tive damages, FA and H2O2 were added simultaneously into
the culture medium of PIG1 cells at indicated
concentrations.

2.2. CCK8 Assay. Cell viability was evaluated by using a
CCK8 kit (C008, 7Sea biotech, China) according to manu-
facturer’s manual. Generally, PIG1 cells were seeded into
96-well plates at the density of 2 × 104 cells per well before
further treatments as indicated. Next, 10μl of CCK8 solution
was added to each well, and the cells were further incubated
at 37°C for 2 h. The optical density (OD) was measured at
450nm by Model 680 Microplate Reader (BioRad, USA).
All experiments were performed in triplicate.

2.3. Apoptosis Assay. Cell apoptosis was measured using
Annexin V-FITC/PI kit (A005, 7 Seabiotech, China). Briefly,
the treated PIG1 cells were stained according to manufactur-
er’s instructions and then detected by flow cytometry (Beck-
man Coulter, USA) and analyzed with Expo32 software
(BeckmanCoulter, USA).

2.4. Western Blot Assay. Whole cell lysates were extracted
with RIPA Buffer (P0013C, Beyotime, China). Nuclear/cyto-
plasmic fractionation was separated using the Nuclear and
Cytoplasmic Protein Extraction Kit (P0028, Beyotime,
China) according to manufacturer’s instructions. Protein
concentration was measured using the BCA Protein Assay
kit (23225, Thermoscientific, USA). Equal amounts of pro-
tein were separated by SDS-PAGE (Bio-Rad, USA) and
transferred to polyvinylidene difluoride membranes (Milli-
pore, USA). Membranes were blocked in 5% nonfat milk
for 2 h and incubated overnight at 4°C in primary antibodies
diluted with PBS containing 1% BSA, including mouse anti-

human β-actin (8H10D10) (1 : 5000, 3700, Cell Signaling
Technology, USA), rabbit anti-human LaminA/C (1 : 1000,
10298–1-AP, Proteintech, China), rabbit anti-human Tubu-
lin (1 : 2000, 11224-1-AP, Proteintech, China), rabbit anti-
human Bcl-2 (D55G8) (1 : 1000, 4223, Cell Signaling Tech-
nology, USA), rabbit anti-human Bax (D2E11) (1 : 1000,
5023, Cell Signaling Technology, USA), rabbit anti-human
cleaved Caspase-3 (Asp175) (5A1E) (1 : 1000, 9664, Cell Sig-
naling Technology, USA), rabbit anti-human Caspase3
(1 : 1000, Lot. 9662, Cell Signaling Technology), rabbit anti-
human Nrf2 (1 : 500, ab62352, Abcam, USA), rabbit anti-
human Nrf2 (phospho S40) (1 : 5000, ab76026, Abcam,
USA), mouse anti-human HO-1 (1 : 500, ab13248, Abcam,
USA), rabbit anti-human SOD2 (1 : 2000, ab13533, Abcam,
USA), and rabbit anti-human HMGB1 (1 : 500, ab18256,
Abcam, USA). After washing, the membranes were incu-
bated at room temperature for 2 h in corresponding
peroxidase-conjugated secondary antibodies diluted with
PBS containing 1% BSA, including goat anti-rabbit IgG anti-
body (1 : 5000, AP132P, Sigma-Aldrich, United States) and
goat anti-mouse IgG antibody (1 : 5000, AP124P, Sigma-
Aldrich, United States). At last, the bands were detected by
an enhanced chemiluminescence reagent (Millipore, USA)
under Western blotting detection system (Bio-Rad, USA).

2.5. SOD Activity Assay. After cells were lysed, the total pro-
tein was extracted to detect the activity of SOD by using
Total Superoxide Dismutase Assay Kit with WST-8
(S0101M, Beyotime, China) following manufacturer’s
instructions.

2.6. Measurement of Intracellular ROS. The intracellular
ROS was measured using a fluorogenic probe for ROS
(CM-H2DCFDA) (C6827, Invitrogen, USA) following the
protocol reported previously [17]. Briefly, PIG1 cells were
seeded into 6-well plates with a density of 5 × 105 cells. After
indicated treatments, 10μM of DCFH-DA was added for
30min, and then, cells were collected for detection of fluo-
rescence intensity of DCF via flow cytometry (Beckman
Coulter, USA).

2.7. Immunofluorescence Assay. PIG1 cells were grown in
single-layer glass slides (801002, NEST Biotechnology,
China) at a density of 5000 cells per dish. After indicated
treatments, cells were washed by PBS and fixed with 4%
paraformaldehyde. Cells were permeabilized for 15min in
PBS supplemented with 0.1% Triton X-100 at room temper-
ature and labeled with the primary antibody anti-Nrf2
(1 : 200, ab62352, Abcam, USA) at 4°C overnight and corre-
sponding secondary antibody Cy3-tagged goat anti-rabbit
IgG (1 : 1000, ab6939, Abcam, USA) for 1 h at room temper-
ature. At last, cells were incubated with the nuclear dye 40,
6-diamidino-2-phenylindole (DAPI) (1 : 1000, 62247,
Thermo Fisher Scientific, USA) for 10min at room temper-
ature in the dark. The fluorescence was detected by using
FV-1000/ES laser confocal microscopy (Olympus, Japan).

2.8. Enzyme-Linked Immunosorbent Assay (ELISA). ELISA
was performed using the Human HMGB1 ELISA Kit
(Shino-Test, Japan) according to manufacturer’s
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instructions. The absorbance (A450) was measured with a
plate reader (Bio-Rad).

2.9. Quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR). Total RNA was extracted using Trizol Reagent
(15596018, Invitrogen, United States) and then reversely
transcribed to cDNA by a PrimeScript RT reagent kit
(AK4301, TaKaRa, Japan). The qRT-PCR assay was per-
formed using SYBR PremixEx Taq II (AKA1008, TaKaRa,
Japan) with the real-time PCR Detection System (Bio-Rad,
United States). The relative mRNA expression was normal-
ized to the β-actin gene. The primers used in this study were
as follows: HMGB1, forward: AGCCCTCTTCATGTTC
CGAAGTGT, reverse: TCATGTCAACACCTGCAGTCC
CTT; β-actin, forward: TCATGAAGTGTGACGTGGACA
TC, reverse: CAGGAGGAGCAATGATCTTGATCT.

2.10. RNA Interference. PIG1 cells were seeded at 2 × 105
cells per well for 24 h before transfection. Cells were trans-
fected with Nrf2 shRNA or irrelevant shRNA control (Gen-
ePharma, China) with Lipofectamine 3000 (Invitrogen)
following manufacturer’s protocol. The sequences of the
shRNAs used in the present study were as follows: shRNA-
Nrf2: 5′-GGTTGCCCACATTCCCAAATC-3′; shRNA-
Control: 5′-TTCTCCGAACGTGTCACGT-3′.

2.11. Statistical Analysis. Data analysis was performed using
GraphPad Prism version 6.0 software (GraphPad Software,
San Diego, CA). The two-tailed Student’s t-test or one-way
analysis of variance (ANOVA) was used in our analyses. P
values less than 0.05 were considered significant. Data repre-
sent as mean ± SD for at least three independent
experiments.

3. Results

3.1. FA Protects Melanocytes from Oxidative Stress. CCK8
assay was initially performed to evaluate suitable doses of
FA for use in subsequent experiments. As a result, FA at
the concentrations of 10 to 500μM had no significant influ-
ence on the growth of PIG1 cells over an incubation course
of three days, but high doses (1000 and 3000μM) of FA
showed toxicity on the third day (Figure 1(a)). To investigate
the protective effect of FA on melanocytes under oxidative
stress, PIG1 cells were treated with FA at a concentration
gradient of 25, 50, and 100μM, respectively, and costimu-
lated with 800μM H2O2 for 24h. It turned out that H2O2-
induced morphologic changes of shortened or disappeared
dendrites in PIG1 cells were significantly rescued by the pre-
treatment with FA at relatively higher doses of 50 or 100μM
(Figure 1(b)). Consistently, FA reversed the inhibited viabil-
ity of PIG1 cells caused by H2O2 in a dose-dependent man-
ner (Figure 1(c)).

We went on to investigate whether FA protects melano-
cytes from apoptosis under oxidative stress. Flow cytometry
analysis showed that the proportion of apoptotic PIG1 cells
was markedly increased after the treatment with H2O2,
whereas the cotreatment with FA at the concentrations of
50 or 100μM significantly rescued PIG1 cells from H2O2-

induced apoptosis (Figures 2(a) and 2(b)). Moreover, the
upregulated protein levels of proapoptotic Bax and cleaved
Caspase-3 and the downregulated protein level of Bcl-2
caused by H2O2 were all reversed by cotreated FA
(100μM) in PIG1 cells (Figure 2(c)). Altogether, these
results support that FA protects melanocytes from oxidative
damages.

3.2. FA Potentiates Antioxidant Response in Melanocytes
under Oxidative Stress. Next, the influence of FA on the anti-
oxidant system of melanocytes was evaluated. The accumu-
lation of ROS in PIG1 cells treated with H2O2 was
attenuated by the cotreatment with FA at the concentrations
of 50μM or 100μM (Figures 3(a) and 3(b)). Meanwhile, the
repressed activity of superoxide dismutase (SOD), a key
antioxidant enzyme that scavenges ROS [17, 18], was signif-
icantly reversed by FA at 100μM in PIG1 cells treated with
H2O2 (Figure 3(c)).

Since Nrf2 plays a central role in the antioxidant system
of melanocytes [3, 5], we then evaluated the effect of FA on
the activation of Nrf2 pathway. As shown by our Western
blot analysis, the cotreatment of FA promotes the expres-
sions of Nrf2, phosphorylated Nrf2 (p-Nrf2) that acts as a
transcriptional factor as well as SOD2 and heme
oxygenase-1 (HO-1) that are antioxidant proteins transcrip-
tionally regulated by p-Nrf2 in PIG1 cells treated with H2O2
(Figure 3(d)). Subsequent detection of nuclear and cytosolic
Nrf2 separately disclosed that FA induced the translocation
of Nrf2 from cytoplasm to nucleus in H2O2-treated PIG1
cells (Figure 3(e)), which was further supported by immuno-
fluorescence assay (Figure 3(f)). Collectively, our findings
indicate that FA enhances antioxidant response in melano-
cytes under oxidative stress.

3.3. FA Prevents Melanocytes from Oxidative Damages via
Activating Nrf2 Pathway. To decide whether the protective
effect of FA on melanocytes under oxidative stress is depen-
dent on the activation of Nrf2, Nrf2 was silenced by trans-
fecting PIG1 cells with short hairpin RNA (shRNA) of
Nrf2 (interference efficiency shown in Figure 4(a)). It was
found that FA failed to eliminate intracellular ROS in
H2O2-treated PIG1 cells as long as Nrf2 was deficient
(Figures 4(b) and 4(c)). Moreover, Nrf2 knockdown abol-
ished the protection of FA against H2O2-induced apoptosis
on PIG1 cells (Figures 4(d) and 4(e)). Further Western blot
assay observed that Nrf2 knockdown abrogated FA-
induced upregulation of HO-1 and SOD2 in H2O2-treated
PIG1 cells (Figure 4(f)). Altogether, these findings demon-
strate that the activation of Nrf2 pathway mediates the pro-
tection of FA on melanocytes against oxidative damages.

3.4. FA Reduces the Release of HMGB1 from Melanocytes
under Oxidative Stress. Given the proinflammatory role of
HMGB1 secreted by melanocytes under oxidative stress in
the immune pathogenesis of vitiligo as described before,
the effect of FA on the status of HMGB1 in ROS-triggered
melanocytes was examined at last. Consistent with our pre-
vious report [7], H2O2 prominently increased the mRNA
and protein levels of HMGB1 in PIG1 cells; both of which,
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however, were repressed by the addition of FA into the cul-
ture (Figures 5(a) and 5(b)). Additionally, the cotreatment
with FA successfully prevented the release of HMGB1 from
H2O2-treated PIG1 cells (Figure 5(c)). Therefore, FA is of
promising potential in inhibiting oxidative stress-induced
inflammatory response mediated by HMGB1 in vitiligo.

4. Discussion

Oxidative stress is convincingly a key pathogenetic factor of
vitiligo and contributes to its onset and progression [19].
Excessive ROS production and insufficient antioxidant
response jointly lead to the destruction of melanocytes in
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Figure 1: FA attenuated H2O2-induced oxidative damages in PIG1 cells. (a) The growth of PIG1 cells treated with different concentrations
of FA over three days was determined by CCK8 assay. (b, c) PIG cells were treated with different concentrations of FA and 800 μM H2O2
simultaneously for 48 h. The morphological features of melanocytes were detected by microscope (b). Each field shown is a representative
image of at least nine similar fields from three independent experiments. Scale bar = 200μm. Cell viability was determined by CCK8 assay
(c). All data are presented as the mean ± SD across three independent experiments. ∗P < 0:05, ∗∗P < 0:01; ns: not significant.
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Figure 2: FA protected PIG1 cells from H2O2-induced apoptosis. PIG1 cells were exposed to 800μM H2O2 and FA at indicated
concentrations for 48 h simultaneously. (a, b) The percentage of apoptotic cells was determined by flow cytometry assay. Bar graphs
represent the mean values of flow cytometry data. (c) Effects of FA on H2O2-induced expressions of Bcl-2, Bax, Casepase-3, and cleaved
Caspase-3 were determined via Western blot. β-Actin was detected as loading control. Bar graphs represent the quantification of Bcl-2/
Bax ratio and cleaved/full length Caspase-3 ratio via gray intensity analysis across three replicate experiments. All data are presented as
the mean ± SD across three independent experiments. ∗P < 0:05, ∗∗∗P < 0:001; ns: not significant.
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Figure 3: FA potentiated the antioxidant response in H2O2-treated PIG1 cells. PIG1 cells were exposed to 800μMH2O2 and FA at indicated
concentrations for 48 h simultaneously. (a, b) Intracellular ROS level was determined by flow cytometry assay. Bar graphs represent the
mean values of the fluorescence intensity of ROS level. (c) The activity of antioxidant enzyme SOD was examined via using a specialized
kit. (d) Effects of FA on H2O2-induced expressions of Nrf2, p-Nrf2, SOD2, and HO-1 were determined via Western blot. β-Actin was
detected as loading control. (e, f) The nuclear/cytoplasmic distribution of Nrf2 was detected via Western blot (e) and
immunofluorescence (f), respectively. Lamin A/C and tubulin were detected as loading controls in western blot assay. Nrf2 was stained
with Cy3 (red) and nuclei were counterstained with DAPI (blue) in fluorescence assay. Scale bar = 10 μm. All data are presented as the
mean ± SD across three independent experiments. ∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001; ns: not significant.

6 Oxidative Medicine and Cellular Longevity



Nrf2

SOD2

HO-1

68 kDa

25 kDa

32 kDa

43 kDa𝛽-Actin

sh-NC sh-Nrf2

(a)

sh-NC

sh-Nrf2

800 𝜇M H2O2

Ctrl

100 𝜇M FA + 800 𝜇M H2O2

800 𝜇M H2O2

Ctrl

100 𝜇M FA + 800 𝜇M H2O2

(b)
RO

S 
le

ve
ls

(r
el

at
iv

e f
ol

d 
ch

an
ge

)

2.0

1.5

1.0

0.5

0.0

ns

sh-NC
sh-Nrf2

FA (100 𝜇M)
H2O2 (800 𝜇M)

+
–
–
–

+
–
–
+

+
–
+
+

–
+
–
–

–
+
–
+

–
+
+
+

⁎⁎⁎
⁎⁎⁎
⁎

⁎⁎

(c)

Figure 4: Continued.
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vitiligo [18], which prompts us to seek for measures that
rebalance the redox homeostasis of melanocytes. Previous
studies have shown that FA keeps the survival of astrocytes
and purkinje neurons by decreasing ROS level [20, 21].
Meanwhile, rats treated with FA could obtain high levels of

antioxidative enzymes like SOD and low ROS levels [16],
indicating that FA potentiates antioxidant system both
in vitro and in vivo. The current study further showed that
FA was able to protect melanocytes from oxidative injury
by lowering intracellular ROS levels and upregulating HO-
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Figure 4: Nrf2 knockdown abolished the protective effects of FA on PIG1 cells against oxidative damages induced by H2O2. PIG1 cells were
transfected with the shRNA against Nrf2 or control shRNA for 24 h and then treated with H2O2 and FA at indicated concentrations for 48 h.
(a) The interference efficiency of Nrf2 shRNA was evaluated via Western blot. β-Actin was detected as loading control. (b, c) Intracellular
ROS level was determined by flow cytometry assay. Bar graphs represent the mean values of the fluorescence intensity of ROS level. (d, e)
The percentage of apoptotic cells was determined by flow cytometry assay. Bar graphs represent the mean values of flow cytometry data. (f)
The expressions of Nrf2, p-Nrf2, SOD2, and HO-1 were determined via Western blot. β-Actin was detected as loading control. ∗P < 0:05,
∗∗P < 0:01, ∗∗∗P < 0:001; ns: not significant.
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1 and SOD2, both of which were reported deficient in viti-
ligo melanocytes [3, 5]. Further studies using H2O2-induced
vitiligo animal model [22] are needed to confirm the protec-
tive effect of FA on melanocytes from H2O2-triggered oxida-
tion in vivo.

Apoptosis is the main form of cell death for melanocytes
under oxidative stress [18]. Bcl-2 family proteins including
prosurvival Bcl-2 and proapoptotic BAX are the key regula-
tors of apoptosis pathway, in which Caspase-3 acts as a clas-
sical executor protein [23]. Herein, FA exhibited potent
antiapoptotic ability in human melanocytes under oxidative
stress. We previously found that FA protected melanocytes
from Hcy-induced apoptosis [14]. Interestingly, Li et al.
and Zhou et al. observed that FA inhibited aging-induced
apoptosis in astrocytes and neurocytes, respectively, suggest-
ing that FA could suppress apoptosis in various conditions
[15, 24]. Additionally, our study showed the upregulation
of Bax, the downregulation of Bcl2, and the inhibition of
Caspase-3 activation in melanocytes undergoing oxidative
stress following FA treatment, indicating that the antiapop-
totic capacity of FA may result from decreasing cleaved
Caspase-3 through modulating the ratio of Bax to Bcl-2
expression in oxidative injured melanocytes.

Nrf2 is a vital antioxidant regulator that functions as a
potent transcriptional activator [4, 25]. Under physiological
conditions, Nrf2 is localized primarily in the cytoplasm
and bound by Kelch-like ECH-associated protein 1 (Keap1)

that hinders the activation of Nrf2 [26]. In response to oxi-
dative stress, Nrf2 is disengaged from its binding to Keap1
and translocated into the nucleus, where Nrf2 potentiates
the transcription of antioxidant response elements (AREs)
and induces a battery of antioxidant proteins [27]. Nrf2
pathway plays a crucial role in protecting human melano-
cytes from oxidative stress as demonstrated by our previous
studies [4, 5, 28, 29]. Melanocytes in vitiligo are deficient of
the activity of Nrf2 and thus more vulnerable to oxidative
stress, and reintroduction of Nrf2 pathway is expectedly
accompanied with improved survival of melanocytes under
oxidative stress [5]. The activation of Nrf2 pathway is
characterized by the phosphorylation of Nrf2, the nuclear
translocation of Nrf2, and the expression of antioxidant
proteins including SOD2 and HO-1 [30], all of which were
observed in FA-treated melanocytes by our study. Further
knockdown of Nrf2 abolished the protection of FA on
melanocytes against oxidative damages, supporting that
the antioxidant effect of FA is dependent on Nrf2 pathway
in melanocytes. In parallel with our results, Cao et al.
found that FA promoted the translocation of Nrf2 from
cytoplasm to nucleus and elevated HO-1 expression in rats
with spontaneous hypertension [31]. Consistently, the defi-
ciency of folate in fish gills was accompanied with
decreased expression of Nrf2 [32]. All of these findings
indicate FA as a strong activator of Nrf2 that can be
applied extensively.

H
M

G
B1

 m
RN

A
(r

ela
tiv

e f
ol

d 
ch

an
ge

)

6

FA (100 𝜇M)
H2O2 (500 𝜇M)

–
–

–
+

+
+

4

2

0

⁎

(a)

FA (100 𝜇M)
H2O2 (500 𝜇M)

–
–

–
+

+
+

HMGB1 25 kDa

43 kDa𝛽-Actin

(b)

H
M

G
B1

 re
le

as
e

(p
g/

m
l) 150

100

50

0

Time (days)
0 1 2 3

⁎

Ctrl
H2O2
H2O2+ FA

(c)

Figure 5: FA inhibited the production of HMGB1 in PIG1 cells treated with H2O2. (a) The mRNA level of HMGB1 normalized to β-actin in
PIG1 cells treated with H2O2 and FA at indicated concentrations for 24 h was determined via qRT-PCR. (b) The protein level of HMGB1 in
PIG1 cells treated with H2O2 and FA at indicated concentrations for 48 h was determined via Western blot. β-Actin was detected as loading
control. (c) The secretion level of HMGB1 from PIG1 cells treated with H2O2 and FA at indicated concentrations for 72 h was determined
via ELISA. All data are presented as the mean ± SD across three independent experiments. ∗P < 0:05.
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Apart from directly killing melanocytes, oxidative stress
is known to ignite inflammatory response that ultimately
undermines melanocytes in vitiligo [3]. One of the most
important mediators of inflammation in vitiligo is HMGB1
released from melanocytes primed by ROS [7]. As a proin-
flammatory DAMP molecule, HMGB1 acts on its receptors,
including several toll-like receptors and receptor for
advanced glycation end products (RAGE), and initiates the
second wave of protein kinase cascade activation, which gen-
erates a positive feedback mechanism to maintain and
amplify inflammatory response [33]. Accordingly, the thera-
pies targeting HMGB1 directly or disrupting its binding to
proinflammatory receptors may be effective in alleviating
inflammation [34]. Sun et al. found that FA-derived drugs
disrupted the binding of HMGB1 to receptors and sup-
pressed HMGB1-induced TNF release in human macro-
phages [35]. Beyond this previous report, our study
showed that FA dramatically reduced the mRNA level, pro-
tein level, and secretion level of HMGB1 in H2O2-treated
melanocytes, implicating that FA could inhibit oxidative
stress-triggered cutaneous inflammation mediated by
HMGB1 in vitiligo. In addition, Dong et al. has demon-
strated that oxidative damages mediated by HMGB1 could
be alleviated with the activation of Nrf2 that further inhibits
the expression of HMGB1 [36]. Therefore, the FA-mediated
inhibition of HMGB1 in melanocytes observed in the pres-
ent study was probably mediated by Nrf2 pathway activated
by FA.

The serum level of folate is generally normal in vitiligo
patients [37], but recent clinical investigations have con-
firmed the deficiency of folate in the patients given the pho-
totherapy of narrow-band ultraviolet B (NB-UVB) [38],
which is one of the most effective treatments currently
applied to vitiligo [39]. Accordingly, taking supplementary
FA has been recommended for vitiligo patients on photo-
therapy, especially for women of childbearing age [40].
Although the results of previous studies are mixed regards
to the effect of FA supplementation in vitiligo patients
[41], the present study demonstrates FA as an effective agent
that protects melanocytes from oxidative damages via its
antioxidant and anti-inflammatory capability. Further clini-
cal studies with larger sample size are thus encouraged to
evaluate the therapeutic potential of FA for vitiligo.
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