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Doxorubicin-loaded platelets as 
a smart drug delivery system: An 
improved therapy for lymphoma
Peipei Xu1,*, Huaqin Zuo1,*, Bing Chen1, Ruju Wang1, Arsalan Ahmed2, Yong Hu3 & 
Jian Ouyang1

Chemotherapy is majorly used for the treatment of many cancers, including lymphoma. However, 
cytotoxic drugs, utilized in chemotherapy, can induce various side effects on normal tissues because 
of their non-specific distribution in the body. Natural platelets are used as drug carriers because of 
their biocompatibility and specific targeting to vascular disorders, such as cancer, inflammation, and 
thrombosis. In this work, doxorubicin (DOX) was loaded in natural platelets for treatment of lymphoma. 
Results showed that DOX was loaded into platelets with high drug loading and encapsulation efficiency. 
DOX did not significantly induce morphological and functional changes in platelets. DOX-platelet 
facilitated intracellular drug accumulation through “tumor cell-induced platelet aggregation” and 
released DOX into the medium in a pH-controlled manner. This phenomenon reduced the adverse 
effects and enhanced the therapeutic efficacy. The growth inhibition of lymphoma Raji cells was 
enhanced, and the cardiotoxicity of DOX was reduced when DOX was loaded in platelets. DOX-platelet 
improved the anti-tumor activity of DOX by regulating the expression of apoptosis-related genes. Thus, 
platelets can serve as potential drug carriers to deliver DOX for clinical treatment of lymphoma.

Lymphoma, a hematologic malignancy, is a leading cause of cancer-related deaths and is mainly treated through 
chemotherapy1,2. However, minimizing the adverse effects of chemotherapy is still challenging. Doxorubicin is an 
effective chemo-therapeutic drug against lymphoma but elicits adverse side effects, including short biological life 
time, dose-dependent side effects, and cardiac toxicity induced by its nonspecific bio-distribution; these limita-
tions restrict the successful clinical application of this drug3.

Scholars have developed several kinds of drug delivery systems, such as liposomes4,5, polymeric nanoparticles6,7,  
and polymeric micelles8,9 to achieve targeted therapy by delivering DOX to desired cells or tissues; these systems 
alleviate the side effects of DOX and enhance the efficacy of chemotherapeutics. Among these systems, liposomes 
were once considered the most successful drug carriers. However, limited drug loading, poor shelf stability, com-
plicated synthesis, and high cost restrict the clinical application of liposomes10. Polymeric nanoparticles (NPs) or 
polymeric micelles can load different drugs flexibly and passively or actively, deliver them to the targeting tumor 
site to improve the therapeutic index against the tumor, and avoid multi-drug resistance in cancer cells11,12. These 
systems exhibit several shortcomings, such as nanotoxicity, limited biodegradability, adverse immune responses13, 
and short in vivo circulation time (several hours but longer than that of free drugs14). Moreover, the clinical appli-
cations of these systems are poorly understood15,16.

Cells or cell membrane derived from drug carriers, including erythrocytes, leukocytes, platelets, and stem 
cells, are extensively studied as a promising strategy to achieve ideal drug delivery systems that minimally inter-
act with normal cells, target desired cells, and release drugs in a controlled manner; these systems exhibit good 
biocompatibility, good biodegradability, and immune evasion17. Platelets or platelet membranes enveloped in 
nanoparticles have gained increasing interest18 because of their innate function of targeting vascular disorders 
(such as cancer, inflammation, thrombosis, and hemorrhage19).
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Platelets are small, enucleated, subcellular fragments derived from megakaryocytes of bone marrow20. The 
biocompatibility of platelets is superior over other drug carriers. Approximately 2 ×  1011 to 5 ×  1011 platelets are 
daily produced in an adult, and the number of platelets increase when the demand increases21. Thus, numerous 
platelets are produced. Platelets have an average lifetime of 7–10 days in vivo, which is suitable to be used as drug 
carriers, and are then removed by reticuloendothelial cells in the liver and spleen. Platelets with encapsulated 
agents demonstrate a systemic clearance similar to that of the natural platelets21. Thus, loaded drugs are protected 
and cloaked from immune surveillance and physical clearance, which provides prolonged circulation in blood. In 
addition, platelets play a vital role in hemostasis, inflammation, angiogenesis, wound healing, and thromboem-
bolic diseases22,23. Previous study reported a close relationship between malignancy and platelets. The activation 
and adherence of platelets to the tumor cells are referred as tumor cell-induced platelet aggregation (TCIPA)24. 
Activated platelets release plenty of granular matter, and the loaded drugs are also released to the tumor site. 
Novel drug delivery systems are designed primarily based on the ability of platelets to adhere to tumor cells and 
deliver toxic drugs to targeted malignant cells. However, most of the existing platelet derived drug delivery sys-
tems are platelet-mimic by utilizing platelet membrane with complex process. The existence of foreign materials 
inside the drug carriers, such as platelet membrane-cloaked nanoparticles, is still a big challenge that brings 
adverse immune-response25.

In this study, DOX was loaded inside the platelets through the open canalicular system26 to treat lymphoma 
and achieve a longer retention time than synthetic drug delivery systems27. Given their excellent biocompatibil-
ity and immunocompatibility, platelets help DOX to escape from immunosurveillance and specifically deliver 
the DOX to tumor cells through TCIPA; this phenomenon greatly enhances the therapeutic efficacy, as well 
as reduces the drug dosage and damage to normal tissues24,28. The chemotherapeutic efficacy of DOX-loaded 
platelets (DOX-platelet) against lymphoma and their toxicity are evaluated in in vitro and in vivo experiments. 
Additionally, the possible mechanism of their anti-tumor activity is depicted in Fig. 1.

Results
Characterization of DOX-platelet. The encapsulation of DOX in platelets was first verified by the fluo-
rescence microscopy as shown in Fig. 2A. Figure 2A(a) shows the typical morphology of platelets with irregular 
structure. After the encapsulation of DOX, red fluorescence related to the DOX was clearly observed inside these 
platelets, which confirm the encapsulation of DOX in the platelets (Fig. 2A(b)). The morphological changes in plate-
lets before and after loading the DOX were observed by scanning electron microscopy (SEM) (Fig. 2A(c and d)).  
No significant change was observed between these two samples, which reveals that DOX has minimal influence 
on the morphology of platelets.

Translocation of platelet membrane protein content, including CD41, CD47, and CD61, was examined by 
Western blotting before and after DOX loading (Fig. 2B) to confirm that the platelets maintain their integrity 
and biological functions after the encapsulation. The content of platelet membrane proteins of DOX-platelet had 
no significant changes compared with that of natural platelets. This finding reveals that DOX-platelet retains the 
natural properties, which is the basis for platelets as drug delivery systems. The stability of DOX-platelet (blue 
line) and platelets (red line) in the buffer was tested, and their aggregation behaviors at different time points  
(1, 2, 3 and 4 h) are listed in Fig. 2C. The percentage of the aggregation of platelet at 1, 2, 3 and 4 h is 79%, 62%, 
70%, and 54% for platelet and 82%, 79%, 72% and 58% for DOX-platelet, respectively. These results represent the 
loss of functionality of platelet and DOX-platelet is in a time-dependent manner. The average slopes of these two 
lines, i.e. the average loss of functionality line of platelet and DOX-platelet, are similar.

The DOX loading ability of platelets was measured. Different proportions of platelets to DOX were used to 
synthesize the optimized DOX-platelet drug delivery system (Fig. 2D). According to the fluorescence images, 

Figure 1. Schematic illustration of the possible mechanism of enhanced anti-tumor activity of DOX-
platelet in vitro and in vivo. Tumor-bearing mice are injected with DOX-platelet by tail vein. DOX-platelet 
targets tumor cells passively by “tumor cell-induced platelet aggregation”. DOX induces tumor cell apoptosis 
through regulating the expression of apoptosis-related genes.
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most DOXs were loaded in the platelets when the volume ratio of platelet to DOX was 1:2. Optimal drug loading 
(DL) (46.3%) and encapsulation efficiency (EE) (86.6%) were obtained at this volume ratio. Therefore, this dosage 
was selected in the following experiments. The in vitro release of DOX over time was analyzed and the results are 
listed in Fig. 2E. The cumulative release of DOX from DOX-platelet was pH sensitive. The most rapid release of 
DOX was obtained at pH 5.5, and approximately 84.4% of the loaded DOX was released into the buffer within 
36 h. The release was slower at pH 7.4 and 8.4, suggesting a pH-triggered release pattern. The pH sensitive releas-
ing ability of DOX is interesting because an acidic environment is found in tumor tissue (pH 6.8) or in tumor cells 
(pH 4–5), which describes that DOX is rapidly released from the DOX-platelet complex in the tumor or inside 
the tumor cells.

Toxicity studies. The viability of Raji cells, a lymphoblastoid cell derived from a Burkitt lymphoma, treated 
with DOX-platelet containing different concentrations of DOX (0.025, 0.05, 0.1, 0.2, and 0.4 μ g/ml) was studied to 
estimate the anti-tumor effect of DOX-platelet on lymphoma (Fig. 3A). The IC50 of DOX at 24 h was 0.243 μ g/ml.  
Considering the DL of DOX-platelet, 0.524 μ g/ml of DOX-platelet (equivalent to 0.243 μ g/ml of DOX) was 
selected to measure their cytotoxicity against the Raji cells with different incubation times. As illustrated in 
Fig. 3B, the cytotoxicity of DOX-platelet against Raji cells is positively related to the incubation time, which is 
also higher than that of free DOX within 72 h. After incubation for 24, 48, and 72 h, the corresponding inhibition 

Figure 2. (A) a Image of platelets under oil immersion lens (400× ); b Image of platelets with 0.1 mmol/L DOX 
under fluorescence microscope (400× ); c image of platelets under SEM; d image of platelets with o.1 mmol/L 
DOX under SEM. (B) Representative protein bands of platelets in western blotting. (C) Collagen-induced 
aggregation pattern of washed platelet and DOX-platelet at different time interval. (D) EE and DL of DOX-
platelet with different incubation concentrations of DOX (0.025 mmol/L, 0.05 mmol/L, 0.1 mmol/L, 0.2 mmol/L, 
0.4 mmol/L). (E) In vitro DOX release behaviors in PBS with different pH values (5.5, 7.4 and 8.4) at 37 °C 
respectively.
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rates of DOX were 52.06%, 61.90%, and 72.31%, whereas that of DOX-platelet were 65.8%, 85.23%, and 90.6%, 
respectively. A significant difference was observed between the two groups at 24, 48, and 72 h (P <  0.05). However, 
the blank platelets showed no significant reduction in cellular viability compared with control, revealing the good 
biocompatibility of platelets to the cells.

DOX causes severe cardiotoxicity that greatly restricts its application in tumor therapy. In this study, the 
toxicities of free DOX and DOX-platelet against myocardial cells were tested by the CCK-8 assay. The viabil-
ity of myocardial cells decreased when incubated with DOX for a longer time, confirming the time-dependent  
in vitro cardiotoxicity of DOX. More than 80% of the cells treated with DOX-platelet survived even after 72 h. 
These results reveal that DOX-platelet exerts high antitumor effect and low cardiotoxicity.

Raji cell uptake and apoptosis. The accumulation of DOX in Raji cells was measured by flow cytometry 
(FCM) to determine whether the cytotoxic activity of DOX or DOX-platelet is related to the intracellular DOX 
level in Raji cells. As shown in Fig. 4A and B, the intracellular DOX concentration significantly increased in the 
DOX-platelet group compared with that in the free DOX group, which positively correlates with the cytotoxic 
activity. FCM was also used to quantitatively investigate the apoptosis of Raji cells (Fig. 4C and D). After the 
incubation for 24 h, the total apoptosis rate of the controls was 5.9%, including the early and late apoptosis rates 
of 3.4% and 2.5%, respectively. Similarly, the early and late apoptosis rates of platelet-treated cells were 8.6% and 
6.0%, respectively, indicating no significant difference with the controls. However, the total apoptosis rate of the 
DOX treated groups increased to 50.5% after 24 h. When the cells were treated with DOX-platelet, the early and 
late apoptosis rates increased to 19.5% and 53.6%, respectively, which confirms an enhanced cellular apoptosis 
compared with that in the DOX treated cells (P <  0.05).

Fluorescence microscopy was then used to observe the morphological changes in Raji cells stained with DAPI. 
As shown in Fig. 5, the control cells were homogenously stained with blue fluorescence, revealing that the chro-
matin was equally distributed in the nucleolus. The cells treated with platelets showed no significant morphologi-
cal changes compared with the controls. When these cells were treated with DOX, the signal of cell apoptosis was 
observed, such as chromatin condensation, nucleolus pyknosis, and nuclear fragmentation. The morphological 
changes were also more drastic when the DOX-platelet was used against the Raji cells. These results confirm 
that DOX induces the apoptosis of Raji cell. In addition, the uptake of DOX by the Raji cells is strengthened by 
DOX-platelet, which consequently improves the cytotoxicity against the cells.

RT-PCR and Western blot assay of Raji cells. The expression levels of Bad, Bcl-xl, caspase-9, and p53 
were detected using RT-PCR. Western blot was conducted to evaluate the mechanisms leading to the apoptosis 
of Raji cell. As shown in Fig. 6A, the mRNA expression of Bad, caspase-9, and p53 was slightly upregulated in 
the DOX treated group compared with that in the control group. The level of these mRNAs was greatly evaluated 
for the DOX-platelet treated cells (P <  0.05). However, the Bcl-xl transcription level was downregulated in the 
DOX group compared with that in the control, and the DOX-platelet treated group had the lowest level of Bcl-xl 
among the groups. The expression changes of all these apoptosis-related genes clearly indicate that DOX-platelet 
improves the anti-tumor activity of DOX against Raji cells by strengthening the cellular apoptosis. Figure 6B and C  
show the results of Western blot analysis. No significant up-regulation of caspase-9 protein was observed in the 
control and platelet treated groups, whereas the DOX-platelet group exhibited the highest level of caspase-9, 
which also confirms the serious apoptosis of the Raji cells.

Macrophage uptake in livers and spleens in vivo. As shown in Fig. 7, the macrophages in livers and 
spleens from the Caelyx-treated mice have significantly enhanced red fluorescence density of DOX compared 
with those of the DOX-platelet-treated mice. In contrast, lower fluorescence density of DOX was observed in the 

Figure 3. Cytotoxic effect of DOX-platelet. (A) The cytotoxic effect of DOX-platelet against Raji cells at 24, 
48 and 72 h with different concentration of DOX; Inset: The IC50 of DOX inside the platelets for Raji cells at 24, 
48 and 72 h. (B) Cytotoxic effect of platelet, free DOX and DOX-platelet on both Raji cells and myocardial cells 
at 24, 48 and 72 h. (P <  0.05 in the groups of DOX and DOX-platelet in comparison with controls at 24, 48 and 
72 h both in Raji cells and myocardial cells).
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livers and spleens of DOX-platelet-treated mice. The results reveal that less DOX in the form of DOX-platelet was 
captured by macrophages than in the form of pegylated liposomal DOX(Caelyx), which suggests that the immune 
compatibility of DOX-platelet is superior to that of pegylated liposomal DOX.

Plasma concentration and tissue distribution of DOX in vivo. The DOX concentration in plasma 
over time after injection is shown in Fig. 8. Based on the figure, free DOX was rapidly cleared out from the blood 
with a short half-life (t1/2 =  1.89 ±  0.53 h), whereas DOX-platelet had a prolonged blood circulation time with a 
long half-time (t1/2 =  29.12 ±  1.13 h) (Fig. 8A). Results of tissue distribution is are shown in Fig. 8B. The DOX 
concentration from mice injected with free DOX was high in the heart tissue but low in the tumor tissue. On the 
contrary, the heart tissue in the DOX-platelet-treated mice had a significantly lower concentration of DOX than 
that in the mice treated with free DOX (P <  0.05). Moreover, the tumor tissue of mice treated with DOX-platelet 
had higher concentration of DOX than that with free DOX (P <  0.05). Additionally, the liver, spleen, kidney and 
lung tissues had low DOX concentration. These results reveal that DOX-platelet, with a slow rate of clearance 
from circulation, can effectively accumulates and releases DOX in the tumor tissues and protect the normal tis-
sues from toxicity caused by high DOX concentration.

Therapeutic efficacy in vivo. The tumor-bearing mouse model was established to investigate the in vivo 
anti-tumor effects of DOX-platelet (Fig. 9A). During the treatment, the body weight and tumor size of mice were 
monitored every 2 days. As shown in Fig. 9B, compared with the initial body weight (20 g), the final body weight 
of mice in the groups treated with normal saline, platelet, and DOX-platelet was 21.6, 21.5, and 21 g, respectively. 
However, after the treatment with free DOX for 12 days, the mice have a final average weight of 18.4 g, suggesting 
a remarkable weight loss compared with the controls. This finding reveals that the toxicity of free DOX against 

Figure 4. Mean fluorescence intensity (MFI) in Raji cells and apoptosis of Raji cells. (A) FCM was utilized 
to figure out the intracellular uptake of DOX in Raji cells with different treatments (a =  control; b =  platelet; 
c =  DOX; d =  DOX-platelet). (B) Intracellular uptake of DOX in Raji cells of different sampless. (C) The 
apoptosis of Raji cells (a =  control; b =  treated with platelet; c =  treated with DOX; d =  treated with DOX-
platelet). (D) Quantitative data of apoptosis from (C) (*P <  0.05 when compared with controls, #P <  0.05).
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normal tissue is serious and is greatly reduced by the encapsulation of platelet. The tumor size of mice treated 
with saline or platelet alone continuously increased, whereas for the groups treated with free DOX, the tumor 
size increased during the first 4 days, followed by a size decrease (Fig. 9D). For the DOX-platelet treated group, a 
continuous tumor suppression was observed during the whole experiment (Fig. 7D), and the smallest tumor size 
was achieved at the end of the experiment (Fig. 9C).

Histopathological study. The histopathological changes on major organs (heart, liver, spleen, lung, and 
kidney) of mice after platelet, DOX, and DOX-platelet treatments were conducted by hematoxylin-eosin (H&E) 
staining and are shown in Fig. 10. After saline, platelet, and DOX-platelet treatments, no significant histopatho-
logical abnormalities, such as morphological or structural changes, hemorrhage, necrosis, and inflammatory 
exudates, were observed on any organ. However, typical DOX-induced myocardial injury to the mouse heart, 
which is related to acute inflammatory cells, was observed in the DOX treated sample. These results suggest that 
the platelet protects the heart from the direct exposure to DOX and therefore reduce its side effect.

Figure 5. The fluorescence microscopy images of Raji cells after receiving different treatment (400×). The 
nucleus was stained by DAPI. Cell apoptosis is indicated by arrows.
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Figure 6. (A) mRNA expression of apoptosis-associated genes with different treatments evaluated by RT-PCR. 
(B) and (C): Protein expression of apoptosis-associated genes by western blotting (*P <  0.05).

Figure 7. Confocal fluorescence images of liver and spleen tissues after injection with DOX-platelet or 
Caelyx (200×). The nuclei were stained by DAPI. Cytoskeletons were labeled with FITC.
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RT-PCR and Western blot assay of tumor bodies. RT-PCR and Western blot were performed to evalu-
ate the expression levels of Bad, Bcl-xl, caspase-9 and p53 in tumor cells in vivo. As shown in Fig. 11, the highest 
mRNA expressions of Bad, caspase-9 and p53, as well as the lowest mRNA level of Bcl-xl were obtained in the 

Figure 8. Plasma concentration and tissue distribution of DOX in vivo. (A) Plasma concentrations of DOX 
over time after injection with free DOX or DOX-platelet. (B) Tissue distribution of DOX at 4 h after injection 
with free DOX or DOX-platelet (*P <  0.05).

Figure 9. (A) The establishment of tumor-bearing mouse models (from 1 to 4). (B) The body weight changes 
of mice in the period of 12 days after different treatments. (C) The final tumor size of mice with different 
treatments. (D) The changes of relative tumor volume of mice in the period of 12 days after different treatments.
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group of DOX-platelet (Fig. 11A). The same variation tendency was also observed in the Western blot assay 
(Fig. 11B,C). These results are in accordance with the in vitro experiments, revealing that the DOX-platelet shows 
the best tumor inhibition.

Discussion
Lymphoma is one of the most fatal diseases worldwide, and DOX is the first choice in the treatment of lymphoma. 
However, cytotoxic drugs such as DOX induce various adverse effects on normal tissues and organs. Therefore, 
the design of drug delivery systems to alleviate the side effects and improve the therapeutic index has been desired 
during the past several decades. Biocompatibility is important for a practical drug delivery system to prevent 
unwanted immune response and tissue reactions against the drug carrier29. Although many materials were used 
for drug delivery systems, the problem of biocompatibility hindered their broad clinical application. Platelets 
attracted attention as a potential biological drug delivery system, but the existing studies either mimic the func-
tion of platelets or use the platelet membrane to cloak the particles25. All these studies are subjected to compli-
cated procedures, and natural platelets are currently seldom used as drug carriers. In this study, we developed a 
DOX-loaded delivery system using platelets as the starting material because of their unique biocompatibility.

Figure 10. The H&E staining images of the sections of heart, liver, kidney, lung and spleen (100×). The 
histopathological changes are indicated by arrows.
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Platelets encapsulate drugs with relatively high DL and EE as reported in several studies. Sarkar et al. reported 
that approximately 1013 molecules of drugs were contained per platelet30. Our study revealed that platelets load 
DOX with high DL and EE without including morphological and functional changes. The study of macrophage 
uptake in vivo directly revealed that DOX-platelet has a more favorable immunocompatibility than pegylated 
liposomal DOX and reduces the uptake by macrophages (Fig. 7). Thus, the blood circulation time increased with 
a high half-life. As illustrated in Fig. 2E, more DOX was released at low pH, indicating a pH-triggered release 
pattern. Tumor microenvironment has a lower pH compared with normal tissues because of the hypoxic states31. 
Thus, the substantial release of drugs occurs around the tumor cells, whereas most drugs remain in the carriers 
in the normal physiological environment, leading to less exposure of normal tissues from cytotoxic drugs. The 
intracellular studies also confirmed that more drugs were delivered to Raji cells. Therefore, the chemotherapeutic 
efficacy was enhanced and the undesirable adverse effects on normal tissues were attenuated.

The growth inhibition and apoptosis of Raji cells were enhanced with DOX encapsulated in platelets compared 
with those with the free DOX at the same concentration. Therefore, less DOX is required to achieve the same 
chemotherapeutic efficiency. This finding suggests that normal tissues are exposed to less amount of DOX, and 
the side effects induced by DOX are alleviated. The typical adverse effects of DOX include myelosuppression, nau-
sea, vomiting, and cardiotoxicity. Among these effects, cardiotoxicity seriously restricts the practical application 
of DOX. The present study evaluated the toxicity of DOX and DOX-platelet against myocardial cells. As illus-
trated in Fig. 3B, minimal toxic effect on myocardial cells was detected when using the DOX-platelet in vitro, con-
firming that the platelets alleviate the cardiotoxicity of DOX. Cardiotoxicity caused by DOX is dose-dependent. 
It occurs when the dose of DOX exceeds a certain threshold level. Since DOX-platelet is not activated when cul-
tured with myocardial cells and only 30% of DOX is released and diluted in culture media, the dose of DOX might 
not reach the threshold level that can cause cardiotoxicity. These results are consistent with the tissue distribution 
of DOX-platelet in vivo, which reveals that more DOX accumulate in tumor tissues whereas less DOX accumulate 
in normal tissues (Fig. 8).

In vivo therapeutic efficacy and toxicity were further estimated using a tumor-bearing mouse model. Figure 10 
shows that the tumor size in both DOX and DOX-platelet treated groups was significantly decreased compared 
with that in controls, which illustrates the super efficiency of DOX for lymphoma therapy. Moreover, the mice 
treated with DOX-platelet exhibited the smallest tumor size among the four groups, suggesting that DOX-platelet 

Figure 11. (A) mRNA expression of apoptosis-associated genes with different treatments evaluated by RT-
PCR. (B) and (C): Protein expression of apoptosis associated genes by western blotting (*P <  0.05).
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is more effective than free DOX in the cancer therapy. Therefore, DOX-platelets specifically target the tumor 
tissues while producing less side effects caused by DOX. The most serious adverse effect of DOX is myocardial 
injury. In the H&E staining experiments, significant myocardial injury was only observed in the free DOX treated 
group, revealing that DOX-platelet reduces the cardiotoxicity of DOX. As a clinical symptom, body weight loss 
is an early indicator for side effects. In our study, body weight loss was discovered only in the group receiving the 
treatment of free DOX. These results confirm that when platelets act as drug carriers, the therapeutic efficacy of 
DOX is improved and the side effects are reduced.

Apoptosis in mammalian cells consists of two main pathways, the death receptor-mediated (extrinsic) and the 
mitochondrial-mediated (intrinsic) pathways. The extrinsic pathway is mediated by the binding of ligands to cor-
responding death receptors32. The intrinsic pathway is the release of apoptogenic factors, such as cytochrome C, 
from the mitochondria into the cytosol. Once cytochrome C forms an apoptosome with apoptosis-activating fac-
tor 1 and caspase-9, the downstream apoptotic signals are activated33. Growing evidences suggest that the intrinsic 
apoptosis pathway is regulated by the Bcl-2 family34, which is the apex of the “life or death” cellular mechanisms. 
The Bcl-2 family consists of pro-apoptotic (Bax, Bad, and Bak) and anti-apoptotic (Bcl-xl and Bcl-2) proteins35. 
The expression of Bcl-xl or Bcl-2 is relatively high in more than 50% of all cancers36. Ranger et al. found that 
Bad-deficient mice progressed to diffuse large B cell lymphoma of germinal center origin37. In our study, Bcl-xl 
was clearly downregulated when the DOX-platelet was used. By contrast, the expression level of Bad increased 
in both the free DOX and DOX-platelet treated groups. Caspase-9 also plays a vital role in the intrinsic apoptosis 
pathway. When caspase-9 is activated, the effector caspases are cleaved and activated, leading to lysis of numerous 
cellular substrates and cell death38. Our data revealed the increased expression of mRNA and protein of caspase-9 
after the DOX treatment both in vitro and in vivo. This increment is more pronounced in the DOX-platelet treated 
group. These results reveal that the pro-apoptotic pathway promotes the apoptosis by inhibiting the anti-apoptotic 
Bcl-2 proteins through heterodimerization, thereby leading to the release of cytochrome C and the activation of 
the caspase pathway36. P53 is another tumor-suppressor gene and its expression is increased in both free DOX 
and DOX-platelet treated groups. P53 regulates the expression of some downstream apoptosis genes, such as 
Bax and Bcl-239. The loss of p53 commonly occurs in malignancy and triggers an escape route from apoptosis40. 
However, the relationship between p53 and Bad or Bcl-xl is poorly understood. In our study, the expressions of 
Bad, caspase-9, and p53 were upregulated and the expression of Bcl-xl was downregulated in both DOX and 
DOX-platelet treated groups, especially in the latter. According to these results, DOX induces tumor cell apop-
tosis by regulating the expression of apoptosis-related genes. Furthermore, evident changes of their expression 
were observed in DOX-platelet treated group, which reveals that DOX-platelet improves the anti-tumor activity 
of DOX by enhancing DOX-induced cell apoptosis.

Materials and Methods
Materials. Reagents. DOX was purchased from Dalian Meilun Biology Technology Co., China. Roswell 
Park Memorial Institute (RPMI) 1640 medium was obtained from Thermo Fisher Scientific, Waltham, MA, 
USA. Cell counting kit-8 (CCK-8) assay, Annexin V-Fluorescein isothiocyanate (FITC) apoptosis detection kit, 
and 4′ ,6-diamidino-2-phenylindole (DAPI) were obtained from Beyotime Biotechnology Co., Ltd. (Nantong, 
China). Monoclonal antibodies to caspase-9, Bad, Bcl-xl, p53 and GAPDH were from Santa Cruz Biotechnology 
Inc (Santa Cruz, CA, USA). Hematoxylin-eosin staining (H and E staining) were bought from Thermo Fisher 
Scientific, Waltham, MA, USA. All other reagents were of analytical grade and without further purification.

Animals. All experimental protocols using mice were approved by the Medical Animal Care and Welfare 
Committee of the Affiliated Drum Tower Hospital of Nanjing University Medical School (Nanjing, China). The 
methods were carried out in accordance with the relevant guidelines, including any relevant details. The athymic 
BALB/c-nude mice (4–6 weeks, 18–22 g in body weight) were purchased from Shanghai Experimental Animal 
Center of Chinese Academic of Science and kept in specific pathogen free (SPF) conditions with controlled tem-
perature (23 ±  2 °C) and humidity (60% ±  5%), a 12-h light/dark cycle, and free access to water and food.

Preparation and characterization of DOX-platelet. Platelet isolation. Fresh human blood was 
obtained from healthy volunteers with permission from the Ethics Committee of the Affiliated Drum Tower 
Hospital of Nanjing University Medical School in accordance with the Declaration of Helsinki. All volunteers 
signed the informed consent before donating their blood for the study, and all experiments were performed in 
accordance with relevant guidelines and regulations. Briefly, 9 ml of blood and 1 ml of 3.2% sodium citrate anti-
coagulant were mixed and centrifuged at 200 ×  g for 10 min at room temperature to obtain platelet-rich plasma 
(PRP). Then PRP was centrifuged at 1800 ×  g for 20 min twice and the supernatant was discarded. The resulting 
pellet was washed with phosphate-buffered saline (PBS) to prepare purified platelets41. All experiments were 
performed under sterile conditions. Oil immersion microscopy was used to observe the morphology and distri-
bution of platelets.

Drug loading. DOX was dissolved in PBS with different concentrations and mixed with platelets. The mixture 
was gently shaken and incubated at 37 °C for 1 h at 100 rpm in the dark. Thereafter, the mixture was passed 
through a Sepharose 2B column (Invitrogen, Carlsbad, CA, USA) to remove the free DOX. All steps were con-
ducted under sterile conditions in the dark. Precautions were taken to prevent the activation of platelets.

Characterization of DOX-platelet. Fluorescence microscopy was performed to determine the encapsulated 
DOX in platelets. One drop of the DOX-platelet suspension was placed on a clean glass slide. The glass slide was 
observed under a fluorescence microscope. Morphological changes of DOX-platelet were investigated by SEM 
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(JEM-2100, JEOL Ltd., Tokyo, Japan). Briefly, 200 μ L of platelets before or after the encapsulation of DOX were 
dropped onto the glass. Gradient dehydration with 4% methyl alcohol was performed twice, and the samples were 
washed with PBS before observation.

Western blotting and platelet aggregation assay were performed to determine the platelet membrane proteins 
and evaluate the activation of DOX-platelet, respectively. Platelet aggregation was estimated by a spectrophoto-
metric method. Briefly, 1 ml of platelet rich plasma that was anticoagulated with sodium citrate was mixed with 
500 ml of PBS or 500 ml of PBS containing 0.5 IU/ml of thrombin, as negative and positive controls, respectively. 
The optical density at 650 nm of each group was monitored over time to measure the platelet aggregation based 
on the reduction of turbidity.

DL and EE were measured by high-performance liquid chromatography (HPLC). Freshly prepared 
DOX-platelet suspension was centrifuged at 2000 rpm for 15 min, and the supernatant containing free DOX was 
collected and diluted with PBS for HPLC evaluation42.

Dynamic dialysis method was used to investigate the release behavior of DOX from the DOX-platelet in vitro. 
DOX-platelet was dispersed in 5 ml of PBS at pH 7.4 and was transferred to a dialysis bag immersed in 95 ml of 
PBS at different pH values of 5.5, 7.4, and 8.4. After shaking in a horizontal shaker at 100 rpm at 37 °C for prede-
termined time intervals, 2 ml of the external medium was collected and replaced with an equal volume of fresh 
PBS. The DOX concentration was determined by spectrophotometry at 450 nm, and the cumulative release of 
DOX from the platelets was plotted according to the release ratio over time.

Anti-tumor activity and cardiotoxicity of DOX-platelet in vitro. Cell culture. Raji cells, a cell line of 
lymphoma cells, were cultured in a RPMI-1640 supplemented with 10% fetal bovine serum at 37 °C in a humid-
ified atmosphere of 5% CO2. The cells were passed every 2–3 days to maintain the best state. Cells were treated 
with platelets, DOX, and DOX-platelet, and cells without treatment were labeled as controls. The myocardial cells 
were isolated from mouse hearts and used immediately after centrifugation and washing.

CCK-8 assay. The CCK-8 assay was used to evaluate cell viability. The cells were seeded in a 96-well plate with 
the concentration of 8 ×  103 cells per well. After incubation for 24, 48, and 72 h at 37 °C in a humidified atmos-
phere of 5% CO2, 10 μ L of CCK-8 solution was added into each well and incubated for another 4 h. The absorb-
ance values of the solution per well were determined using a spectrophotometer at 450 nm, and the cytotoxic 
activity was measured by reading the optical density (OD). Cell viability (%) was calculated as follows:

= ×Cell viability(%) OD of the sample
OD of the control

100, (1)

where OD of sample represents the optical density of cells treated with platelets, DOX and DOX-platelet, and OD 
of control describes the optical density of cells without treatment.

Cellular uptake. Cellular uptake was quantitatively measured using flow cytometry (FCM). Briefly, Raji cells 
were cultured in six-well plates and incubated for 24 h. After incubation for another 24 h with platelets, DOX, 
and DOX-platelet, these cells were centrifuged and collected at 1000 rpm for 5 min. The culture medium was 
discarded, and the precipitate was dispersed in 200 μ L of PBS and incubated for 15 min in the dark. Finally, the 
cellular uptake was determined by FCM.

Raji cell apoptosis. Raji cells at a density of 6 ×  105 cells/well were cultured in a six-well plate overnight and 
treated with platelets, DOX, and DOX-platelet for 24 h. Afterwards, the cells were washed with cold PBS, followed 
by staining with 5 μ L of Annexin V-FITC in binding buffer for 15 min in the dark. FCM was used to quantitatively 
detect cell apoptosis.

Morphological changes in Raji cells. Raji cells were cultured and collected as previously described. The cells were 
stained with DAPI and the morphological changes were observed with a fluorescence microscope.

Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. The RT-PCR method was 
employed to determine the transcription levels of genes. Total RNA was extracted with TRIZOL reagent and tran-
scribed using a Reverse Transcription System. To obtain cDNA, the reverse transcriptase solution was incubated 
at 42 °C for one hour, 85 °C for 5 minutes, and 5 °C for 5 minutes. The designed PCR primers included Bad primer 
(sense:5′ -GTGACCTTCGCTCCAC ATC-3′ , antisense: 5′ -GAGACAGCACGGATCCTCTT-3′ ), Bcl-xl primer 
(sense: 5′ -CTATGGGAACAATGCAGCAG-3′ , antisense: 5′ -TGGTCATTTCCGACTGAAG A-3′ ), caspase-9 
primer (sense: 5′ -AGACCCAGGTCCAGATGAAG-3′ , antisense: 5′ -TTTCTGGGAAGGGACAGAAG-3′ ), p53 
primer (sense: 5′ -TACATCTGGC CTTGAAACCA-3′ , antisense: 5′ -CAGCTGCCCAACTGTAGAAA-3′ ) and 
GAPDH primer (sense 5′ -TGTTGCCATCAATGACCCCTT-3′ , antisense 5′ -CTCCACGACG TACTCAGCG-3′ ).  
The newly synthesized cDNA was amplified by PCR. Denaturation was performed at 95 °C for 2 minutes, and 
final extension at 72 °C for 10 minutes. RT-PCR products were analyzed using the ScnImage software (Scion 
Corporation, Frederick, MD).

After treatments, total proteins were isolated on ice, subjected to sodium dodecyl sulfate polyacrylamide gel 
electrophoresis, and transferred to a polyvinylidene difluoride membrane. After blocking with 5% nonfat milk for 
one hour at room temperature, the blots were stained with mouse monoclonal anti-human Bad, Bcl-xl, caspase-9, 
p53 or β -actin overnight at 4 °C and subsequently incubated with horseradish peroxidase-labeled immunoglob-
ulin G as the secondary antibody. The blots were visualized using the enhanced chemiluminescence detection 
system (Amersham, UK), and β -actin was used as the internal control.
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Therapeutic efficacy of DOX-platelet in vivo. Establishment of tumor-bearing mouse models.  
Subcutaneous tumors were established by injecting 2 ×  106 cells/ml Raji cells in 200 μ L of complete medium into 
the axillary subcutaneous space of each mouse. The tumor model was successfully established when the volume 
of tumor reached 60–100 mm3.

Macrophage uptake in livers and spleens in vivo. Caelyx (pegylated liposomal doxorubicin HCl; Schering-Plough) 
was used as the standard stealth liposome formulation of DOX. Tumor-bearing mice were intravenously adminis-
tered with DOX-platelet or Caelyx (DOX 5 mg/kg). At 4 h post-injection, the mice were sacrificed and their livers 
and spleens were separated and prepared as frozen sections. For cytoskeleton staining, the sections were incubated 
with anti-vimentin antibodies overnight at 4 °C. IgG-FITC was added and incubated at 37 °C for another 1 h in the 
dark. Subsequently, cell nuclei were stained by DAPI. The sections were observed with a laser scanning confocal 
microscope.

Plasma concentration and tissue distribution of DOX in tumor-bearing mice. Tumor-bearing mice were intrave-
nously injected with free DOX or DOX-platelets (DOX 5 mg/kg). Blood samples for measuring the DOX concen-
tration were collected via heart puncture after 0.25, 0.5, 1, 2, 4, 8, 16, 24, 48, and 72 h. Heparin sodium was used 
as an anticoagulant. Plasma was obtained after the whole blood was centrifuged at 3000 rpm for 10 min. The DOX 
concentration in plasma was determined by spectrofluorometry with excitation and emission wavelengths of 485 
and 590 nm, respectively.

The tumor bearing mice were sacrificed at 4 h after injection with a single dose of free DOX or DOX-platelets 
(DOX 5 mg/kg). Their main organs (liver, kidney, spleen, lung, and heart) and tumor tissues was isolated and 
washed with PBS. The tissues were lysed and homogenized. Acidified isopropanol was used to extract DOX from 
the tissue homogenate. After centrifugation, the supernatant was analyzed in a spectrofluorometer.

Study of the therapeutic efficacy. The tumor-bearing mice were divided into 4 groups with 6 mice in each group 
according to the solutions they were administered: (1) normal saline group; (2) platelet group; (3) DOX group; 
(4) DOX-platelet group. The dosage of DOX for each injection was 1 mg/kg, and according to the effective drug 
loading rate of 46.3%, the dose of DOX-platelet was 2.15 mg/kg (Fig. 2D). They were intravenously administered 
via the tail vein and the volumes of tumors were measured every 2 days. After 12 days, all the mice were sacrificed 
and the tumor, heart, liver, spleen, lung, and kidneys were isolated for further examinations. The volume (V) of 
tumor and relative tumor volume (RTV) were calculated as the following equations:

=V 1
2

ab , (2)
2

where a and b represent the longest and shortest vertical dimensions of the tumor respectively.

=
V
V

RTV
1

, (3)

where V1 presents the tumor volume on the first day of treatment.

Reverse transcription-Polymerase chain reaction (RT-PCR) and Western blot assay. To measure the expression 
levels of mRNAs and proteins of Bad, Bcl-xl, caspase-9 and p53 in the tumor cells, RT-PCR and western blotting 
were carried out.

Histopathological analysis. The major organs of mice were isolated carefully, washed by PBS and then immersed 
into 4% paraformaldehyde solution at 4 °C overnight. Afterwards, they were embedded in paraffin blocks, sec-
tioned with 5 μ m thickness and placed onto glass slides. The slides were finally stained with H&E staining for 
histopathological examination.

Statistical analysis. The results were expressed as the means ±  standard deviation. Statistical analyses were 
performed with a parametric test (Student’s t-test) using the SPSS software. A P-value, less than 0.05, was consid-
ered statistically significant.
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