
Heliyon 5 (2019) e01570

Contents lists available at ScienceDirect

Heliyon

www.elsevier.com/locate/heliyon

Influence of an applied current on the vortex matter in a superconducting 

sample with structural defects

C.A. Aguirre a,∗, Q.D. Martins b, A.S. de Arruda a, J. Barba-Ortega c

a Departamento de Física, Universidade Federal de Mato-Grosso, Cuiabá, Brazil
b Departamento de Física, Universidade Federal de Rondônia, Jí-Paraná, Brazil
c Departamento de Física, Universidad Nacional de Colombia, Bogotá, Colombia

A R T I C L E I N F O A B S T R A C T

Keywords:

Condensed matter physics
Electromagnetism

We show how the inclusion of a structural defect of determined geometry controls the vortex state in a square 
superconducting sample in the presence of an external magnetic field and a 𝑑𝑐 current. We simulated the defects 
by using the deformation parameter 𝜏(𝑥, 𝑦), solving the non-lineal time-dependent Ginzburg-Landau equations 
and using the link variable method, for four different geometries as possible options for the storage vortex, 
simulating the behavior of a capacitor. We found an exponential dependence of the current in which the first 
vortex penetrates the sample 𝐽𝑐 as a function of the area of a square central defect in the sample. We also show 
the effect of the defects and the transport current on the magnetization, magnetic susceptibility, vorticity, and 
magnetic field at the first vortex entry into the sample 𝐻1 and the density of the superconducting electrons.
1. Introduction

Currently the superconducting state is a powerful tool for appli-
cations in different and varied areas, such as medicine, technology, 
biotechnology, control and processing of data, material development, 
and field measurements, by means of slight interactions of the magnetic 
field [1,2,3,4,5,6,7]. This is due in large part to the main properties ex-
hibited by different materials in the superconducting phase, such as 
current movement without Ohmnic losses, shielding of external fields, 
periodic oscillations in their susceptibility, and heat capacity, and over 
the last few years, control and movement of information through the 
manipulation of vortex cascades. This vortex manipulation in supercon-
ducting samples with different geometries and under different boundary 
conditions has been highly studied experimentally. One of the most suc-
cessful investigations was carried out by A. V. Silhanek, where it was 
possible to guide a vortex current by positioning anti-dots in a sample 
with a specific geometry in the presence of an external current, with the 
added variation of the resistance in the sample as a voltage function [8]. 
Another result of importance was obtained by A. van Blaanderen et al.; 
they studied a sample with anti-pinnings and pinning centers and were 
able to steer the vortex movement along a defined path [9]. L. Van 
Look et al. studied the vortex pinning and the anisotropy in different 
samples, finding a dependence on the orientation of the electric field 
with respect to the critical current [10]. Also, D. Halbertal et al. con-
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ducted a study in which they performed magnetic measurements using 
SQUIDs and found variations in local temperatures in the samples [11]. 
K. J. Kihlstrom et al. found that mixed pinning landscapes in supercon-
ductors are emerging as an effective strategy for achieving high critical 
currents in high applied magnetic fields [12]. G. R. Berdiyorov et al. 
studied the static and dynamic properties of superconducting vortices in 
a superconducting stripe with a periodic array of normal metal regions 
in the presence of external electro-magnetic fields. They observed peri-
odic entry and exit of vortices that reside in the metallic regions; also, 
the mobility of the weakly-pinned vortices can be reduced by increasing 
the magnetic field [13]. In several studies, the difference between the 
kinematic and the Abrikosov vortex and vortex-anti-vortex annihilation 
was shown [14,15,16,17,18,19,20,21]. In addition to the experimental 
papers, theoretical work has been carried out in which the resistance 
in a superconductor with an external current at zero magnetic field is 
studied, showing the variation of the resistance in the sample caused 
by the positioning of pinning-anti-pinnings centers and their modifi-
cations, and the stability of the various numerical methods used for 
these solutions [22,23,24,25,26,27]. Given the present importance that 
it represents for different applications, we present four different config-
urations of structural defects included in a superconducting nano-prism 
subjected to an external current and a magnetic field. We show how 
the vortex configuration can be steered by the geometry of the defect 
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Fig. 1. Layout of the studied cases: 𝐿1 = 24𝜉, 𝐿2 = 16𝜉, 𝑤 = 4𝜉, for B-a) homoge-
neous sample with 𝜏 = 1.0 in all green zones, except in the contacts (blue zone), 
B-b) Longitudinal section with area 𝐴 = 𝐿1𝑤, B-c) Non lineal section with area 
𝐴 = 4𝑤2 , and B-d) Storage configuration. We take in all blue zones 𝜏 = 0.01.

along a determined path. We present a form with this defect in order 
to establish a storage of the vortex in the superconducting sample. For 
all the cases studied, we show the magnetization 𝑀 , magnetic suscep-
tibility 𝜒𝑚, vorticity 𝑁 , and magnetic field that occurs with the first 
penetration vortex 𝐻1 as a function of the magnetic field. This paper 
is organized as follows: In section 2, we introduce the theoretical for-
malism and all important variables. In section 3, the results obtained 
are described and discussed. Finally, in section 4, the conclusions are 
presented.

2. Theory

We consider a very thin square bridge of thickness 𝑑 ≪ 𝜉, so within 
this approximation we can neglect the demagnetization effects, and 
it can be treated as a two-dimensional problem [28]. The formalism 
used to study the system considered in Fig. 1(a-d) is given by the time-
dependent Ginzburg-Landau (TDGL) equations [29,30,31,32,33]:

𝜇√
1 + Γ2|𝜓|2

[
𝜕𝜓

𝜕𝑡
+ Γ2𝜓

2
𝜕|𝜓|2
𝜕𝑡

+ 𝑖Φ𝜓
]
− (−𝑖𝛁−𝐀)2𝜓

+𝜓(𝜏(𝑥, 𝑦) − |𝜓|2) (1)

𝜕𝐴

𝜕𝑡
= Re [�̄�(−𝑖𝛁−𝐀)𝜓] − 𝜅2 [𝛁 ×𝛁 ×𝐀] (2)

In the equations (1) and (2), 𝜓 represents the order parameter, 𝐴 the 
potential vector, and 𝜅 = 1.0 is the Ginzburg-Landau parameter. The 
constants are taken to have the following values: Γ = 10 and 𝑢 = 5.75, 
which are taken from the microscopic character of the superconductiv-
ity [33,34,35]. The equations are presented in adimensional form, as 
follows: |𝜓| in units of 𝜓∞ =

√
−𝛼∕𝛽, lengths in units of the coherence 

length 𝜉, 𝐴 in units of 𝐻𝑐2𝜉, where 𝐻𝑐2 is the second critical field, time 
in units of Ginzburg-Landau time 𝑡𝐺𝐿 = 𝜋ℏ∕8𝐾𝐵𝑇𝑐𝜂, scalar potential Φ
in Φ0 = ℏ∕2𝑒𝑡𝐺𝐿 units, and external applied current 𝐽 in 𝐽0 = 𝑐𝜎ℏ∕2𝑒𝑡𝐺𝐿, 
where 𝜎 is the conductivity in the normal state. 𝑑𝑥 = 𝑑𝑦 = 0.1𝜉 is the 
mesh sample. The usual superconducting-normal boundary conditions 
(∇ − 𝑖𝐴)𝜓 ⋅ 𝑛 = 0 are taken in non-contact sections, and in the contact 
sections we use the Dirichlet boundary condition 𝜓𝑠 = 0. The TDGL 
equations must comply with the continuity equation ∇ ⋅ 𝐽 + 𝜕𝑡𝜌(𝑟, 𝑡)
2

Fig. 2. Magnetization for the case (a). Inset vorticity as a magnetic field function 
𝑁(𝐻).

Fig. 3. Magnetic susceptibility, for the case(b).

and external current ∇2Φ = ∇ ⋅ 𝐽𝑠. For a homogeneous sample, we use 
𝜏(𝑥, 𝑦) = 1.0, and for each defect 𝜏(𝑥, 𝑦) = 0.01. For the order parame-
ter study, we will only consider values close to 𝐻1 (𝐻 >𝐻1 + 𝜖, with 
𝜖 = 0.001𝐻1) taken as a constant, in order to account for the quasi-
constant Lorentz force 𝐹 = 𝐽 × �⃗�, and this process will be followed for 
the configurations shown in Fig. 1(a-d) with 𝐽 = 0.0 and 𝐽1 ∼ 𝐽𝑐 for each 
case.

3. Results and discussion

3.1. Case (a)

In Figs. 2 and 3, we show the magnetization (insets vorticity 𝑁(𝐻)) 
and the magnetic susceptibility as functions of the magnetic field for 
case (a) for two values of the applied current: red line 𝐽 = 0.0, black 
line 𝐽 = 2.0. This shows that the system as usual exhibits the Meissner-
Oschenfeld state for the 𝐻 ≃ 0.75 fields, and we show 𝐻1 in the figures. 
Since the change of the magnetization accounts for the entry of fluixoids 
in the sample but not for its possible movement in the sample, the vari-
ation of 𝐽 to 𝐽𝑐 does not appreciably change 𝑀 , given the homogeneity 
of 𝜏(𝑥, 𝑦) in the sample. Therefore, in Fig. 4(a) we show (𝐽 = 0.0), the 
Cooper pair density. In this figure, we show the entry of the vortex 
into the superconducting sample that is exhibited as a result of the de-
preciation of the superconductivity in the contacts and their respective 
movement to the central position and the equilibrium in the sample, 
given that they are Abrikosov vortices, after which the vortices are lo-
cated at a distance for which there is a balance between the Lorentz 
force generated by the interaction between them and the effect that the 
depreciation of the superconductivity has on the points where the inclu-
sion was generated from the contacts. It is thus shown that on making a 
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Fig. 4. Density of Cooper pairs at indicates 𝐻 with a) 𝐽 = 0.0 and b) 𝐽 = 2.0, for the case (a).
Fig. 5. Magnetization for the case (b). Inset vorticity 𝑁(𝐻).

small variation in the external field in the sample, there is a splitting of 
the vortex, and a movement perpendicular to the direction of the line 
that joins the contacts is generated, an expected effect as a function of 
that repulsion force. In Fig. 4(b), the vortex state is shown for the same 
𝐻 shown in Fig. 4(a). The difference lies in the inclusion of the external 
current 𝐽 = 2.0, where the marked difference of the movement of that 
vortex and their interaction can be seen.

3.2. Case (b)

In Fig. 5, we can see that there is a decrease in 𝐻1 compared to 
case (a) (Fig. 2), causing the vortex in the system to be created for 
smaller fields, and it is established that the critical current changes, an 
effect of exhibiting a value of 𝜏(𝑥, 𝑦) that is not homogenous in the sam-
ple. Additionally, the characteristic oscillatory behavior of the magnetic 
susceptibility can be seen as the vortex is created. Now in the case of the 
order parameter, the inclusion of the vortex is shown as the field is in-
creased up to close to 𝐻1, and as shown in Figs. 5 and 6, the vortex entry 
is in general periodical with an increase in this field, reaching a point of 
saturating the section in which 𝜏(𝑥, 𝑦) has been established on the sur-
face of the superconductor, which would account for sections in which 
the order parameter would exhibit appreciable variations, more easily 
generating movement and interactions between phonons and supercon-
ducting electrons. It is important to observe the behavior of Figs. 7(a) 
and 7(b) and the differences in the order parameters, since both are for 
the same field values, but the inclusion of the current causes the vor-
tex to enter more quickly into the region with 𝜏(𝑥, 𝑦) = 0.01. Also, we 
3

Fig. 6. Magnetic susceptibility, for the case (b).

show the difference in the values 𝐻1 also observed for the two cases, 
an effect that is not appreciable in case (a) (Fig. 2).

3.3. Case (c)

In Figs. 8 and 9, we show the magnetization and magnetic suscepti-
bility for case (c). As can be seen, the area of the defect is greater than 
in cases (a) and (b), and the critical current 𝐽𝑐 necessary to perform 
the vortex mobilization must also be increased. Now for the vorticity 
𝑁(𝐻) (inset), the almost continuous vortex entry of the first 6 vortices 
can be seen for the field 𝐻 ≃ 0.4 in the case for which the current was 
included, there being a difference from the previous case. Also, given 
the inhomogeneity of 𝜏(𝑥, 𝑦) in the sample, the critical fields are differ-
ent. Given this, it can be seen that for the susceptibility for the case 
with currents there is a behavior that is not as smooth as for the case of 
the absence of currents. This is due to a possible additional vortex vi-
bration in their equilibrium position, due to the external current. As in 
all cases, we show the behavior of the order parameter for both cases, 
(Figs. 10(a) and 10(b)). In Fig. 10(a), the coordinating movement of the 
vortex can be seen; however, in Fig. 10(b), the inclusion of the current 
causes the saturation to be much faster than for the region with 𝜏(𝑥, 𝑦).

3.4. Case (d)

For case (d), a particular section was established for the defect ge-
ometry without a connection to the outside, in order to generate the 
vortex storage inside, simulating capacitor behavior. We can see that 
initially there is no change in the value of 𝐻1 for the cases with and 
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Fig. 7. Density of Cooper pairs at indicates 𝐻 with a) 𝐽 = 0.0 and b) 𝐽 = 2.8, for the case (b).
Fig. 8. Magnetization curves for the case (c).

Fig. 9. Magnetic susceptibility for the case (c).

without current, because the effect of proximity is the same. Now in 
Figs. 11 and 12, it can be seen that for fields up to 𝐻1, the values 
reached for the case with currents are greater. It is also shown that 
there is no decrease in 𝑀(𝐻) or 𝜒𝑚(𝐻), that is, the vortexes are stored 
directly in the sample, a behavior similar to that used in electromag-
4

Table 1

First vortex penetration field 𝐻1, maximum of the magnetic susceptibility and 
vorticity for 𝐽 = 0 and 𝐽 ≠ 0 conditions for all studied cases.

Case 𝐻1 for 𝐽 = 0 𝐻1 for 𝐽 ≠ 0 𝜒𝑚𝑎𝑥 𝑁(𝐻 = 0.6)

(a) 0.762 0.750 0.770 0 - 0
(b) 0.460 0.410 0.760 8 - 10
(c) 0.470 0.410 0.750 8 - 10
(d) 0.460 0.460 0.780 10 - 15

netism for the charges. In the case with currents, the magnetization is 
greater, and also the vorticity, i.e. more vortices are stored and with 
greater speed. This can be used in devices, according to the vortex cur-
rent. However, there is a change in the case of the inclusion of currents, 
and it is due to the entry of the vortex outside the section established 
for their movement, because it exceeds the proximity energy barrier. In 
summary, in Table 1 we show the dependence of 𝐻1, 𝜒𝑚, and 𝑁 on 𝐽
for all the studied cases. It is always very interesting to look at the con-
figuration of the vortex for the system in the presence and absence of 
an external current, (Fig. 13, establishing that the interaction between 
the external current and the pinning effect is very strong. In Fig. 14, 
we show a dependence of the critical current on the area of a square 
central defect of area 𝐴 with 𝜏(𝑥, 𝑦) = 0.01. The best theoretical fit was 
𝐽𝑐 ≃ exp(0.697 + 0.006𝐴 − 1.792𝐴2), showing an exponential growth of 
the critical current with the pinning center area. These results are very 
important from an experimental viewpoint.

4. Conclusions

We have shown that with the aid of the deformation parameter 
𝜏(𝑥, 𝑦) and an external current 𝐽 applied in a mesoscopic superconduct-
ing square, there is an interesting pinning effect (vortex guide). It was 
shown that as 𝜏(𝑥, 𝑦) is included, there is a variation of the critical cur-
rent in which the first vortex penetrates the sample 𝐽𝑐 . Also, we have 
shown the effect of the defects and the transport current on the mag-
netization, magnetic susceptibility, vorticity, and magnetic field at the 
first vortex entry into the sample 𝐻1 and the density of the supercon-
ducting electrons. An analytical form of the critical current as a function 
of the area of the defect was found, 𝐽𝑐 ≃ exp(0.697 + 0.006𝐴 − 1.792𝐴2). 
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Fig. 10. Density of Cooper pairs at indicates 𝐻 with a) 𝐽 = 0.0 and b) 𝐽 = 2.95, for the case (c).
Fig. 11. Magnetization, for the system shown in Fig. 1(d).

Fig. 12. Magnetic susceptibility, for the system shown in Fig. 1(d).

This result is very important from an experimental viewpoint, and it 
points to possible technological applications.
5
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