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Whole-blood incubation with the Neisseria
meningitidis lpxL1 mutant induces less
pro-inflammatory cytokines than the
wild type, and IL-10 reduces the
MyD88-dependent cytokines
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Siebke Trøseid1, Petter Brandtzaeg1,2,3, Jens Petter Berg1,2,
Reidun Øvstebø1 and Carola Elisabeth Henriksson1,2

Abstract

Levels of bacterial LPS, pro-inflammatory cytokines and IL-10 are related to the severity of meningococcal septicaemia.

Patients infected with a Neisseria meninigitidis lpxL1 mutant (Nm-mutant) with penta-acylated lipid A present with a milder

meningococcal disease than those infected with hexa-acylated Nm wild type (Nm-wt). The aim was to compare the pro-

inflammatory responses after ex vivo incubation with the heat-inactivated Nm-wt or the Nm-mutant in citrated whole

blood, and the modulating effects of IL-10. Concomitantly, we measured intracellular IL-6, IL-8 and TNF-a to elucidate

which cell types were responsible for the pro-inflammatory responses. Incubation with Nm-wt (106/ml;107/ml;108/ml)

resulted in a dose-dependent increase of the MyD88-dependent pro-inflammatory cytokines (IL-1b, IL-6, IL-8, TNF-a),

which were mainly derived from monocytes. In comparison, only 108/ml of the Nm-mutant significantly increased the

concentration of these cytokines. The MyD88-independent cytokines (IP-10, RANTES) were evidently increased after

incubation with the Nm-wt but were unaffected by the Nm-mutant. Co-incubation with IL-10 significantly reduced the

concentrations of the MyD88-dependent cytokines induced by both the Nm-wt and the Nm-mutant, whereas the

MyD88-independent cytokines were almost unaffected. In summary, the Nm-mutant is a weaker inducer of the

MyD88-dependent/independent cytokines than the Nm-wt in whole blood, and IL-10 attenuates the Nm-stimulated

increase in MyD88-dependent pro-inflammatory cytokines.

Keywords

IL-10, Neisseria meningitidis, lpxL1, whole blood, MyD88, pro-inflammatory cytokines

Date received: 26 June 2017; revised: 27 November 2017; accepted: 29 November 2017

Introduction

Neisseria meningitidis (N. meningitidis) is a Gram-
negative diplococcus and the causative agent of world-
wide meningococcal meningitis and sepsis.1 The bac-
teria are carried asymptomatically in the nasopharynx
in approximately 10% of the world’s population, vary-
ing from 4–5% in infants to 20–24% in young adults to
7–8% in 50-yr-old adults.2,3 However, in rare occa-
sions, the bacteria pass the mucosal barrier and enter
the bloodstream. A high bacterial load in the circula-
tion is associated with an increased risk of developing
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shock, organ dysfunction, thrombus formation, bleed-
ing and, in many cases, death.4,5

The lipid A part of the lipopolysaccharides (LPS) in
the outer membrane of the N. meningitidis wild type
(wt) is a strong inducer of inflammation, and high
LPS levels in plasma from patients with meningococcal
sepsis are associated with an increased severity of the
disease and decreased survival.4–6 The severity of sys-
temic meningococcal sepsis also correlates to the
plasma concentrations of IL-10.7 IL-10 is a major
anti-inflammatory regulator of myeloid cells that are
activated by bacteria or LPS,8 and has been identified
as the single most important plasma component sup-
pressing the ability of monocytes to produce pro-
inflammatory cytokines and to induce pro-coagulant
activity.9 Therefore, IL-10 is a physiologic inhibitor
that may counterbalance many LPS responses.10

The cellular inflammatory response is initiated by
the soluble LPS binding protein that transfers an LPS
molecule to the membrane-bound CD14 receptor on
monocytes and macrophages.11 CD14 presents the
LPS molecule to the TLR4/myeloid differentiation pro-
tein-2 (MD-2) complex,12 which, in turn, activates the
MyD88-dependent and the MyD88-independent path-
ways. The activation of the MyD88-dependent pathway
results in rapid activation of NF-jB and MAPKs, and
the subsequent release of pro-inflammatory cytokines
like IL-1b, IL-6, IL-8 and TNF-a.13 LPS activate the
MyD88-dependent pathway, but other bacterial com-
ponents are also able to activate this pathway through
TLR2.14 However, only LPS, and not any other parts
of the outer membrane of N. meningitidis, are able to
activate the MyD88-independent pathway.13 Here, IFN
regulatory factor 3 is activated,15 which induces the
production of IFN-b and also a late-phase activation
of NF-jB and MAPKs.12 The IFN-b binds to the type
1 IFN-a/b receptor, which activates STAT1 and leads
to type 1 IFN-a/b, IFN-c-induced protein 10 (IP-10;
CXCL10) and regulated on activation, normal T cell
expressed and secreted (RANTES; CCL5).15

The lipid A part of LPS is essential for recognition
by the TLR4 receptor complex, and the acylation pat-
tern of lipid A determines, to a large part, the biological
activity of LPS. In N. meningitidis wt, the lipid A is
hexa-acylated. In the laboratory, a N. meningitidis
mutant has been made by insertional inactivation of
the lpxL1 gene, which is required for addition of a sec-
ondary acyl chain to the lipid A molecule.16 N. menin-
gitidis with a mutated lpxL1 gene has five, instead of
six, acyl chains in the lipid A moiety, and this mutant
activates human TLR4 less efficiently than the wt.13

The N. meningitidis lpxL1 mutant is also found natur-
ally occurring in patients, and compared with patients
infected with the wt meningococcus, these patients
appear to have a milder meningococcal disease with
less systemic inflammation and coagulopathy.13,17,18

Fransen et al. have previously shown that the

spontaneously occurring lpxL1 mutant induced low
levels of the pro-inflammatory cytokines IL-6, TNF-a
and IL-1b in peripheral blood mononuclear cells
(PBMCs).13 The effect of the lpxL1 mutant on the
pro-inflammatory response has also been studied
using human cell lines19,20 or cell lines originated
from rodents.21,22 However, to our knowledge, the
effect of the N. meningitidis lpxL1 mutant on the pro-
inflammatory response in human whole blood has not
yet been studied. Ex vivo incubation in whole blood is
an experimental model closer to the in vivo environment
than in vitro incubation of isolated cells,23 and whole
blood contains soluble factors that may influence cyto-
kine release.24

In this study, the aim was to compare the pro-
inflammatory responses, and the modulating effects of
recombinant human IL-10 (rhIL-10), in citrated whole
blood after ex vivo incubation with heat-inactivated N.
meningitidis wt or heat-inactivated N. meninigitidis
lpxL1 mutant. In addition to plasma cytokine levels,
intracellular cytokine levels were measured to elucidate
which cell types were responsible for the inflammatory
responses.

Material and methods

Ethics statement

The project was approved by the Regional Committee
for Medical Research Ethics, South-Eastern Norway
Regional Health Authority (2011/1413).

Materials

Stock solution (10mg/ml) of rhIL-10 (R&D Systems,
Abingdon, UK) was reconstituted in Tris-NaCl
buffer (TBS; Sigma, St Louis, MO, USA). Brefeldin
A (10mg/ml) was purchased from Sigma Aldrich
(Oslo, Norway). The monoclonal antibodies (abs)
anti-CD45 fluorescein isothiocyanate (FITC) (clone
J33), anti-CD3-phycoerythrin-cyanine 7 (PE-Cy7)
(clone UCHT1), anti-CD14-allophycocyanin (APC)
(clone RMO52), anti-TNF-a phycoerythrin (PE)
(clone IPM2) and the PerFix-nc kit used for intracellu-
lar staining were purchased from Beckman Coulter
(Indianapolis, IN, USA). Anti-IL-6 PE abs (clone
MQ2-13A5) and anti-IL-8 PE abs (clone B-K8) were
purchased from Nordic Biosite (Oslo, Norway).

The N. meningitidis wt and the N. meningitidis
lpxL1 mutant

N. meningitidis strain H44/76 is a serogroup B
(B:15:P1.7,16 with immunotype L,3,7,9) reference
strain initially isolated from a Norwegian patient with
lethal meningococcal septicaemia.25 The N. meningitidis
wt has six acyl chains in the lipid A portion of the LPS
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molecule (hexa-acylated), whereas the lpxL1 mutant
has five acyl chains (penta-acylated). The N. meningiti-
dis lpxL1 mutant was obtained by insertional inactiva-
tion of the lpxL1 gene in the N. meningitidis strain
(H44/76), and kindly provided by Arie van der Ende
(Academic Medical Centre, Amsterdam, the
Netherlands) and Peter van der Ley (National
Institute of Public Health and Environment,
Bilthoven, the Netherlands) to the National Institute
of Public Health, Oslo, Norway, for research purposes.
It has previously been reported that the N. meningitidis
lpxL1 mutant makes normal amounts of LPS and,
compared with the wt, it is only the lipid A part that
is altered.16,26 It has also been shown that the labora-
tory-engineered lpxL1mutant has an identical ability to
induce pro-inflammatory cytokines compared with
similar strains isolated from patients.13 The meningo-
cocci were grown and heat-inactivated (56�C, 30min)
as previously described.13,27 To quantify the number of
N. meningitidis (either wt or lpxL1), bacterial DNA was
isolated with the MagNA Pure LC DNA isolation Kit I
(Roche Diagnostics, Mannheim, Germany) and the
DNA copy number, equivalent to the number of bac-
teria, was estimated by spectroscopic measurements at
260 nm (NanoDrop ND-1000; NanoDrop
Technologies, Wilmington, DE, USA) combined with
a genome calculator (http://cels.uri.edu/gsc/cndna.
html) using a N. meningitidis genome size of 2,272,351
base pairs.28

Incubation of the N. meningitidis wt and the N.
meningitidis lpxL1 mutant in citrated whole blood

After signed consent was obtained, whole blood from
healthy volunteers was drawn into 3.5ml citrate tubes
(Vacuette 3.5ml; Greiner Bio One Gmbh,
Kremsmünster, Austria), and the first tube was dis-
carded. Whole blood was immediately incubated with
heat-inactivated N. meningitidis wt, N. meningitidis
lpxL1 mutant (both 107/ml) or vehicle (TBS) [37�C,
12 rpm Hulamixer (Invitrogen Dynal AS, Oslo
Norway)].

To determine the optimal time point to measure pro-
inflammatory cytokines, whole blood from four donors
was centrifuged [2500 g, 15min at room temperature
(RT)] after 0, 4, 6 and 12 h, and plasma was collected
for measurements of cytokines.

After these initial experiments, an incubation period
of 4 h was chosen, and whole blood from six donors
was incubated with increasing concentrations of N.
meningitidis wt or N. meningitidis lpxL1 mutant (106/
ml, 107/ml or 108/ml). In some cases, rhIL-10 (25 ng/ml)
or vehicle (TBS) was added to whole blood 15min prior
to the addition of the bacteria. Similar IL-10 concen-
trations have previously been used in in vitro studies,29

and have also been observed in patients with severe
fulminant meningococcal sepsis.30

Quantification of cytokines in plasma

Citrated whole blood was prepared by centrifugation at
2500 g for 15min at RT. Then, 1ml plasma was col-
lected in a 1.5-ml Eppendorf tube and centrifuged at
10,000 g for 10min at 4�C. The top supernatant (800 ml)
was collected prior to freezing, and stored at –80�C.
Measurements of cytokines were performed using a
microsphere-based multiplexing bioassay system with
Xmap technology (Austin, TX, USA) with a Luminex
IS 100 instrument (Bio-Rad, Hercules, CA, USA), pow-
ered with the Bio-Plex manager Software version 6.0
(build 617). The anti-inflammatory cytokine IL-10,
the MyD88-dependent cytokines IL-1b, IL-6, IL-8
and TNF-a,13 and the MyD88-independent cytokines
IP-10 and RANTES,15 were measured (Bio-Rad, Oslo,
Norway) in duplicates.

The intracellular cytokine expression
of different cell types

To determine which cell type expresses IL-6, IL-8 and
TNF-a, whole blood from eight healthy volunteers was
pre-incubated with Brefeldin A (10mg/ml) for 15min.
Brefeldin A inhibits the release of cytokines by blocking
the transport of proteins from the endoplasmic reticu-
lum to the Golgi apparatus. Whole-blood samples were
stimulated with either N. meningitidis wt (108/ml),
N. meningitidis lpxL1 mutant (108/ml) or vehicle for
4 h. In order to perform intra- and extracellular staining
of the white blood cells (WBCs), the low fixation pro-
cedure of the PerFix-nc kit was performed to fix and
permeabilize cells, as well as to lyse the red blood cells.
The cells were stained with the following final concen-
trations: 8.3 ng/ml anti-CD45 abs, 40 ng/ml anti-CD3
abs and 5.0 ng/ml anti-CD14 abs. The intracellular
staining was performed with either 8.3 ng/ml of anti-
IL-6 abs, 4.2 ng/ml of anti-IL-8 abs or 5 ng/ml of
anti-TNF-a abs. All abs were titrated prior to analysis.
Cells were stained for 30min sheltered from light, and
then washed with 3ml of the final 1� reagent (Perfix-nc
kit buffer 3). After washing, the cells were pelleted by
centrifugation at 500 g (5min), the supernatant
removed, and the cells re-suspended in 300 ml final
1� reagent. Samples were analysed on a Accuri C6
(Becton Dickinson, San Jose, CA, USA). The intracel-
lular expression of IL-6, IL-8 and TNF-a was presented
as PE median fluorescence intensity (MFI). For the
three intracellular cytokines, the delta MFI (DMFI)
was calculated as: MFI of cells (incubated with N.
meningitidis wt or N. meningitidis lpxL1 mutant) –
MFI of cells (incubated with vehicle only).

Statistical analysis

Data are presented as median (range) throughout.
The non-parametric Friedman test without correc-
tion for multiple comparisons (GraphPad Prism
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version 7.02; GraphPad, La Jolla, CA, USA) was used
to statistically test the differences in cytokine expression
and release between vehicle and N. meningitidis wt and
between vehicle and N. meningitidis lpxL1 mutant.
Comparisons of medians were also performed between
the N. meningitidis wt and the N. meningitidis lpxL1
mutant and between the presence and absence of rhIL-
10. For these comparisons we used the non-parametric
Wilcoxon rank sum test. To compare the levels of intra-
cellular cytokines between different types of cells (mono-
cytes, granulocytes and lymphocytes), we calculated the
DMFI (both after incubation with theN. meningitidis wt
and the N. meningitidis lpxL1 mutant) and performed a
non-parametric Kruskal–Wallis test. P< 0.05 was con-
sidered statistically significant.

Results

The time course of cytokine plasma levels after
incubation with the N. meningitidis wt or the
N. meningitidis lpxL1 mutant

After incubation with the N. meningitidis wt, compared
with vehicle, the plasma levels of the MyD88-dependent
cytokines IL-1b, IL-6, IL-8 and TNF-a were signifi-
cantly increased at 2 h, peaked at 6 h and remained at
a high level also at 12 h (Figure 1a–d, red and black
lines; P< 0.05). After incubation with the N. meningi-
tidis lpxL1 mutant, only IL-1b was significantly
increased compared with vehicle, and only at 12 h
(Figure 1a–d, blue and black lines). All cytokines
peaked/almost peaked at 4–6 h (Figure 1a–d),

After incubation with the N. meningitidis wt, com-
pared with vehicle, the MyD88-independent cytokines
IP-10 and RANTES significantly increased at 2 h and
peaked at 4 h (Figure 1e and f, red and black lines;
P< 0.05). IP-10 remained at the same level at 6 and
12 h, whereas the level of RANTES decreased and
was similar to vehicle only, at these time points. After
incubation with the N. meningitidis lpxL1 mutant, the
plasma levels of IP-10 and RANTES remained low
between 0 to 12 h, similar to the levels observed for
vehicle only (Figure 1e and f, blue and black lines).

After incubation with the N. meningitidis wt, IL-10
was significantly increased at 12 h compared with vehi-
cle only, but not at the other time-points (Figure 1g, red
and black lines). Compared with incubation with vehi-
cle only, IL-10 was not increased after incubation with
the N. meningitidis lpxL1 mutant at any time-point
(Figure 1g, blue and black lines).

The cytokine plasma levels after incubation with the
N. meningitidis wt or the N. meningitidis lpxL1
mutant in increasing concentrations

After incubation with 106/ml, 107/ml and 108/ml of the
N. meningitidis wt, the MyD88-dependent cytokines

IL-1b, IL-6, IL-8 and TNF-a were significantly
increased compared with vehicle only (Figure 2a–d;
P< 0.05).

With the N. meningitidis lpxL1 mutant, only the
108/ml concentration induced significant differences in
the plasma levels of the MyD88-dependent cytokines,
compared with vehicle only, and IL-8 was the only
cytokine that reached the same level as after incubation
with the N. meningitidis wt, with concentrations of
[1015 (853–3054)] and [1545 (1128–2350)] pg/ml,
respectively (Figure 2a–d; P< 0.05).

After incubation with the N. meningitidis wt (106/ml,
107/ml and 108/ml), the MyD88-independent cytokines
IP-10 and RANTES, were significantly increased com-
pared with vehicle only (Figure 2e and f; P< 0.05).

After incubation with the N. meningitidis lpxL1
mutant (106/ml, 107/ml and 108/ml), the levels of IP-
10 and RANTES were not significantly increased com-
pared with vehicle only and IP-10 and RANTES never
reached the same levels as after incubation with the N.
meningitidis wt (Figure 2e and f; P> 0.05).

After incubation with the N. meningitidis wt (107/ml
and 108/ml), IL-10 was significantly increased com-
pared with vehicle only (Figure 2g; P< 0.05).

After incubation with the N. meningitidis lpxL1
mutant, IL-10 was only significantly increased at
108/ml compared with vehicle only (Figure 2g;
P< 0.05).

After incubation with the N. meningitidis lpxL1
mutant at 107/ml and 108/ml, IL-10 reached the same
level as after incubation with N. meningitidis wt.

The intracellular cytokine expression of
different cell types after whole blood incubation
with the N. meningitidis wt or the N. meningitidis
lpxL1 mutant

To determine which cell type expresses IL-6, IL-8 and
TNF-a, whole blood was pre-incubated with Brefeldin
A prior to the addition of N. meningitidis wt or lpxL1
mutant (both 108/ml). Subsequently, whole blood was
subjected to flow cytometry analysis (Figure 3a). The
WBCs (gate I) were separated from erythrocytes in a
CD45/side scatter (SSC) dot plot and the WBCs (gate
I) were further displayed in a CD3/SSC dot plot with
the CD3+ lymphocytes in gate III. The CD3–cells in
the CD3/SSC dot plot (gate II) were then further ana-
lysed in a CD14/SSC dot plot. Monocytes were
selected as CD14+ (gate V), and granulocytes as
CD14– cells with high SSC (gate IV). Representative
overlay histograms of IL-6, IL-8 and TNF-a for
monocytes, lymphocytes and granulocytes are shown
(Figure 3a). The intracellular expression of IL-6, IL-8
and TNF-a was measured as PE MFI. CD14+ mono-
cytes showed significantly increased intracellular con-
centrations of IL-6, IL-8 and TNF-a after incubation
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with either the N. meningitidis wt or the
N. meningitidis lpxL1 mutant compared with vehicle
only (Figure 3b; P< 0.05). Granulocytes showed sig-
nificantly increased intracellular concentrations of
IL-6, IL-8 and TNF-a after incubation with the
N. meningitidis wt, and increased IL-8 after incubation

with the N. meningitidis lpxL1 mutant, compared with
vehicle only (Figure 3b; P< 0.05). In contrast, CD3+

lymphocytes did not show any significant increase in
intracellular IL-6, IL-8 or TNF-a, neither after incu-
bation with the N. meningitidis wt nor with the
N. meningitidis lpxL1 mutant, compared with vehicle
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only. The remaining cells, i.e. all cells that did not
appear within the gates of the three selected popula-
tions, were not positive for IL-6, IL-8 or TNF-a (data
not shown).

The intracellular levels of IL-6 and TNF-a were
also significantly higher in monocytes incubated
with N. meningitidis wt compared with the N. menin-
gitidis lpxL1 mutant, but, in contrast, the cytokine
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IL-8 had the same level with both bacteria. DMFI
was calculated and the DMFI of IL-6, IL-8 and
TNF-a were all significantly higher in monocytes com-
pared with granulocytes and compared with

lymphocytes in whole blood incubated with either
N. meningitidis wt or the N. meningitidis lpxL1
mutant (data not shown in figure) (Kruskal–Wallis
test, P< 0.05).
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Figure 3. Intracellular cytokine levels in different cell types. Whole blood from eight donors was incubated for 4 h with N.

meningitidis wt (108/ml), N. meningitidis lpxL1mutant (lpxL1) (108/ml) or vehicle (no bacteria), and flow cytometry measurements of

intracellular cytokines performed. In (a) the gating strategy used to identify the different types of WBCs is shown. WBCs are shown in

gate I, CD3+ lymphocytes in gate III, granulocytes in gate IV and CD14+ monocytes in gate V. The cytokine fluorescence intensity (FI)

levels of IL-6, IL-8 and TNF-a for monocytes, lymphocytes and granulocytes are displayed in overlay histograms of one representative

donor, with lines in black (vehicle), red (108/ml N. meningitidis wt) and blue (108/ml N. meningitidis lpxL1 mutant). In (b) intracellular

levels of IL-6, IL-8 and TNF-a in monocytes, lymphocytes and granulocytes are presented as median (range) of MFI. *(Top of charts)

indicates significant differences in intracellular cytokine MFI between the wt and vehicle or between the lpxL1 mutant and vehicle

(P< 0.05). *(Below charts) indicates significant differences between the wt and the lpxL1 mutant (P< 0.05).

ns: non-significant differences.
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The cytokine plasma levels after incubation with the
N. meningitidis wt or the N. meningitidis lpxL1
mutant in the absence and presence of rhIL-10

The inhibitory effect of rhIL-10 on cytokine production
was measured in plasma obtained from whole blood
after 4 h incubation with increasing concentrations of
N. meningitidis wt, N. meningitidis lpxL1 mutant or
vehicle, and only data from 108/ml are presented in
Table 1.

After incubation with the N. meningitidis wt, the
plasma levels of the MyD88-dependent cytokines IL-
1b, Il-6, IL-8 and TNF-a were significantly reduced
by the presence of rhIL-10 with the following fold
reductions: 62.1 (IL-1b), 7.9 (IL-6), 6.0 (IL-8) and
24.5 (TNF-a) (Table 1; P< 0.05).

Also, after incubation with the N. meningitidis lpxL1
mutant, the release of the MyD88-dependent cytokines
in whole blood was significantly reduced in the presence
of rhIL-10, with fold reductions of 67.8 (IL-1b), 36.1
(IL-6), 8.5 (IL-8) and 84.8 (TNF-a) (Table 1; P< 0.05).

After incubation with the N. meningitidis wt, the
levels of the MyD88-independent cytokines IP-10 and
RANTES only showed a modest fold reduction of 1.7
and 1.1, respectively (only IP-10 was significantly
decreased), in the presence of rh-IL10.

After incubation with the N. meningitidis lpxL1
mutant in the presence of rhIL-10, IP-10 and
RANTES were not significantly reduced with fold
reductions of only 0.9 (IP-10) and 2.9 (RANTES).

Discussion

Ex vivo incubation of N. meningitidis wt in citrated
whole blood resulted in a dose-dependent increase of
the MyD88-dependent cytokines IL-1b, IL-6, IL-8 and
TNF-a. In contrast, only the highest concentration of
the N. meningitidis lpxL1 mutant (108/ml) was able to
significantly increase the plasma levels of the MyD88-
dependent cytokines. At this concentration, the lpxL1
mutant induced the same IL-8 level as found for the wt,
but for IL-1b, IL-6 and TNF-a the levels were signifi-
cantly lower. These data are in accordance with previ-
ous publications where the N. meningitidis lpxL1
mutant bacterium has been shown to have a reduced
capacity to induce TLR-4 mediated NF-jB activation
and cytokine production in human PBMCs and cell
lines as compared with the N. meningitidis wt.13,21

Fransen et al. concluded that the discrepancy in the
concentrations of MyD88-dependent cytokines induced
by the wt and the lpxL1 mutant was only present at a
low concentration of bacteria.13 However, we found
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that in whole blood, the lpxL1 mutant was a
weaker inducer of all cytokines even at high concentra-
tions (except for IL-8). Whole blood contains
soluble factors that may influence cytokine release,24

and we do not know if the observed discrepancy in
the levels of MyD88-dependent cytokines between
the wt and the lpxL1 mutant would have disappeared
at higher bacteria concentrations than 108/ml.
However, concentrations of 106/ml–108/ml for the N.
meningitidis wt or the lpxL1 mutant are clinically rele-
vant concentrations found in patients with meningo-
coccal sepsis.27,31

We observed that both the extracellular and intra-
cellular level of IL-8 was similar after addition of 108/
ml N. meningitidis wt and 108/ml N. meningitidis lpxL1
mutant (but not for 107/ml bacteria). It is interesting
that the monocytes were able to express IL-8, an
important signalling molecule for recruitment of other
immune cells, in a less LPS-dependent manner. In a
lepirudin-anticoagulated human whole-blood model,
Hellerud et al. compared the levels of IL-8 after incuba-
tion (for 2 h) with a N. meningitidis wt or a lpxA-mutant
(LPS deficient),32 and in agreement with our study they
also found similar IL-8 levels at high bacterial concen-
trations (108/ml). The similar levels of IL-8 in plasma
after stimulation with either the N. meningitidis wt or
the N. meningitidis lpxL1 mutant may suggest that
other components than LPS may favour the expression
of IL-8, and less for IL-1b, IL-6 and TNF-a. Hellerud
et al. suggested that the production of IL-8 is more
dependent on complement than IL-6 and TNF-a.32,33

To study complement activation, lepirudin is the pre-
ferred anticoagulant in the tube. The use of citrated
whole blood in our study is not optimal for activation
of complement, but we cannot exclude that also in our

study the IL-8 expression was more dependent on the
activation of complement than of LPS.

Mollnes et al. have systematically examined to what
extent time and temperature influence the degree of in
vitro complement activation in plasma anticoagulated
with heparin, citrate and EDTA.34 The authors showed
that EDTA inhibited C3 and terminal complement acti-
vation in plasma more efficiently than citrate and hep-
arin, but increasing the temperature to 37�C in vitro
overcame inhibitory effects present in EDTA plasma
but even more in citrated plasma. We incubated
citrated whole blood for 4 h at 37�C, which therefore
are conditions that probably will allow activation of the
complement system to some degree.

To our knowledge, measurements of theMyD88-inde-
pendent cytokines (IP-10 and RANTES) have not previ-
ously been performed in human PBMCs, cell lines or
whole blood after incubation with the N. meningitidis
lpxL1 mutant. However, after incubation with purified
penta-acylated lipid A, extracted from theN. meningitidis
lpxL1 mutant, in concentrations ranging from 0.1 pg/ml
to 1ng/ml, Pupo et al. did not find an increase in IP-10 in
the culture supernatant obtained from a human mono-
cyte macrophage cell line (MM6).20 In accordance with
these results, we found that the N. meningitidis lpxL1
mutant with penta-acylated lipid A did not significantly
induce the MyD88-independent cytokines IP-10 and
RANTES, not even after incubationwith the highest con-
centration (108/ml).

In the present study we found that the monocytes
were the main producers of IL-6, IL-8 and TNF-a in
whole blood, and incubation with the N. meningitidis
wt gave significantly higher intracellular levels of IL-6
and TNF-a (but not IL-8) than incubation with the
N. meningitidis lpxL1 mutant. Our findings that the

Table 1. The effect of rhIL-10 on the MyD88-dependent and -independent cytokines.

IL-1b IL-6 IL-8 TNF-a IP-10 RANTES

Vehicle (no bacteria) 0 0 0 0 515 773

(0–0) (0–0) (0–0) (0–179) (274–855) (405–6943)

N. meningitidis wt 3790

(2666–6654)

7945

(6317–11,481)

1545

(1128–2350)

25,929

(5377–34,772)

1769

(1152–5555)

5601

(4615–7871)

N. meningitidis wt +

rhIL-10 (25 ng/ml)

61

(36–172)

1011

(862–2029)

256

(173–355)

1060

(332–2773)

1031

(617–2040)

5062

(1388–6900)

Fold reduction 62.1* 7.9* 6.0* 24.5* 1.7* 1.1ns

N. meningitidis lpxL1 mutant 407

(245–2015)

3214

(1947–8956)

1015

(853–3053)

5766

(1155–15,816)

583

(482–1169)

3443

(776–7576)

N. meningitidis lpxL1 mutant +

rhIL-10 (25 ng/ml)

6

(0–30)

89

(37–513)

119

(63–246)

68

(23–567)

663

(388–1425)

1171

(1057–6718)

Fold reduction 67.8* 36.1* 8.5* 84.8* 0.9ns 2.9ns

Whole blood from six donors was incubated for 4 h with N. meningitidis wt (108/ml), N. meningitidis lpxL1mutant (108/ml) or vehicle, in the absence or

presence of recombinant IL-10 (rhIL-10), plasma collected, and measurements of cytokines performed. The concentrations [median (range)] (pg/ml) of

the cytokines, and fold reduction between� rhIL-10 are shown. *Indicates significant differences in cytokine levels with and without rhIL-10 in whole

blood incubated with either the N. meningitidis wt, or the N. meningitidis lpxL1 mutant (P< 0.05).

ns: non-significant differences.
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monocyte is a key orchestrator of LPS responsiveness
are in accordance with a study by Sabroe et al.35

The authors examined the expression of TLR2, TLR4
and CD14, and found that the monocytes expressed
relatively high levels of cell surface TLR2, TLR4 and
CD14, whereas neutrophils expressed all three mol-
ecules at low levels.35 A quantitative cell-surface
CD14 antigen study by Antal-Szalmast et al. showed
that the neutrophils expressed 30 times fewer CD14
copies on the surface compared with the monocytes.36

CD14 plays a crucial part in introducing the LPS mol-
ecules to the TLR4/MD-2 complex and it is possible
that a different expression of CD14 on the surface of
monocytes and neutrophils may explain the different
concentrations of intracellular IL-6 and TNF-a, and
possibly for IL-8.

In our study, we observed a great donor to donor vari-
ation in the levels of all the pro-inflammatory cytokines
released in whole blood stimulated with either the N.
meningitidis wt or the N. meningitidis lpxL1 mutant.
This phenomenon has been described by others,37 and
the variation may reflect the individual biological diver-
sity in response to bacterial invasion. Netea et al. have
proposed that patients may develop systemic meningo-
coccal septicaemia due to innate moderate production
of pro-inflammatory cytokines (low responder) that
allows uncontrolled growth of bacteria.38 This is sup-
ported byWestendorp et al. who showed that individuals
with a low production of TNF-a and a high production of
IL-10were at risk of developing fulminantmeningococcal
septicaemia because they were more susceptible to the
development of a large bacterial burden.39

In our study, the presence of rhIL-10 significantly
reduced the concentrations of the MyD88-dependent
cytokines (IL-1b, IL-6, IL-8 and TNF-a) when whole
blood was either stimulated with the N. meningitidis wt
or the lpxL1 mutant. However, the presence of rh-IL10
did almost not affect the cytokine levels of the MyD88-
independent pathway (IP-10 and RANTES). Our
results in whole blood are in accordance with Chang
et al.,40 who demonstrated that IL-10 inhibited the
MyD88-dependent signalling mechanisms and cytokine
release in dendritic cells. They also showed that IL-10
did not exert any inhibition on the MyD88-independent
signalling pathway proteins.40 IL-10 is identified as the
single most important plasma component suppressing
the ability of monocytes to produce pro-inflammatory
cytokines and to induce monocyte-associated pro-
coagulant activity.9 However, it is clear that despite
elevated levels of IL-10, sepsis often progress rapidly
leading to multiple organ failure and death within
24 h. Evidently, the high anti-inflammatory level in
sepsis patients is not sufficient to prevent uncontrolled
pro-inflammatory activation. In our study, the median
plasma levels of IL-10 after incubation with N. menin-
gitidis wt (107/ml) for 12 h was moderate, with a median
(range) concentration of 0.642 (0.144–0.784) ng/ml.

This is in strong contrast to Lehmann et al.,30 who
observed 15 patients with meningococcal shock where
the mean (range) level of IL-10 was much higher; 21.2
(0.25–64.5) ng/ml. The modest levels of IL-10 reached
in our whole-blood model, may suggest that circulating
IL-10 in meningococcal patients may derive from
sources other than WBCs, such as lung, liver and
spleen tissues.41,42

Taken together, in this study we evaluated the pro-
inflammatory response of the N. meningitidis wt and the
lpxL1 mutant, with and without the presence of rhIL-
10, in an ex vivo citrated whole blood model, i.e. an
experimental model closer to the in vivo environment
than the in vitro incubation of isolated cells.23,24

We demonstrated that after incubation of whole
blood with low doses of the N. meningitidis lpxL1
mutant, the induction of both the MyD88-dependent
and -independent pro-inflammatory cytokines were
reduced or absent. Higher concentrations of the N.
meningitidis lpxL1 mutant were required to obtain sig-
nificant levels of the MyD88-dependent cytokines; IL-
1b, IL-6, IL-8 and TNF-a, but the MyD88-independent
cytokines IP-10 and RANTES were not significantly
increased.

We also showed that co-incubation of rhIL-10 with
N. meningitidis with hexa- or penta-acylated LPS lipid
A reduced the MyD88-dependent cytokines, but the
MyD88-independent cytokine release was rather unaf-
fected. In conclusion, the ex vivo whole-blood cytokine
release assay contributes to a better understanding
of the pro-inflammatory responses exerted by
hexa- and penta-acylated LPS components of the
N. meningitidis bacteria, and also the major regulatory
role of IL-10.
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