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Abstract

We propose an effective deep learning model to denoise scanning transmission electron microscopy (STEM) image
series, named Noise2Atom, to map images from a source domain &S to a target domain C, where § is for our noisy
experimental dataset, and C is for the desired clear atomic images. Noise2Atom uses two external networks to apply
additional constraints from the domain knowledge. This model requires no signal prior, no noise model estimation,
and no paired training images. The only assumption is that the inputs are acquired with identical experimental
configurations. To evaluate the restoration performance of our model, as it is impossible to obtain ground truth for our
experimental dataset, we propose consecutive structural similarity (CSS) for image quality assessment, based on the
fact that the structures remain much the same as the previous frame(s) within small scan intervals. We demonstrate the
superiority of our model by providing evaluation in terms of CSS and visual quality on different experimental datasets.
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Introduction

Deep neural network denoising techniques have drawn a
lot of attention(Kokkinos and Lefkimmiatis 2019; Zhang
et al. 2018; Chang et al. 2019; Song et al. 2019; Lin et al.
2019; Lehtinen et al. 2018; Buchholz et al. 2019b; Zhang et
al. 2019; Buchholz et al. 2019a; Guo et al. 2018; Kadime-
setty et al. 2018; Liu et al. 2018; Mildenhall et al. 2018;
Ran et al. 2019; Su et al. 2019; Xie et al. 2018) as they
have significant impacts in addressing several drawbacks
in conventional analytical methods (Lucas et al. 2018)
such as (1) computation burden in the testing phase, i.e.,
an analytical method requires to resolve an optimization
problem for every input, which is computationally ineffi-
cient, and (2) difficulties in setting up hyper-parameters
to incorporate prior or domain knowledge. Deep Convo-
lutional Neural Networks (DCNNs) are the default mod-
els of the choice when working with highly structured

*Correspondence: Feng.Wang@empa.ch
Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials
Science and Technology, Uberlandstr. 129, CH-8600 Dibendorf, Switzerland

@ Springer Open

datasets such as images and videos, as DCNNs are (1)
more computationally efficient than multilayer percep-
tron models featuring fewer parameters, and (2) take the
advantages of the structured datasets such as translation
invariance and locality.

While most of the DCNN models are trained using pairs
of noisy and clean images, some of the recent methods,
such as Noise2Void (Krull et al. 2019a), Noise2Self (Bat-
son and Royer 2019) can be unsupervised, but at a price of
degraded performance (Krull et al. 2019b). Noiser2Noise
(Moran et al. 2020), probabilistic Noise2Void (Krull et al.
2019b) and parametric probabilistic Noise2Void (Prakash
et al. 2020) (PPN2V) improve the performance by intro-
ducing estimated noise models.

With a typical dwell time of 107 s and down to less than
10 electrons per pixel, a modern scanning transmission
electron microscopy (STEM) optimized for low-dose fast
dynamic imaging produces very noisy images, often con-
taining more noise than signal, as a result of high frames
per second (fps) and the need to limit the radiation dose
(Henninen et al. 2019). For training on such data, there
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do not exist any ground truth images. As modern electron
microscopy experiments often target on studying com-
plex dynamic systems of moving atoms (Cao et al. 2018;
Henninen et al. 2019), it can be difficult to generate simu-
lated images suitable as a ground truth. Therefore it is not
feasible to denoise these images directly with supervised
models. Furthermore, because of its inner complexity in
data degradation, i.e., a simple additive white noise model
does not comply (Wang et al. 2020), noise model based
approaches are difficult.

Our approach assumes an underlying relationship
between the clean atomic images and the noisy high-
angle annular dark-field (HAADF) STEM images for our
model to learn: for a bright area, there is a high pos-
sibility of the presence of atom(s), and for a dim area,
there might only be the background. This relationship
holds for our case when studying small metal atoms
and clusters on lighter support films. Although we lack
paired noisy-clean images, we can still train our model
using Cycle-Consistent Adversarial Networks (Zhu et al.
2017). Moreover, we can apply an additional constraint to
improve the restoration quality: a good model should give
Gaussian-like shapes for atomic peaks(Dwyer et al. 2010).
Our main contributions are:

1 demonstrating how to integrate domain-specific
information with a Generative Adversarial Network
(GAN) and a customized convolutional network
extracting low-frequency features in a denoising
application,

2 showing how to restore images using a cycle training
strategy without knowing the signal prior and thus is
free of noise models, and

3 proposing a quantitative metric for the image time
series restoration where the ground truth does not
exist.

Methods
Our goal is to train a deep convolutional neural network
translating the images in the domain S to another domain
C, where S is for the experimental noisy STEM images
with training samples {si}f\[ € &, and C is for the expected
atomic images composed of pure Gaussian peaks with
simulated samples {ci}fw € C. Our model includes two
mappings Mg : S — C and Mcys : C — S. In addition,
we introduce an adversarial discriminator D to distin-
guish between images {c} and translated images Mg (s),
an additional mapping My, translating noisy images from
domain S to domain B, where B is for the slowly vary-
ing background of the noisy images, and a mapping Mgy}, :
S —>B.

In our denoising application, we just need the model
Mg to translate the noisy images from domain S to
domain C. As there are no paired training images available,
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we cannot train this model in an end-to-end fashion. To
make the training feasible, we employ the cycle training
scheme by introducing a second model Mcys. With this
additional model, we can train model Mgy by training

1 the composed model Mgy © Mo by mapping noisy
images to noisy images, and

2 the composed model M¢s o Mgy by mapping clear
images to clear images.

The objective of our model contains three terms:

1 an adversarial loss for matching the distributions of
the denoised images to the data distributions of the
simulated atomic images,

2 a cycle consistency loss to prevent the learned
composed mapping Mg 0 Mcys from contradicting
to the original, which is inspired by CycleGan (Zhu et
al. 2017), Dualgan (Yi et al. 2017) and DiscoGan (Kim
et al. 2017), and

3 alow-frequency cycle loss to keep the learned
composed mapping Mgp 0 Mcas 0 Mgy staying
consistent with the low-frequency components.

Adversarial loss

We apply adversarial loss to mapping M. For this map-
ping and its adversarial D, with a batch of training samples
s € S and ¢ € C, the objective contains two adversarial
losses and a gradient penalty loss

Lgan = W(=1,D(s))+ W (1, D(Ms2c(s)) +2xG(s), (1)

in which W is the Wasserstein loss function(Arjovsky et
al. 2017; Wu et al. 2018), and in our implementation

Wx,y) =E[xOyl, (2)

where G is the gradient penalty loss function, for a single
sample s; € s, with the prediction of x; = Mgy (s;) and the
random weighted sample y; = R(s;, x;). The penalty loss
for these samples is

G(s) =11 — /> @i/ 3y | (3)

in which R is the randomized weighting function with a
uniform random tensor « in range [0, 1]

Rx,y)=uOx+(1—-u) Oy, (4)

and G is an average over the training batch size b;

b '
=G (si
G(s) = M, (5)
by
A = 10 controls the gradient penalty strength, © denotes
elementwise multiplication and E denotes the mean of the
elements.
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Cycle consistency loss

We expect the clean images translated to domain S with
Mcys could be translated back to the domain C with
M;y, without changing any of the contents. To apply this
constraint, we use the cycle consistency loss

»Ccycle = Ellc — Mg (Mcs(0)) |- (6)

Low-Frequency cycle loss

We realize that the noises in the experimental images are
typically random discrete bright and dark pixels, therefore
we relax My by comparing the low-frequency features of
its outputs with the inputs, instead of enforcing exactly the
pixel-wise matching. We express this objective as

Lite = E||[Mgp (s) — Mgap (Mcas(Mgac ()|l (7)

in which Mg}, is manually designed with precalculated
Gaussian filters.

Full objective
The full objective is
Ly = Ol»cgan + ,Bﬁcycle + Life, 8)

in which the constants « = 5 and 8 = 1 control the rel-
ative weights of the three losses. Finally, we aim to solve

M}, . = arg min max Ln2,. 9)
M6251MSZC

Implementation details
Datasets. There are two types of images:

1 Simulated clean atomic images: the images in domain
C. We simulated 32768 clean images. First, we
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randomly sampled 75-150 atomic positions in a 2D
256 x 256 pixel lattice. Then, we randomly assigned
1-4 atoms to each of the positions. Afterward, we
generated a 33 x 33 pixel 2D Gaussian kernel with a
random variance in the range [ 1.0, 10.0]. Then, this
kernel was convolved with the 2D lattice, and the
128 x 128 pixels from the center of the image was
cropped as our simulated clean image.

2 Experimental STEM images: the images in domain
S. We tested our approach on three experimental
movies of dynamic atomic clusters of Pt on a carbon
film (Henninen et al. 2019, 2020). This data was
recorded at 150 fps with 128 x 128 pixels, 15 fps with
512 x 512 pixels and 5 fps with 1024 x 1024 pixels,
with an electron dose in the range [ 10, 100] eA 2571
using a FEI Titan Themis, operated at 300 kV.

Network Architectures. We design Mgy and Mcys as
two identical U-Nets (Ronneberger et al. 2015) of depth 3
with Xception modules (Chollet 2017) using kernel sizes
{1,3,5,7}, deep residual blocks (He et al. 2016) of 16,
instance normalization (Ulyanov et al. 2016) followed by
leaky relu activation, except a tanh activation function at
the last layer. For upsampling, we use a transposed convo-
lution with a stride of 2 and a kernel size of 4 x 4, followed
by a convolution with a kernel size of 3 x 3. For downsam-
pling, we use transpose convolution with a kernel size of
3 x 3, followed by a convolution with a stride of 2 and a
kernel size of 3 x 3. There are no zero-paddings applied
to the convolution and transpose convolution operations.
These two models aim at translating noisy images to clean
images and at translating clean images to noisy images,
respectively. We design Mgy, as a one-layered network,
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using a single filter of size 33 x 33, without padding and
bias. Moreover, we precalculate the weights as a normal-
ized 2D Gaussian distribution with a variance of ¢ =
15.0. This model aims to match the slowing varying low-
frequency features of two noisy images. The critic model
D is composed of 4 downsampling modules and a fully
connected layer. The downsampling modules contain a
transposed convolution layer with a kernel size of 3 x 3,
followed by a convolution layer of stride 2 with a kernel
size of 3 x 3 and then a dropout layer of 25%. This model
aims to classify whether an input image only contains 2D
Gaussian-like peaks or not.

Training Details. Our model contains hundreds of lay-
ers, to fit all the data into the 12 GB memory of an Nvidia
GTX 1080 Ti GPU, we crop our experimental images into
128 x 128 pixels, and train using RMSProp algorithm
(Krizhevsky et al. 2012) with a batch size of 6, a learn-
ing rate of 5 x 107> and a momentum of 0.9. A typical
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aberration-corrected HAADF STEM dataset could con-
tain thousands of images. To save the computation time,
for each dataset, 120 images are randomly sampled to
train our model. Our model usually takes 100 epochs to
reach a good prediction, when the cycle consistency loss
is less than 0.05 and the low-frequency cycle loss is less
than 0.1. Typical convergence curves for Lcycle and L are
presented in Fig. 1.
Explicitly, Noise2Atom is composed of 4 sub-models:

@ acritic model, D, that predicts True on clean images
and False on noisy images, as is demonstrated in
Fig. 2a,

@ anoisy to clean model, Mgy, that translates noisy
images to clean images, as is demonstrated in Fig. 2d,

® aclean to noisy model, My, that translates clean
images to noisy images, as is demonstrated in Fig. 2c,
and

(a) Critic model, D, predicts True from clean atomic images, False

Low Frequency Features

otherwise.

Noisy Input

(b) Low-frequency feature extraction model, M go, non-trainable,
generats blurry images from noisy ones.

False

True

(c) Clean to noisy model ,M .y, generates noisy images from clean atomic images. This model does not make sense in real world,

Jjust to make cycle training feasible.

(d) Noisy to clean model, Mz, generates clean atomic images from noisy images.

Fig. 2 Submodels in Noise2Atom
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@ alow-frequency feature extraction model, Mgy, that
translates noisy images to blurry images, as is
demonstrated in Fig. 2b.

With the weights for sub-model @ already hand-crafted,
we train sub-models ® — @ in this fashion (in a single
batch):

1 training sub-model @ 5 times by mapping noisy
images to False and clean images to True,

2 training composed model @o® once by mapping
noisy images to True, with sub-model @ fixed,

3 training composed model @o®o® once by mapping
noisy images to their low-frequency features, with
sub-model @ fixed, and

4 training composed model ®o@ once by mapping
clean images to themselves.

Results

There do not exist any noise-free images as ground truth
for our experimental datasets. Therefore, for evaluating
the restoration quality, we design a consecutive similar-
ity (CSS) metric. For this, we assume most of the con-
tents (except for noise) of neighboring consecutive frames
remain the same from frame to frame, due to the short
frame time (typically 10~! s). The CSS metric for the
image I, at frame »n and the image I,,41 at frame n + 1 is
given by
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E;,Ey,,, + C1)(201,1,,, + C2)

CSSUy, Inv1) =

2 2 2, 2 ’
(Eln + EIVHrl + Cl) (Gln + 01n+1 + CZ)
(10)
in which Ufn and O’IZn_H are the variance, 07,7, ; is the

covariance of I, and I,;1, C; = 107%and C, = 9 x 1074
are two constants to stabilize the division. The CSS met-
ric is a variation of the structural similarity index measure
(SSIM), which is widely used to predict the reconstruction
quality by measuring the similarity between the ground
truth image and the predicted image. As we do not have
ground truth in this domain specific problem, we predict
the denoising quality by measuring the similarity between
two denoised consecutive images.

We compared our approach against the recent analyt-
ical Poisson-Gaussian Unbiased Risk Estimator for Sin-
gular Value Thresholding (PGURE-SVT) method (Fur-
nival et al. 2017) and reasonable deep learning meth-
ods Noise2Self (Batson and Royer 2019) and Noise2Void
(Krull et al. 2019a). We also tried PPN2V (Prakash et al.
2020) but did not get a satisfying result, as it is challenging
to get a good enough parametric noise model estimation.
In this benchmark, we used the semi-supervised Multi-
scale Convolutional Neural Network (MCNN) method
(Wang et al. 2020) as the baseline. When testing with
datasets acquired from 150 fps with 128 x 128 pixels
to 5 fps with 1024 x 1024 pixels, as is shown in Fig. 3,

128 x 128
frame 1

512x512
frame 1l frame 2

1024x1024

frame 2 frame 1l frame 2

PGURE-SVT Experimental

noise2self

A

Fig. 3 Benchmarking PGURE-SVT, Noise2Self, Noise2Void, Noise2Atom and MCNN on heavily-noised HAADF images. The CSS metrics are presented
on the top-left corners. Noise2Atom gives much better predictions than the other unsupervised methods: visually more Gaussian-like and
background corrected, with an increased quantitative contrast. In the 512 x 512 case, Noise2Atom can even beats the baseline MCNN, which has

been trained using semi-supervised method

128 x 128
frame 1l frame 2

512x512
frame 1l frame 2

1024x1024
frame 2

frame 1

noise2atom noise2void

_MCNN
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Noise2Atom gives visually clear (Gaussian-like) and con-
sistent (high CSS score) results. And in some case it even
outperforms MCNN. Our approach yields predictions
reflecting almost only atomic peaks, while removing a vast
majority of the background. This result, as our approach
consistently detects atoms, agrees well with our physical
model. We present more denoising results in noise2atom
repository, https://github.com/fengwang/Noise2 Atom.

It is increasingly common for a fast modern STEM to
produce a dataset including thousands of images in a few
minutes. Such a large dataset poses particular compu-
tation pressure on Noise2Atom. A direct solution is to

Page 6 of 9

sample a fixed number of images, rather than including
them all. To find out a lower boundary to make a com-
promise between the computation speed and denoising
quality, we trained four models including 1, 10, 50, and 100
experimental images respectively. Their performances are
demonstrated in Fig. 4. From this numeric experiment, we
can conclude:

1 A large training set gives good denoising quality.
When the training set is small, the denoising quality
is not apparently influenced. When equal or less than
50 images are included in the training set, all the CSS
metrics are limited to a similar range [ 0.45, 0.48]. But

frame 1

- ‘
0 "
" - : .
- N )
% - 0
. .’.. '
. . »

frame 2

sabew| Qg wody uoldIpadd sabew| 0T wolj uondipasd abew| T wody uondipasd |ejuawiiadxe

sabew| 00T woly uoldipald

Fig. 4 Training Noise2Atom with different numbers of experimental images. The CSS metrics are presented on the top-left corners. The first row
presents two consecutive frames of the noisy experimental dataset, with areas of interest amplified. The rest rows present the denoising results from
different Noise2Atom models, which are trained using 1, 10, 50 and 100 noisy images respectively
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when 100 images are included, the CSS metric
reaches 0.69.

2 A large training set gives robust results: as is
demonstrated in the areas of interest in the last row
in Fig. 4, the model trained with 100 images predicts
four atoms from the first and the second frames. The
models trained with small numbers of images tend to
over fit atomic peaks onto clusters of bright noisy
pixels. As is shown from the second to the fourth
row, different numbers of atoms are predicted.

We therefore suggest a training set of around 100 images
in favour of both computation speed and denoising qual-
ity.

Failure cases. As the contrast of STEM depends on
atomic number (Kirkland et al. 1987): individual atoms of
platinum (Z=78) are reliably detectable with a background
signal given by ca 20 nm of carbon (Z=6), as is the case in
the results of Fig. 3. This Z-dependence gives an estimated
upper detecting limit of maximum ca 40-60 nm of carbon
(and other neighboring light elements), before there is too
much background noise to reliably detect individual Pt
atoms. When we image atoms of Pt in droplets of ionic liq-
uids (up to ca 50nm thickness) on the carbon film (Keller
et al. 2019) we get closer to the detection limit, and we
can see two failure cases in Figs. 5 and 6. From dark field
STEM, we assume that bright areas match atomic peaks,
and darker areas are due to the background noise. How-
ever, we did not apply an additional constraint to reflect

Experimental

Denoised

Fig. 5 Failure case 1. With too much background noise, bright areas
can get mapped to the background, while dark areas get mapped to
atoms
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Experimental Denoised

0.42 4

0.40

0.38

0.36

0.34

Mean intensity for each column

0.32 4

0 S(I)O 10‘00 15’00 20‘00
Column index

Fig. 6 Failure case 2. Noise2Atom is sensitive to gradients in
background noise. In this image, at the edge of a nanodroplet with a
low concentration of Pt atoms, there is an increase of background
noise from left to right (shown in the plot below), as the nanodroplet
gets thicker. On the left of the image where a small amount on atoms
are correctly fit. However, further to the right of the image, as the
background noise increases, clusters of pixels from the background
noise, increasingly gets overfit as false atoms

this relationship. In our numerical experiments, occasion-
ally (once in every ten trials), there were cases of reverted
mapping: the bright areas go to the background, and the
dark areas go to the atomic peaks, as is shown in Fig. 5. A
second failure case is due to gradients in the background
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noise, as shown in Fig. 6. Such a gradient causes areas with
higher background noise to be overfit resulting in many
false atoms. Therefore, it is important to largely have a
homogeneous background intensity across the image.

Discussion and conclusion

The analytic methods stem from domain knowledge but
are computationally inefficient. The supervised learning
methods are fast but require paired training sets. Our
approach takes advantage of the domain knowledge and is
not restricted by the absence of the paired training data.
We understand the critic model and the low-frequency
feature extraction model as domain knowledge embed-
ding. The critic model gives high priority of 2D Gaussian
peaks, which is the expected physical pattern. The low-
frequency feature extraction model focuses on the slowly
varying features by cutting down the influence of the
noises, as the noises take the form of very bright or dark
pixels. Our approach shows that even when it is diffi-
cult to generate suitable simulated ground truth/noisy
image pairs and estimate a proper noise model, it is
still possible to train neural networks to restore noisy
images to extract interpretable and quantitative informa-
tion, by using domain knowledge. Hence, the denoising
approach of Noise2Atom is especially useful for time-
resolved microscopy, but is likely also useful for many
other applications. We also make the dataset and source
code publicly available.
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second; GAN: Generative adversarial network; PGURESVT: Poisson-Gaussian
unbiased risk estimator for singular value thresholding; MCNN: Multi-scale
convolutional neural network; HAADF: High-angle annular dark-field
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