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ABSTRACT Lactococcus garvieae and Lactococcus petauri cause lactococcosis in fish.
Both species have also been isolated from various food products and are considered
emerging zoonotic pathogens. Here, we report the genomes of L. garvieae INF126
and L. petauri INF110, obtained from traditional Montenegrin brine cheeses.

L actococcus garvieae and Lactococcus petauri are members of the lactic acid bacteria
(LAB) group. L. garvieaewas first described as Streptococcus garvieae in 1983 (1) and subse-

quently separated into subgroups A and B (2). Genomic analysis reassigned L. garvieae sub-
group A strains to the recently described species L. petauri (3). Consequently, both species can
be considered the etiological agents of lactococcosis in fish (4, 5) and emerging opportunistic
zoonotic pathogens (6–8). The isolation of both species from a variety of food (9–11) also
implicates a contribution to the quality and typicity of various traditional food products (10).
Comparison with other sequenced strains may provide new information on their safety (12),
adaptation to diverse environments, and importance for traditional food products (10).

Enrichment and isolation of bacterial isolates from traditional Montenegrin white brine
cheeses was performed using M17 and de Man, Rogosa, and Sharpe (MRS) broth (both from
HiMedia, India) according to the method previously described (13). Colonies morphologically
suspected to be LAB were subcultured on MRS agar for species identification by matrix-assisted
laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) (Microflex LT/SH,
MBT Compass IVD 4.2; Bruker, Billerica, MA, USA) and whole-genome sequencing (WGS).

For WGS, genomic DNA was obtained from overnight cultures grown on MRS
agar at 37°C using the MagAttract high-molecular-weight (HMW) DNA kit (Qiagen,
Hilden, Germany). Libraries were prepared using Nextera XT (Illumina, Inc., San Diego, CA,
USA), and 2 � 300-bp sequencing was performed on a MiSeq instrument (Illumina, Inc.) as
previously described (14).

Default parameters were used for all software unless otherwise specified. FastQC
v0.11.9. was used to control raw read quality, Trimmomatic v0.36 (15) was used to
remove adapter sequences and to trim the last 10bp of each sequence and sequences
with quality scores of ,20, and SPAdes v3.15.2 (16) was used for read assembly. Contigs
were filtered for a minimum coverage of 5-fold and a minimum length of 200bp using
SeqSphere1 software v7.5.2 (Ridom GmbH, Würzburg, Germany).

WGS of L. petauri INF110 and L. garvieae INF126 generated 1,839,606 and 1,035,909
reads, respectively. Assemblies resulted in 172 and 149 contigs with a mean coverage of 55-
and 41-fold and a GC content of 37.9% and 38.8%, respectively. The NCBI Prokaryotic Genome
Automatic Annotation Pipeline (17) identified 2,256 and 2,383 genes, 2,197 and 2,244 coding
sequences, 163 and 70 pseudogenes, and 59 and 69 RNA genes, respectively (Table 1).

MALDI-TOF identified both isolates as L. garvieae. Digital DNA-DNA hybridization
(dDDH) (18) identified INF110 as L. petauriwith similarities of 82.3% to L. petauri 159469T and
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50.7% to L. garvieae ATCC 49156T. INF126 was identified as L. garvieae with 80.2% similarity
to L. garvieae ATCC 49156T and 54.8% to L. petauri 159469T. The average nucleotide identity
(ANI) (19) between INF110/INF126 and L. petauri 159469T and L. garvieae ATCC 49156T was
97.21% and 92.80% and 92.32% and 97.56%, respectively. A gene-by-gene comparison with
an ad hoc core genome scheme comprising 1,268 targets using SeqSphere1 with default
settings and strain ATCC 49156 as a reference showed 1,177 allelic differences between
INF110 and INF126 and no similarities to other strains deposited in GenBank. For safety eval-
uation of pathogenicity and antimicrobial resistance, plasmids and mobile genetic elements
were determined through the tools available from the Center for Genomic Epidemiology
(http://www.genomicepidemiology.org/) and PLACNETw (20), respectively (Table 1).

Data availability. The whole-genome shotgun (WGS) project has been deposited
in DDBJ/ENA/GenBank under the BioProject PRJNA727069 with the accession no.
JAGYXE000000000 (INF110) and JAGYXD000000000 (INF126). The versions described in
this paper are the first versions, JAGYXE010000000 and JAGYXD010000000. The raw sequence
reads have been deposited in the Sequence Read Archive (SRA) under accession no.
SRR14581598 (INF110) and SRR14581597 (INF126).
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