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Assessing the Use of Influenza 
Forecasts and Epidemiological 
Modeling in Public Health Decision 
Making in the United States
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Although forecasts and other mathematical models have the potential to play an important role in 
mitigating the impact of infectious disease outbreaks, the extent to which these tools are used in public 
health decision making in the United States is unclear. Throughout 2015, we invited public health 
practitioners belonging to three national public health organizations to complete a cross-sectional 
survey containing questions on model awareness, model use, and communication with modelers. Of 39 
respondents, 46.15% used models in their work, and 20.51% reported direct communication with those 
who create models. Over half (64.10%) were aware that influenza forecasts exist. The need for improved 
communication between practitioners and modelers was overwhelmingly endorsed, with over 50% 
of participants indicating the need for models more relevant to public health questions, increased 
frequency of telecommunication, and more plain language in discussing models. Model use for public 
health decision making must be improved if models are to reach their full potential as public health 
tools. Increased quality and frequency of communication between practitioners and modelers could be 
particularly useful in achieving this goal. It is important that improvements be made now, rather than 
waiting for the next public health crisis to occur.

Numerical forecasting—the computational real-time generation of calibrated predictions on time scales allowing 
application and validation—has a long history of use in the fields of weather and climate1–3. In recent decades, 
numerical forecasts have been developed for and applied to a number of new industries and disciplines, including 
agriculture4,5, air quality6,7, consumer activity8–10, fiscal policy11, and political elections12. These forecasts allow 
stakeholders to prepare for predicted future events and to respond accordingly. For example, forecasts of crop 
yields help governments decide whether food must be imported to meet population needs, and inform decisions 
concerning the receipt of emergency food aid5. Meanwhile, many companies use sales forecasting when decid-
ing how much of a product to stock in order to maximize profits8. In public health, forecasting methods have 
been developed using mathematical models and Bayesian inference methods and used to predict the growth and 
spread of infectious diseases such as influenza13–18, dengue19–21, Ebola22–24, and, most recently, Zika25,26.

In the United States, influenza is estimated to kill tens of thousands of people and cost over $87 billion each 
year27. Several research groups, including ours, have developed forecasts of influenza incidence in the United 
States28. These forecasts estimate future incidence levels for a developing influenza outbreak with particular focus 
on metrics such as when the outbreak will be most severe or how many cases will occur during the most severe 
week of the outbreak. In our own efforts, forecasts have been generated for municipalities and states through-
out the US, as well as for several European countries, and operationalized for real-time delivery over an online 
portal29. These quantitative forecasts are updated weekly during the flu season and have the potential to reduce 
morbidity, mortality, and healthcare spending by influencing decision making and resource allocation among 
healthcare providers, public health practitioners, and the general public alike. For example, hospitals may use 
the forecast peak timing of an influenza outbreak to prepare for an influx of patients, and the public may be more 
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motivated to practice proper hand hygiene when high influenza incidence is predicted. However, these benefits 
will only be fully realized if public health practitioners are aware of this work and use these findings in decision 
making.

Research on the extent to which public health practitioners utilize mathematical models is limited. Indeed, 
to our knowledge, no existing studies assess the use of mathematical models in public health decision making in 
the US. Driedger et al.30 interviewed four public health practitioners and four mathematical modelers in order to 
assess the integration of modeling in decision making during the 2009 influenza pandemic in Canada. They con-
cluded that improved communication between practitioners and modelers was needed. Specifically, they found 
that practitioners desired greater clarity in model interpretation, and modelers wanted a better understanding 
of the questions practitioners needed modeled. Both groups expressed the need for longstanding partnerships 
in order to increase efficiency, understanding, and trust between the two groups. An earlier Canadian study also 
found need for more and better communication between practitioners and modelers31. Most recently, Moss et al.  
shared weekly forecasts of influenza activity in Melbourne, Australia with the local health department, and 
updated their forecasts based on insights from the practitioners there. They report that these collaborations were 
instrumental in improving forecast accuracy32.

Here, we addressed these issues using a different approach. We employed a short survey to assess the extent to 
which US public health professionals are aware of and use mathematical models, including influenza forecasts, 
in making decisions on the job. Through this preliminary effort, we seek to build the evidence base describing 
the integration of numerical epidemiological modeling, including seasonal influenza forecast, and public health 
decision making.

Methods
Participants.  We recruited survey participants via email through contacts at three U.S. public health organ-
izations: the Association of State and Territorial Health Officials (ASTHO), the Council of State and Territorial 
Epidemiologists (CSTE), and the National Association of County and City Health Officials (NACCHO). 
Although we do not know how many practitioners ultimately received a link to our survey, these organizations 
represent a large number of employees in the fields of public health, epidemiology, and influenza control across 
the US, ensuring that our survey was sent to a representative sample of US public health practitioners.

Materials.  We designed a survey containing 25 multiple-choice and Likert scale questions (see Supplementary 
Information). The survey included questions on basic demographics, awareness of influenza forecasts, whether 
the respondents used epidemiological models in their work, and whether they applied model results to public 
health decision making. Participants were also asked if they communicated with modelers, and how such com-
munication could be improved. Finally, we inquired about personal use of influenza vaccination for the current 
and previous seasons. This work was approved by and performed under Columbia University Medical Center 
IRB (approval number CUMC IRB-AAAO9952). The IRB-approved survey was distributed online through 
SurveyMonkey, and informed consent was acquired through a checkbox on the survey’s first page. All results 
were de-identified.

Procedure.  Participants were recruited through broadcast emails to the members of each of the three organ-
izations. We collected responses over roughly a six-month period. Most of the responses from one organization 
were collected during March and April 2015, and other responses were completed during September 2015. The 
difference in timing was due to differing availability to contact their members. In addition, in August 2015 we 
changed the word ‘survey’ to ‘assessment’ in order to comply with a request from one organization and gather 
more responses. Thus, a majority of participants saw ‘assessment’, although we believe this wording change had 
little effect, if any, on the results.

Results
Data.  A total of 51 individuals responded to the survey, 42 (82.4%) of whom indicated employment in a public 
health field. Because we are primarily interested in awareness and use of models among public health practition-
ers, we restricted our analysis to these individuals. Furthermore, we removed three other participants whose 
responses were inconsistent; specifically, two individuals reported a frequency of model use while simultaneously 
reporting that they did not use models in their work, and one participant reported acquiring influenza data from 
both Columbia University and none of the sources listed on the survey. This left us with data on 39 participants. 
All 39 participants reported that their work-related responsibilities included planning for and dealing with influ-
enza outbreaks. The majority of respondents (38, 97.4%) worked for the government, and one worked for an 
NGO.

Demographics.  Demographic information is summarized in Table 1. Briefly, the majority of respondents 
(22, 56.4%) were between the ages of 30 and 49. Years in public health was fairly evenly distributed, with the larg-
est group being those who had been in the field for 4–6 years (13, 33.3%). Two-thirds of respondents (26, 66.7%) 
reported being female, and most (33, 84.6%) had at least a graduate degree. Respondents were spread geograph-
ically across 35 states and territories. Regional totals are based on divisions defined by the United States Census 
Bureau33. Due to the small sample size obtained here, it was not plausible to use more narrow regional divisions.

Use of Models.  Almost half of respondents (18, 46.2%) reported using models in their work, and that use 
differed significantly by region (two-tailed Fisher’s exact test, P = 0.0311; regions are defined as described under 
“Demographics” above). Specifically, use was highest in the West and lowest in the South and Midwest. Use of 
models was not significantly related to other demographic variables. Most of these individuals considered the 
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models to be valuable (Fig. 1) and used them relatively frequently (Fig. 2). Satisfaction with this frequency varied 
(Fig. 2), but was significantly higher with higher frequency of use (two-tailed Fisher’s exact test, P = 0.003).

Communication with Modelers.  A total of eight (20.5%) respondents indicated communication directly 
with those who develop and create models; seven of these individuals also used models in their own work. 
Although this interaction occurred fairly rarely (Fig. 3), most participants were satisfied with this low level of 
communication. Again, there was a tendency for satisfaction to be higher with more frequent communication 
(two-tailed Fisher’s exact test, P = 0.043), but the sample size (n = 8) was very small.

When asked how communication with modelers could be improved, 26 (66.7%) respondents indicated that 
models should be more relevant to public health questions, 23 (59%) wanted increased frequency of telecom-
munication, 20 (51.3%) desired more plain language from modelers, and 13 (33.3%) wanted more face-to-face 
conversation. Three individuals entered their own responses, which were: “Models designed taking into account 

Gender

      Female 26 (66.7%)

      Male 12 (30.8%)

Age

      18–29 9 (23.1%)

      30–49 22 (56.4%)

      50–64 5 (12.8%)

      65+ 1 (2.6%)

Degree obtained

      Bachelor’s degree 6 (15.4%)

      Graduate degree 33 (84.6%)

Years in public health

      0–3 years 5 (12.8%)

      4–6 years 13 (33.3%)

      7–10 years 6 (15.4%)

      11–15 years 8 (20.5%)

      16+ years 6 (15.4%)

Region

      West 10 (25.6%)

      South 10 (25.6%)

      Northeast 7 (17.9%)

      Midwest 10 (25.6%)

      Territories 1 (2.6%)

Table 1.  Demographic Characteristics of 39 Public Health Practitioners Surveyed Concerning Awareness and 
Use of Mathematical Models.

Figure 1.  Reported value of models among eighteen public health practitioners who reported using models on 
the job.
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US jurisdictions outside the contine[n]tal US”, “Provide more information on the value of models to support 
questions from other health professionals and the media”, and “Greater availability of models. I did not know 
these existed”.

Awareness of Influenza Forecasts.  Twenty-five (64.1%) respondents were aware that forecasts for influ-
enza are available, and 18 (72%) of these individuals had seen one in the past 12 months. These rates were no 
higher among those who used models in their work than among those who did not (chi-squared test, P = 1 and 
P = 0.4423, respectively). Furthermore, participant ratings of model usefulness did not differ significantly based 
on whether or not the participant was aware of or had seen forecasts (Fishers exact test, P = 0.509 and P = 0.597, 
respectively).

Only seven participants (18% of the total; 38.9% of those who had seen a forecast) reported that they or their 
colleagues had accessed Columbia University’s forecasts specifically. Among these seven, three agreed that the 
forecasts were trustworthy and the other four rated their trustworthiness as neutral. Most (five) said that the fore-
casts were released neither frequently nor infrequently, and “somewhat frequently” and “very rarely” were also 
endorsed by one individual each. Finally, only two respondents actually used these forecasts in decision making, 
with one reporting that the forecasts changed communication strategies with the public and stakeholders and 
influenced preparedness in a healthcare facility, and the other reporting that the forecasts “supported our regional 
risk activity assessment”.

Figure 2.  Reported frequency of model use and satisfaction with this frequency among eighteen public health 
practitioners who reported using models on the job.

Figure 3.  Frequency with which public health practitioners communicated with people who develop 
mathematical models of influenza and satisfaction with this frequency among eight participants who reported 
ever communicating.
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Data Sources.  Of the 39 respondents, 34 (87.2%) reported obtaining influenza incidence or forecast data 
from the Centers for Disease Control and Prevention (CDC), 14 (35.9%) from Google Flu Trends, five (12.8%) 
from Columbia University, four (10.3%) from HealthMap FluCast, and seven (18%) from other sources, most 
commonly state and local ILI (influenza-like illness) reports. Only one respondent reported using no sources at 
all. However, we note that most (13/14) respondents who said they used Google Flu Trends did so after Google 
Flu Trends was taken offline in July 2015. Thus, although these individuals used Google Flu Trends in the past, we 
do not know if they continued to access influenza data from other sources.

Discussion
Despite the potential benefits of using mathematical models, including forecasts, to address public health ques-
tions, knowledge of whether and how US-based public health practitioners incorporate model-generated infor-
mation into decision making is limited. Here, we examine this situation using a cross-sectional survey of 39 public 
health practitioners in the United States.

Almost half of respondents reported using models in some capacity, and most rated the value of models 
highly. Future work should determine why some participants view models as more valuable or use models more 
frequently than others, and efforts should be taken to increase access to, utility of, and user-friendliness of models 
and model-generated information. Influenza forecasts in particular could be of use to public health practition-
ers, in that accurate predictions of influenza outbreak metrics, such as peak timing and intensity, could inform 
vaccination strategies, resource allocation, and communication with the public. Notably, all of our respondents 
reported that they frequently work with influenza outbreaks. For this reason, it was promising to observe that 
almost half of surveyed practitioners had seen or had a colleague who had seen an influenza forecast in the past 12 
months. However, those who had seen a forecast were not more likely to use models in their work than those who 
had not, suggesting that these forecasts are not often put to practical use. In fact, although we only asked about 
forecast use among those who accessed Columbia’s forecasts specifically, only two of seven respondents reported 
actually using the forecasts in public health decision making.

Suboptimal use of available forecasts is an issue in many fields, and is particularly well-studied in agricul-
ture. A study of the use of monsoon forecasts in India found that many farmers complained that forecasts were 
not available when they were needed, emphasizing the importance of generating forecasts with appropriate lead 
time34. Additionally, a separate review of forecast use in agriculture implicates insufficient forecast quality, both 
real and perceived, for preventing forecast use in decision making35. Due to the potential severity of influenza, 
it is logical that the prospect of acting on an inaccurate forecast is concerning to practitioners. Kusunose and 
Mahmood35 suggest that expectations of forecasts might be made more realistic by incorporating the degree 
of uncertainty associated with predictions, something our group has developed for influenza15,36. Future stud-
ies should further explore the reasons public health practitioners are hesitant to rely on influenza forecasts, as 
well as the formats and modes of delivery most useful to practitioner work, so that such concerns can be better 
addressed.

Perhaps our most salient result concerns the overwhelming endorsement of several ways for improving pub-
lic health practitioner communication with modelers. This finding is in line with previous reviews and quali-
tative studies30–32,37,38. To improve communication between modelers and practitioners, both knowledge- and 
trust-related issues that prevent practitioners from using models effectively should be addressed. For instance, 
the development of specific guidelines on using mathematical models to answer public health questions may 
help to clear up misconceptions concerning the capacity of models. Additionally, past qualitative work has found 
consistency of language and clear communication of model assumptions to be of particular importance30,37,38. 
Increased trust in modeling methods and results might also be cultivated by forming longstanding collaborations 
between practitioners and modelers31,32. Future work could survey practitioners participating in collaborations 
with modelers to determine which communication practices have been most and least effective. While nuanced 
and detailed communication efforts will be necessary, basic informational campaigns can also play a role: One 
participant did not know that models existed before taking our survey.

Finally, in addition to the questions posed concerning communication frequency and quality, future surveys 
should assess how participants communicate with modelers, what topics are discussed, and their endorsement of 
a variety of ways to improve communication. They should also allow for qualitative responses from participants; 
these responses could suggest effective methods for increasing communication quality and frequency that may 
be less obvious to modelers.

Limitations.  Despite the novelty of this work, several limitations should be addressed. First, although we 
attempted to contact a large number of public health practitioners, our response rate was small, making it diffi-
cult to draw concrete conclusions, or to statistically assess whether model use differed by variables such as years 
working in public health. Furthermore, our sample is a convenience sample, and may not be representative of the 
wider group of public health practitioners. Unfortunately, we know neither the demographic distributions among 
nonrespondents nor the number of practitioners our survey reached, and can therefore report neither adjusted 
results nor an overall response rate. However, given that our sample is likely biased toward practitioners with 
greater knowledge of and interest in mathematical models, we expect that these measures would be even lower 
among a truly random sample. Thus, our conclusion that model use is below 50%, at least, is likely to hold among 
US-based public health practitioners in general.

We also note that the definition of the word “model” in our survey was ambiguous. Although we hope that 
the questions on influenza forecasts prompted participants to think in terms of mechanistic models, it is possible 
that some respondents took the survey with other types of models, such as regression models, in mind. Similarly, 
exactly what constitutes model “use” could be anything from simply viewing model output to being actively 
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involved in the development and execution of a model; unfortunately, we cannot tell where each participant falls 
on this spectrum.

Given that three data points were removed due to inconsistent responses, and that several participants 
reported using an unavailable data source (GFT), an increased focus on response credibility is indicated. A clear 
definition of “model” and “model use” will be instrumental in increasing the credibility of future survey results. 
Reliability can be further enhanced by asking respondents to elaborate their responses, such as through providing 
a specific categorization or description of the context and form of model used.

Conclusions
Among 39 surveyed public health professionals, both model use and familiarity with influenza forecasts were 
reported by almost half of participants, but communication with model developers was rare. Improved com-
munication between modelers and practitioners in particular seems to be key for increasing the frequency and 
effectiveness of model use among public health practitioners. Although more research on why forecasts and other 
models are not commonly used is necessary, initial improvements should be made now, in the absence of urgent 
pandemic threats. Participants in a previous qualitative study of eight modelers and public health practitioners 
noted that effective use of models during the 2009 influenza pandemic suffered because partnerships between 
modelers and practitioners were not formed until the pandemic was underway30. Importantly, communication is 
a two-way street: Modelers must be more clear about the capabilities and limitations of mathematical models, as 
well as model interpretation; meanwhile, practitioners must better communicate the information needed from 
models to better protect the public from outbreaks. Without such communication and use, it is clear that models 
will not reach their full potential as public health tools.
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