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Currently, drug discovery approaches focus on the design of therapies that alleviate an index symptom by re-
engineering the underlying biological mechanism in agonistic or antagonistic fashion. For example, medicines are 
routinely developed to target an essential gene that drives the disease mechanism. Therapeutic overloading where 
patients get multiple medications to reduce the primary and secondary side effect burden is standard practice. This 
single-symptom based approach may not be scalable, as we understand that diseases are more connected than 
random and molecular interactions drive disease comorbidities. In this work, we present a proof-of-concept drug 
discovery strategy by combining network biology, disease comorbidity estimates, and computational drug 
repositioning, by targeting the risk factors and comorbidities of peripheral artery disease, a vascular disease 
associated with high morbidity and mortality. Individualized risk estimation and recommending disease sequelae 
based therapies may help to lower the mortality and morbidity of peripheral artery disease. 
 

Introduction 

Emerging role of network pharmacology in precision medicine  

Many challenges in drug discovery can be mitigated by computational and predictive methods to improve success 
rates. Due to the compound nature of known and unknown factors at play, precise prediction of the success of drug 
discovery project is difficult, and this leads to the loss of both human productivity and economic loss in the setting 
of the pharmaceutical industry. Drug discovery budget allocations typically do not yield a successful therapy over 
decades of research. Further, in the real-world setting, patients take multiple drugs for sets of related clinical 
symptoms, and these drugs often interact and lead to new and unforeseen side effects. Network medicine approaches 
enable network-wide, integrated investigation of multiple biological and clinical data-types to understand key 
biological pathways and functional modules behind complex diseases. Such approaches could be beneficial to target 
and potentially intervene underlying risk factors and population scale comorbidities and hence may evolve as a 
potential drug discovery strategy for complex diseases with varying degree of clinical heterogeneity. The 
relationships between diseases and associated molecular pathways underlying them has been examined in detail by 
several studies in the post-genome era due to the emerging understanding on the network properties of genes and 
proteins (1-3). The availability of large-scale, datasets of protein-nucleic acid, protein-protein, protein-metabolic and 
protein-small molecule interaction helped to perform and validate such studies (4, 5). Previous studies have shown 
that disease comorbidities share a high-degree of functional cohesiveness and several common functional modules; 
protein-protein interactions and sub-units of protein complexes were found to be the underlying the molecular basis 
of comorbid conditions. Goh et al. have showed that several Mendelian diseases, which are comorbid, share 
interactions at the level of gene products using a network of Mendelian disease-gene networks (6). Lage et al. built a 
protein-complex centric network to illustrate a human phenome-interactome network of protein complexes 
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implicated in genetic disorders (7). Network properties of genes that harbor disease variants or single nucleotide 
polymorphisms (SNPs) have also shown to have similar likelihood and phenotypic effects (8, 9). Ideker and Sharan 
also suggested that protein networks can be used as tools to investigate molecular basis of complex diseases (10). 
Additional evidence to support the pleiotropic nature of genes to influence multiple disease pathways was also 
revealed from network-based disease analyses. Park et al. showed that pair of comorbid conditions correlate with 
specific sub-cellular location of the gene products associated with the diseases and comorbidities have shown to 
share (11). Such integrated network based approaches have been used to find comorbidities associated with several 
diseases as well as specific aspects of diseases like patterns of cancer metastasis (12). Chen et al. used a 
personalized multi-omic study that performed longitudinal profiling of a generally healthy individual using whole-
genome sequencing (WGS) together with transcriptome, proteomic, metabolomic, and autoantibody profiles showed 
that pathway analysis and GO term enrichment could help to understand common functional modules mediated by 
group of genes associated with clinically relevant phenotypes (13). Cardiovascular diseases like atherosclerosis, 
metabolic disorders (14-16), pulmonary diseases like chronic obstructive pulmonary disorder (COPD) (17) and 
asthma (18) have also been studied using network-based approaches. Recently, we have shown that exploring shared 
genetic architecture driving disease pairs could help in discovering disease trajectories (19, 20). In another study, we 
have shown that exploring shared genetic architecture in conjunction with pair-wise comorbidity would help to 
orthogonally validate drug repositioning success (21-23). Based upon this collective previous evidence, in this 
manuscript, we employed a network-based approach to delineate the molecular basis of peripheral arterial disease 
(PAD) comorbidities and used the common molecular sub-network driving risk factors and comorbidities as 
signatures to find potential drugs.  

 

No disease is an island – clinical needs and drug discovery challenges in targeting risk trajectories and 
comorbidities    

A measure to assess the implications of comorbidity between multiple diseases was initially used (the Charlson 
Index) to predict mortality rate of patients with 22 known conditions by Charlson et al. (24). Eleven years later, 
another index (the Elixhauser Index) that utilized hospital administrative data was proposed. This method was the 
first to utilize the International Classification of Disease (ICD) codes to define comorbidities (25). To perform large-
scale comorbidity analyses, multiple groups have since used Medicare data encoded as ICD-9 codes. These studies 
that utilized Medicare databases have primarily used two metrics, (1) φ correlation and (2) relative risk (RR), to 
define the degree of co-occurrence between two diseases in the same patient within a defined time-period. For 
example, a large-scale study of diverse human disease phenotypes in a network framework using ICD-9 codes 
derived from raw Medicare data showed that several complex diseases share a high-degree of comorbidities (26). 
Another study that utilized Medicare data also showed that significant correlations exist between the underlying 
cellular networks and disease comorbidity patterns in the human population (27). Based on the observed correlations 
between several complex diseases, investigators have also proposed molecular bases for the correlations using 
functional modules, sub-unit of large protein-complexes, protein-protein interactions or pathways mediated by genes 
associated with a pair of diseases. Collective approaches to study disease mechanisms mediated by different macro 
and micro molecules inside the cell were considered as the basis for system-wide (systems medicine) or network-
based (network medicine) approaches.  

 

Peripheral arterial disease 

PAD is a chronic vascular disease caused by a variety of complex phenotypic characteristics including deposition of 
cholesterol and fat deposition in blood vessels outside of the heart.  PAD is a chronic vascular disease due to 
atherosclerosis. Presence of PAD is considered to be a clinical surrogate of coronary artery and cerebrovascular 
atherosclerosis. PAD is an excellent indicator of myocardial infarction and cerebrovascular accident (stroke) risk, as 
it can severely limit mobility, and often ultimately leads to limb amputation. However, despite affecting eight 
million people in the United States and its association with significant mortality and morbidity rates, PAD is often 
under diagnosed. PAD is influenced by multiple genetic, proteomic, transcriptomic, metabolomic and epigenomic 
signals (28-31). Effective delineation of how PAD progress to other cardiovascular complications may help to 
develop better drug targets and may further help to manage the disease and reduce the burden for patients. In this 
study, we propose a disease-gene network based translational bioinformatics approach to find functional modules 
underlying different comorbidities associated with PAD. Further we used the molecular core that are common to two 
comorbidities to search for drugs capable of perturbing the biological and functional pathways.  
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Methods 

The analysis was divided into four parts i) Identification of risk factors and comorbidities associated with PAD ii) 
Generation of canonical disease-gene networks iii) analyses and functional interpretation of the networks iv) 
Computational drug repositioning to find compounds capable of perturbing the molecular core sub-network. A 
workflow diagram is provided in Figure 1.  

 

Risk factors and Comorbidities associated with PAD 

We identified risk factors and comorbidities associated with PAD from a database of patients who underwent 
outpatient, non-invasive lower extremity arterial evaluation at the Mayo Clinic, Rochester, Minnesota, from January 
1998 through December 2007, with a mean follow-up of 5.8 ± 3.1 years. Risk factors and comorbid conditions 
associated with PAD were ascertained on the basis of the presence of relevant ICD-9-CM diagnosis code (###.##) 
and procedure codes for up to six months following the date of arterial evaluation. In this study, we used a subset of 
PAD patients (n=10,451) and age- and sex-matched controls (n=15,779) from the vascular database to derive 
comorbid conditions. We defined PAD as an ankle brachial index (ABI) ≤ 0.9 and controls had an ABI > 1.0.  
Detailed methodologies used for the extraction of ICD-9 codes and natural language processing (NLP) algorithm to 
find various disease phenotypes from electronic medical records (EMR) are explained elsewhere (32, 33). 

 
Figure 1. Translational bioinformatics pipeline used to identify functional modules, biological pathways and drugs 
targeting molecular core of PAD and it’s comorbidities 

 

Mapping disease genes  

We derived the disease-gene network from the Gene Prospector (34) database available through the HUman 
Genome Epidemiology  (HUGE) Navigator (35, 36). We selected Gene Prospector as the resource to derive disease-
gene networks as it contains comprehensive data about genes in relation to human diseases, risk factors and other 
clinically relevant phenotypes. For each query, Gene Prospector uses a heuristic scoring function-based gene list 
with numbers of publications in different categories (total, genetic association, genome-wide association, meta-
analysis/pooled analysis and genetic testing) provided as the gene-disease annotation. Core genes associated with a 
pair of diseases were defined as follows: If a query of “peripheral arterial disease” in Gene Prospector database 
retrieved X genes and a query using comorbid condition “chronic kidney disorder” retrieved Y genes, we defined a 
subset of genes associated with a risk factor or PAD or a comorbid condition and PAD as X ∩ Y. We calculate 
significance of shared genetic architecture across two diseases as explained in our previous work (20, 21).  
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Functional modules and pathways underlying comorbidities 

We hypothesize that the functional modules and pathways enriched among the genes in the intersection of two gene 
lists could provide insights to functional cues specific to comorbidities. We used a Cytoscape software plug-in, 
ReactomeFI (http://apps.cytoscape.org/apps/reactomefiplugin) to perform cross-database pathway enrichment 
analyses and GO annotation enrichment analysis using the genes common to comorbid conditions. ReactomeFI 
enables the discovery of statistically significant relationship between a set of genes using annotations derived from 
multiple pathway databases (BioCarta; www.biocarta.com), Kyoto Encyclopedia of Genes and Genomes (KEGG; 
http://www.genome.jp/kegg/pathway.html), Protein ANalysis Through Evolutionary Relationship (PANTHER: 
http://www.pantherdb.org/pathway/), Reactome (http://reactome.org/) and GO annotations (biological process, 
cellular component and molecular function categories; http://www.geneontology.org/). In our post-enrichment 
filtering step, we used an FDR threshold of 0.05. Following the set computation and biological function enrichment, 
we compiled molecular core modules associated with risk factors and comorbidities. Biological plausibility of the 
computationally inferred networks was validated using human proteome-wide enrichment analyses using data from 
STRING database (https://string-db.org/).  

 

Computational drug repositioning using molecular cores of risk factors and comorbidities  

We used the canonical gene list corresponding to molecular core module to find drugs capable of agonistic and 
antagonistic effects for perturbations. Detailed account of the method to match gene signature to corresponding 
drugs is explained elsewhere (37-39). Briefly, the gene list to drug matching was performed using Chemo-Genomic 
Enrichment Analyses approach (Manuscript in preparation) and compounds were annotated in conjunction with 
RepurposeDB (http://repurposedb.dudleylab.org) (21, 23, 40).  

 

Figure 2: 1) Proportional Venn-diagrams of genes associated with risk factors (a, b, c and d) and comorbid 
conditions (e: coronary heart disease; f: chronic kidney disease; g: congestive heart failure; h: cerebrovascular 
disease; i: chronic obstructive pulmonary disease) 2) Functional interactions mediated by gene products common to 
risk factors (dyslipidemia, diabetes mellitus, hypertension and smoking) and comorbidities associated with PAD 
(coronary heart disease, congestive heart failure, chronic kidney disease, cerebrovascular disease, chronic 
obstructive pulmonary disease) visualized using Cytoscape. Nodes are genes and an edge indicates a common 
pathway (derived from BioCarta, KEGG, NCI-Pathways database, PANTHER or Reactome) or functional category 
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term shared by two genes. 3) Reactome molecular events mediated by genes common to PAD and seven 
comorbidities 4) KEGG pathways associated with genes common to PAD and comorbidities 

Briefly, to leverage CGEA method, we first define a biological state of interest using genes for PAD, PAD and risk 
factors or PAD and comorbidities, (which may reflect differential gene expression from an affected tissue in a 
disease of interest) in the form of “upregulated” and “downregulated” gene identifiers. The input query of gene lists 
is matched to compounds, and the "connectivity" between the gene signature and compound is scored after various 
filtering steps against the available drug-induced signatures compiled from reference databases. References 
resources like RepurposeDB (http://repurposedb.dudleylab.org/), Connectivity Map (CMap: 
https://portals.broadinstitute.org/cmap/), Genomics of Drug Sensitivity in Cancer (GDSC: 
http://www.cancerrxgene.org/) or Cancer Cell Line Encyclopedia (CCLE: https://portals.broadinstitute.org/ccle) are 
used to identify compounds that concordantly modulate the query signature in a direction “towards” or “away” from 
the query state. A Gaussian mixture model is to derive the “connectivity score” and assign statistical significance, 
and false discovery rate is estimated using Kolmogorov Smirnov test. As an output of the analyses, a ranked list of 
candidate compounds that may potentially modulate a biological state of interest is retrieved. Depending on the 
query signature and reference databases, often many candidate compounds will be extracted – such lists can be 
trimmed and prioritized for most likely candidates using annotations from reference databases (for example 
RepurposeDB, KEGG drugs, DrugBank, etc.) and also use specific characteristics including mechanism of action, 
side effects, chemical properties or biological targets.   

 
Results 

Seven comorbid conditions (coronary heart disease, congestive heart failure, chronic kidney disease, chronic 
obstructive pulmonary disease,) and four risk factors (diabetes mellitus, dyslipidemia, hypertension and smoking) 
were identified to be associated with PAD (Table 1) from the vascular database. 

Table 1: Comorbidities and risk-factors+ associated with PAD. 1Hypertension was considered present if there were 2 
blood pressure readings of ≥140/90 mm Hg within 3 months of the date of arterial evaluation, or a prior diagnosis of 
hypertension and current treatment with antihypertensive medication. 2 Clinical phenotyping of these conditions was 
performed using presence of relevant ICD-9 codes for up to 6 months following the date of arterial evaluation. 3 

Diabetes was ascertained on the basis of fasting plasma glucose ≥126 mg/dl, or random glucose >200 mg/dl, or 
hemoglobin A1c of  >6.5%, or a prior diagnosis and use of oral hypoglycemic agent(s) or insulin 

Risk factors and Comorbidities ICD-9 codes PAD (n, %) Normal (n, %) All (n) 
Risk factors      
Hypertension1  414.01   7517, 71.93% 2734, 51.31% 10251 
Dyslipidemia2 428.0 8016, 76.70% 3416, 64.11% 11432 
Diabetes Mellitus3 585, 403 2951, 28.24% 889, 16.69% 3840 
Smoking2 490–492, 

494–496 
7819, 84.17% 3133, 67.86% 10952 

Comorbidities     
Chronic kidney disease2 443.9 741, 7.08% 201, 3.76% 942 
Chronic obstructive pulmonary disease2 401 1837, 17.54% 425, 7.96% 2262 
Coronary heart disease2 250 5593, 53.52% 1698, 31.87% 7291 
Congestive heart failure2 272 1407, 13.46% 343, 6.44% 1750 
Cerebrovascular disease2 430-438 3302, 31.60% 733, 13.76% 4035 
Total (n) -- 10451 5328 15779 
 

Disease-gene annotations 

We queried the Gene Prospector database using “peripheral artery disease” and seven comorbid conditions to 
retrieve disease-gene lists (Supplementary File: F1). Overlap between genes associated with PAD (n=69) and 
proportional Venn-diagrams of PAD with various risk factors and comorbidities are provided in Figure 2 (Also See 
Table 2).  

Table 2: Summary of disease-gene annotations, functional interactions and orthogonal validation of molecular 
core using protein-protein interaction using STRING database for PAD and its comorbidities Disease annotations 
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were compiled using HuGE Navigator ^Genes common across PAD and comorbid conditions ^^Collective term to 
define relationship between two genes. Relationship could be association with a biological pathway or common 
functional roles (biological processes or molecular function) or cellular localizations.  
Risk factors and comorbidities Disease-gene 

annotations 
Overlap^ Functional 

interactions^^ 
PPI enrichment P 

Index disease     
Peripheral artery disease 69 69 38 <0.001 
Risk factors 
Hypertension 1459 57 35 <0.001 
Dyslipidemia 567 48 29 <0.001 
Diabetes Mellitus 3675 61 36 <0.001 
Smoking 4949 67 38 <0.001 
Comorbidities 
Chronic kidney disease 1198 56 32 <0.001 
Chronic obstructive pulmonary disease 614 32 24 <0.001 
Coronary heart disease 1019 57 34 <0.001 
Congestive heart failure 2491 58 36 <0.001 
Cerebrovascular disease 900 57 33 <0.001 
 
Shared molecular cores driving risk factors and comorbidities were identified using ReactomeFI (See Figure 2-2). 
Further, we used an independent database to test whether the molecular core modules harbor higher functional 
interactions than expected by random. Nine molecular cores were significantly enriched for protein-protein 
interactions and hence potentially represent plausible drug targets that have important functional roles. In an earlier 
study, we have built similar functional network from public molecular databases and perturbed using experimental 
methods for gene prioritization and functional studies in the setting of ovarian and pancreatic cancers (41, 42).  

Biological pathways mediated by genes shared by genes associated with PAD, its risk factors and comorbidities 

Individual lists of PAD genes common to risk factors and comorbid conditions were used to perform enrichment 
analysis using ReactomeFI. Functional interactions were obtained for all lists (Supplemental Data) and shared 
pathways were inferred using KEGG and Reactome annotations (Figure 2-3 and 2-4). Four independent enrichment 
analyses were performed using different gene lists using ReactomeFI to identify specific biological pathways and 
functional modules (protein domain annotations, biological process, cellular compartment and molecular function; 
Supplemental Data). Biological process annotated across the risk factors and comorbidities include the digestion of 
dietary lipids, sterol uptake, the formation and turnover of lipoproteins (chylomicrons, VLDL, LDL, and HDL), and 
the mobilization of fatty acids through the action of hormone-sensitive lipases. Pathways driving key process across 
risk factors and comorbidities suggests that Cell surface interactions at the vascular wall, formation of fibrin clot, 
formation of platelet plug and integrin cell surface and metabolism of lipids and lipoproteins are common across 
both risk factors.  

Table 3: Reactome molecular events shared by genes implicated in risk factors and PAD comorbidities; NA = 
molecular event is not associated with gene set; DM= Diabetes Mellitus; DL=dyslipidemia; CHD=coronary heart 
disease; CHF=coronary heart failure; CKD= chronic kidney disease; COPD=chronic obstructive pulmonary 
diseases; CVD=cerebrovascular disease  
Reactome events Risk factors Comorbidities 

DM DL CHD CHF CKD COPD CVD 
Cell surface 
interactions at the 
vascular wall 

MMP1, 
APOB, F2, 
ITGB3, SELP 

ITGB3, 
APOB, 
SELP, 
F2 

NA MMP1, 
APOB, F2, 
ITGB3, 
SELP 

MMP1, 
APOB, F2, 
ITGB3, SELP 

ITGB3, 
MMP1, 
APOB 

APOB 

Class A/1 
(Rhodopsin-like 
receptors) 

AGTR1, 
CCR5, 
CX3CR1, F2, 
AGT 

AGTR1, 
AGT, F2, 
CX3CR1 

NA AGTR1, 
CCR5, 
CX3CR1, 
F2, AGT 

AGTR1, 
CCR5, 
CX3CR1, F2, 
AGT 

AGT, 
CCR5, 
CX3CR
1 

NA 

Formation of 
Fibrin Clot 
(Clotting Cascade) 

F13A1, F12, 
F7, F5, F2, 
FGG, FGA, 

F13A1, 
FGB, 
F12, F7, 

F13A1, 
F12, F7, 
F5, F2, 

F13A1, F12, 
F7, F5, F2, 
FGG, FGA, 

F13A1, F12, 
F7, F5, F2, 
FGG, FGA, 

FGB, 
F5 

NA 
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FGB F5, F2 FGG, 
FGA, 
FGB 

FGB FGB 

Formation of 
Platelet plug 

F13A1, F5, 
VEGFA, F2, 
GNB3, 
ITGB3, FGG, 
FGA, FGB, 
SELP 

F13A1, 
ITGB3, 
FGB, 
SELP, 
F5, 
VEGFA, 
F2, 
GNB3 

F13A1, 
F5, 
VEGFA, 
F2, 
GNB3, 
ITGB3, 
FGG, 
FGA, 
FGB, 
SELP 

F13A1, F5, 
F2, VEGFA, 
GNB3, 
ITGB3, 
FGG, FGA, 
FGB, SELP 

F13A1, F5, 
VEGFA, F2, 
GNB3, 
ITGB3, FGG, 
FGA, FGB, 
SELP 

ITGB3, 
FGB, 
F5, 
VEGFA 

NA 

Integrin cell 
surface 
interactions 

ICAM1, 
ITGB3, FGG, 
FGA, FGB 

ITGB3, 
FGB, 
ICAM1 

ICAM1, 
ITGB3, 
FGG, 
FGA, 
FGB 

ICAM1, 
ITGB3, 
FGG, FGA, 
FGB 

ICAM1, 
ITGB3, FGG, 
FGA, FGB 

ITGB3, 
FGB, 
ICAM1 

NA 

Metabolism of 
lipids and 
lipoproteins(R) 

LDLR, 
APOB, 
APOE, 
SCARB1, 
MTTP, LIPC 

LDLR, 
APOB, 
APOE, 
SCARB1, 
MTTP, 
LIPC 

NA LDLR, 
APOB, 
APOE, 
SCARB1, 
MTTP, 
LIPC 

LDLR, 
APOB, 
APOE, 
SCARB1, 
MTTP, LIPC 

LDLR, 
APOB, 
APOE, 
SCARB
1, LIPC 

APOB, 
LDLR, 
APOE 

Metabolism of 
nitric oxide(R) 

NOS3 NOS3 NA NOS3 NOS3 NOS3 NA 

Receptor-ligand 
complexes bind G 
proteins(R) 

AGTR1, 
CCR5, 
GNB3, AGT 

AGTR1, 
AGT, 
GNB3 

NA AGTR1, 
CCR5, 
GNB3, AGT 

AGTR1, 
CCR5, 
GNB3, AGT 

AGT, 
CCR5 

NA 

Regulation of IGF 
Activity by 
IGFBP(R) 

MMP1, F2 F2 NA MMP1, F2 MMP1, F2 MMP1 NA 

Signaling by 
VEGF(R) 

VEGFA VEGFA NA VEGFA VEGFA VEGFA NA 

 
Computational Drug Repositioning using Molecular Core Module suggests new therapeutic interventions  

We tested the molecular core shared across two diseases to individual risk factors and comorbidities across 1309 
compounds, 743 of which have some approval status in the global pharmaceutical market as indicated in DrugBank. 
In this analysis, we focused on the already approved subset of 743 compounds to explore the feasibility of our 
approach. Briefly the gene set-drug matching data was compiled and annotated using data from the Connectivity 
Map, Anatomical Therapeutic Chemical (ATC) Classification System, PubChem, SIDER, Offsides and Drug Bank. 
Results compiled from CGEA consist of compound information including chemoinformatics signatures, drug target 
information, indications, mechanism of action and side effects. The rank-scored compound list that can perturb the 
molecular core sub network are provided in the Supplemental Data and the summary of top ranked compounds are 
provided in Table 4.  Several of the compound associations that we discovered are new; a compound fluspirilene is 
of particular interest. Fluspirilene is diphenylbutylpiperidine typical antipsychotic drug and it targets dopamine 
receptor, 5HT2A receptor and voltage-dependent calcium channel gamma-1 subunit.  Optimal calcium ion flux is 
critical in regulating cardiac function. Fluspirilene has shown experimental evidence in the in vitro studies for 
various cardiovascular diseases including cardiomyopathy (43).   

Table 4: Top compounds to perturb the molecular core of risk factors and comorbidities   

Risk factors and 
comorbidities 

Drugs to down regulate the module Drugs to upregulate the module 

PAD (Index disease)  fluspirilene, metyrapone, liothyronine nadolol, felbinac, aciclovir 
Risk factors 

114



  

Hypertension midodrine, felbinac, vancomycin,  fluspirilene, metyrapone, colecalciferol 
Dyslipidemia fluspirilene, metyrapone, methacholine 

chloride 
felbinac, cloxacillin, lisuride, amantadine 

Diabetes Mellitus fluspirilene, metyrapone, ceftazidime vancomycin, midodrine, lisuride 
Smoking aciclovir, vancomycin, nadolol fluspirilene, metyrapone, liothyronine 
Comorbidities 
Chronic kidney disease vancomycin, midodrine, aciclovir clioquinol, fluspirilene, daunorubicin 
Chronic obstructive 
pulmonary disease 

benzathine benzylpenicillin, lisuride, 
iodixanol 

atropine, doxazosin, fluspirilene 

Coronary heart disease lisuride, felbinac, vancomycin fluspirilene, metyrapone, blebbistatin 
Congestive heart failure vancomycin, midodrine, felbinac clioquinol, metyrapone, fluspirilene 
Cerebrovascular disease vancomycin, midodrine, felbinac fluspirilene, natamycin, metyrapone 
 

Discussion 

Precision medicine approaches are now leveraging molecular profiling data to recommend medications based an 
individualized risk. These approaches are now emerging in oncology and potentially expanding to other therapeutic 
domains. However, it should be noted that suggesting index disease based approach may lead to a “precision 
therapeutics-deluge”; for example, multiple rare genetic variants driving complex diseases like cancer and 
cardiovascular disorders. Hence there is an urgent need for a novel drug discovery approach. We envisage that a 
drug discovery strategy that combines epidemiology, network biology and computational approaches may yield 
better drug repositioning and discovery productivity (Figure 3). In this study, we have shown a method and initial 
results by applying the method to PAD. Compared to traditional drug repositioning and discovery strategies, 
network pharmacology and systems medicine approaches address both depth and breadth of biological knowledge to 
infer molecular connections to discover 
therapies. To the best of our knowledge, no 
previous studies have integrated comorbidities 
from a patient cohort database with follow-up 
functional module discovery study for PAD. 
While multiple novel therapeutic themes are 
now emerging in cardiovascular therapeutic 
space, including PCSK9 inhibitors and loss-of-
function based therapies, precise modulation of 
classical pathways and systematic control of 
lipid homeostasis may also improve optimal 
outcomes in these patients. Concordant with 
emerging findings, we also found NOS3, a key 
regulator of vascular disease and common gene 
across the risk factors and comorbidities (44, 
45). A previous report on drug repositioning 
for PAD suggests that anti-inflammatory 
molecules may serve as potential candidates for 
the systemic control of inflammation and 
associated pathways in the setting of PAD (46). Similarly we also found several existing cardiovascular therapies as 
top candidate drugs in our approach: this includes doxazosin, midodrine, and nadolol. Our findings are concordant to 
previous therapeutic indications for PAD as we found anti-inflammatory medications including felbinac in the 
ranked list of repurposed drugs that modulate the molecular core driving risk factors and PAD comorbidities. 
Interestingly, we also observe antivirals (aciclovir), antibacterials (ceftazidime, vancomycin) and antifungals 
(natamycin) as potential agents that could target the risk trajectories and comorbidities. This discovery opens up 
several possibilities including the need for the precise control of infection, inflammation and immune responses in 
the early stages of the PAD to potentially save patients from long-term detrimental effects. We also noted that a sub-
network motif composed of APOB, APOE and LDLR as a consensus theme across various risk factors and 
comorbidities. Developing novel molecules to monitor and target these genes may also yield novel cardiovascular 
therapies including CRISPR/Cas9 based therapies (47).  

 

Figure 3: Comparison of current and proposed drug 
discovery approach 

1) Current drug discovery strategy 2) Proposed drug discovery strategy 

Disease symptoms 

Multiple disease mechanisms 

Target individual symptoms/
mechanisms using individual 

therapies  

Medications 
to reduce 

side effects  
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therapeutic 

interventions 
due to drug-

drug 
interactions  

Therapeutic burden 

Disease symptoms 

Estimate comorbidities 

Target molecular core modules and 
pathways driving comorbidities 

Minimal side 
effects 

Improved 
therapeutic 

interventions 
due to limited  

drug-drug 
interactions  

Minimize therapeutic burden 
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Limitations of the current study 

In this proof of concept bioinformatics investigation, we leveraged the molecular core shared across risk factors or 
comorbidities associated with an index disease as a complement of disease signatures. Patient derived gene-
expression data would be a more ideal resource than the canonical gene sets used in the current investigation. Data 
elements like protein-protein interactions are also generated using reference database; compiling this from patients 
would be ideal. While our approach has been able to recommend drugs, extensive experimental validation and 
clinical trials are required before recommending the risk factor, comorbidity and disease sequelae based preventive 
therapies in cardiology (21). Also, in this study, we focus on a specific sub-module that is shared across a risk factor 
or comorbidity to find potential drug repositioning opportunities. Other modules including the particular set of genes 
that are unique to index diseases, risk factors or comorbidities or the entire set of genes may also lead to potential 
therapeutic opportunities. However, we did not evaluate these additional modules as part of this study. Also, gene 
expression profiling studies are usually reported for an index disease, not from patients with a specific risk factors or 
comorbidity. In this context, we compiled the gene set as a canonical gene list and did not consider the directionality 
of the query genes in the querying step. Also, the matching algorithm is sensitive to directionality, and the limited 
number of shared genes in the query, hence same drugs have been shown to modulate a given modulate in a 
different direction across different modules. Various studies suggests that polypharmacy leads to increase in 
prescription drug could that in turn increase primary side effects and secondary side effects due to drug-drug 
interactions. It is impossible to capture the entire spectrum of medications (over the counter, inpatient, ambulatory, 
surgery, ICU, emergency, etc.) to perform personalized medication reconciliation for all patients. Hence we 
hypothesize that using comorbidity targeting we may reduce the number of medications needed. However, we have 
only used pair-wise comorbidity in this analyses, expanding the number of shared diseases and finding the common 
module, if any, across all related diseases of an index condition could lead to better sub-typing and identification of 
optimal therapies instead of “pill-burden” and extensive side effect management using additional pills. 

 

Conclusion 

In this study, we present a drug discovery workflow that demonstrates how epidemiological information from a 
vascular disease registry can be effectively used for downstream translational studies to identify molecular bases 
underlying disease comorbidities. Biologically relevant pathways and functional categories obtained from the subset 
of genes common to a pair of conditions can be used to prioritize potential primary or secondary drug targets. This 
analysis also utilized multiple open access bioinformatics resources for finding protein-protein interaction or 
pathway sub-graphs that are common to various diseases, thus encouraging open access and reproducibility. We also 
plan to extend the study to systematically search for molecular core modules driving pair-wise diseases compiled 
from a phenome-wide library of 1988 disease conditions and 37, 282 disease pairs. Further, such a resource will be 
an indispensable resource for personalized, data-driven drug discovery.   
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