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Abstract 

The study of Electroencephalogram (EEG)-based biometric has gained the attention of researchers due to the neu‑
rons’ unique electrical activity representation of an individual. However, the practical application of EEG-based biom‑
etrics is not currently widespread and there are some challenges to its implementation. Nowadays, the evaluation of 
a biometric system is user driven. Usability is one of the concerning issues that determine the success of the system. 
The basic elements of the usability of a biometric system are effectiveness, efficiency and user satisfaction. Apart from 
the mandatory consideration of the biometric system’s performance, users also need an easy-to-use and easy-to-
learn authentication system. Thus, to satisfy these user requirements, this paper proposes a reasonable acquisition 
period and employs a consumer-grade EEG device to authenticate an individual to identify the performances of two 
acquisition protocols: eyes-closed (EC) and visual stimulation. A self-collected database of eight subjects was utilized 
in the analysis. The recording process was divided into two sessions, which were the morning and afternoon sessions. 
In each session, the subject was requested to perform two different tasks: EC and visual stimulation. The pairwise cor‑
relation of the preprocessed EEG signals of each electrode channel was determined and a feature vector was formed. 
Support vector machine (SVM) was then used for classification purposes. In the performance analysis, promising 
results were obtained, where EC protocol achieved an accuracy performance of 83.70–96.42% while visual stimulation 
protocol attained an accuracy performance of 87.64–99.06%. These results have demonstrated the feasibility and reli‑
ability of our acquisition protocols with consumer-grade EEG devices.
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1  Introduction
The growing interest in brain-computer interface (BCI) 
has led to an increase in the importance of understanding 
brain functions. BCI refers to a communication pathway 
between an external device and the human brain with-
out involving any physical movements, and covers both 
medical and nonmedical uses [1].  Authentication study 
is one of the examples of BCI which uses brain signals as 
a biometric identifier. Authentication is essential in our 
daily lives, which is performed in almost all human-to-
computer interactions to verify a user’s identity through 

passwords, pin codes, fingerprints, card readers, retina 
scanners, etc.With the growth of technology, advanced 
biometric authentication has been developed. Physi-
ological biometrics use a person’s physical characteristics 
to identify an individual, such as face, fingerprint, palm 
print, retina, iris, etc. This type of biometrics is hardly 
to be replaced once it has been compromised. On the 
other hand, behavioral biometrics analyze the digital pat-
terns in performing a specific task in the authentication. 
It is hard to mimic compared with the former biomet-
rics, and it is revocable and replaceable when compro-
mised [2]. While these traditional types of biometrics, 
human cognitive characteristics can be used to develop 
an alternative way of conventional physiological and 
behavioral biometrics [3]. It analyzes an individual’s cog-
nitive behavior (biosignals), such as a person’s emotional 
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and cognitive state for the purpose of identification and 
verification. 

The motivation of choosing brain signals for authen-
tication lies in the desire for a more privacy-compliant 
solution compared to other biometric traits. Brain sig-
nals possess specific characteristics which are not present 
in most of the widely used biometrics. They are unique 
and difficult to be captured by an imposter from a dis-
tance, thus increasing their resistance against spoofing 
attacks. One of the commonly used methods in recording 
brain signals is Electroencephalography or also known as 
EEG. It records the brain’s electrical activities by calcu-
lating voltage variations within the brain [1]. It is also a 
straightforward and non-invasive method to record brain 
electrical activity as it only requires placing electrodes on 
the scalp’s surface.

Brain activity can be obtained through EEG record-
ings using specifically designed protocols, including the 
resting state, motor imaginary, non-motor imaginary 
and stimulation protocol [4]. The resting-state proto-
col is easy to operate as it only requires users to rest for 
a few minutes in either eyes-closed (EC) or eyes-open 
(EO) state, while the EEG data are recorded. On the 
other hand, motor imaginary requires the users to men-
tally simulate a physical action, such as movements of the 
right hand, left hand, foot and others. Other than that, 
EEG data can also be acquired by asking the user to per-
form non-motor imaginary tasks, for instance, mental 
calculation, internal speech or singing. Finally, the stimu-
lation protocol presents the users with a series of stimuli 
and the electrical response of the users is recorded. Vari-
ous stimuli have been proposed and applied in the litera-
ture for this protocol, such as pictures, wording, audio, 
etc.

Despite promising results being reported in the litera-
ture, the utilization of EEG-based biometrics system is 
not currently widespread in practical applications. One 
of the reasons lies in the implementation and operation 
of this biometric approach. The performance relies on 
the design of the acquisition protocol [5]. This approach 
requires a long period of time for the users to undergo 
EEG brain’s data recording. This approach is impracti-
cal to be used in real life as users would not be willing 
to spend that much time on the authentication process. 
Moreover, Ruiz Blondet et al. and Wu et al. [6, 7] argued 
that most studies used high-density EEG devices, 
which were very costly and the setup process was 
time-consuming.

Typically, a biometrics system is expected to be 
accessed by users frequently. Its fundamental usability 

elements are effectiveness, efficiency, and user satisfac-
tion [8]. Effectiveness refers to how well a user can per-
form a task. Efficiency measures how quickly a user can 
perform the task with a reasonably low error rate. Finally, 
satisfaction measures the users’ perceptions and feelings 
towards the application. With these requirements, users 
may not only need a reliable system, but also a user-
friendly and affordable EEG device during the acquisi-
tion process. A consumer-grade wireless EEG device with 
lesser channels can be a potential alternative to replace 
the clinical-grade device. It should also strike a balance 
between security and user-friendliness in real-life appli-
cations [9]. Thus, the paper aims to propose an acquisi-
tion protocol that employs a consumer-grade EEG device 
with a reasonable enrolment period. In addition, the reli-
ability of the EEG signals recorded via a consumer-grade 
device is also examined through different sessions with 
regard to two acquisition protocols, namely eye-closed 
(EC) and visual stimulation protocol.

The rest of the paper is organized as follows.  Sec-
tion 2 discusses the literature review. Section 3 presents 
the proposed approach. Section 4 shows the experiment 
results and performance evaluation, and Sect.  5 discuss 
es the findings of the proposed system. Finally, Sect.  6 
provides a conclusive remark to this paper and some 
future works are suggested. 

2 � Related work 
From the beginning of the twentieth century, EEG analy-
sis has been mainly employed in the medication field to 
study brain diseases such as stroke, brain tumor, epilepsy, 
Alzheimer, Parkinson, etc. [10]. In particular, it has been 
heavily employed in BCI in the last decade, where the 
main objective is to help patients with severe neuromus-
cular disorders. Applications of BCI functions by either 
observing the users’ state or allowing the users express 
their intentions; meanwhile, the users’ brain signals are 
recorded and sent to a computer system for further anal-
ysis. The result is then translated into a command and the 
system is instructed to complete the intended task [1]. 
Recently, the research of BCI has been extended further 
to cover several applications, including authentication 
and security [4].

Cognitive biometric is a new technology that utilizes 
brain activity to authenticate an individual. The brain’s 
activity can be recorded by measuring the blood flow in 
the brain or by measuring the electrical activity of the 
brain’s neurons. EEG is widely considered for usage in 
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security areas as the signals are unique and possess dis-
tinctive characteristics, which are not present in other 
commonly used biometrics such as face, iris, palm prints 
and fingerprints. Due to its high privacy compliance 
nature, EEG-based biometric is robust against spoofing 
attacks as it is impossible for an imposter to capture the 
brain signal from a distance [10]. EEG signals are also 
sensitive to stress. Thus, it is hard to force a person to 
reproduce brain activity when they are panicked.

In general, biometrics must fulfill four requirements: 
universality, permanence, uniqueness and collectabil-
ity [11]. Universality refers to the requirement that each 
person should naturally possess the characteristic being 
measured. Permanence requires that the characteristics 
of a person should stay the same over time for the pur-
pose of criteria matching. Uniqueness is the requirement 
that the characteristics of a person should be unique and 
distinguishable from one another. Finally, collectability 
requires that the characteristics of a person should be 
measurable with any capturing device. Previous studies 
had made a significant effort to prove the viability of EEG 
as a biometric identifier [10, 12–14]. Ruiz Blondet et al. 
[6] further emphasized that, in terms of collectability, 
the design of EEG acquisition protocol should be user-
friendly to the users. It can be done by reducing the num-
ber of electrodes to make the design more feasible and 
closer to real-world applications. Several EEG acquisition 
protocols were designed and proposed in the literature 
to obtain specific brain responses of interest. The main 
objective was to study the neural mechanisms of infor-
mation processing in environmental perception and dur-
ing complex cognitive operations [15]. These acquisition 
protocols generally be divided into two categories: rest-
ing state and stimulation [16].

For the resting state protocol, the user is required to sit 
on a chair and rest for a few minutes in either eyes-closed 
(EC) or eyes-open (EO) state as instructed. Meanwhile, 
the brain signals of the users are recorded. To the best of 
our knowledge, [17] was the first research that proposed 
an EEG-based biometric using a resting state protocol. 
The authors recorded EEG signals from four subjects 
when they were performing EC activity that lasted for 3 
continuous minutes. The spectral values of the signals 
were calculated using Fast Fourier Transform (FFT). The 
Alpha frequency band (7–12 Hz) was obtained and this 
value was further sub-divided into three overlapping 
sub-bands. The obtained classification scores ranging 
from 80 to 95% were correct, which proved that the EEG 
signals can be used as one of the biometric traits. Both 
sub-bands were informative and no frequency band was 

reported to have an extra benefit over the others. In La 
Rocca et al. [10], the repeatability of the EEG signal was 
addressed. A ‘resting state’ protocol with both EC and 
EO was designed to acquire raw EEG signals from nine 
healthy subjects in two different sessions, in which both 
sessions were 1 to 3 weeks apart. The signals from the 54 
electrodes that were attached to the scalp of the subject 
were continuously recorded. The raw EEG signals were 
filtered by an anti-aliasing FIR filter before they were 
presented in four sub-bands from 0.5 to 30 Hz. A com-
mon average referencing (CAR) filter was then employed 
to minimize the artifacts. Each preprocessing signal was 
modelled according to an autoregressive model while 
using reflection coefficients to generate the feature vec-
tor, then a linear classifier was employed for classifi-
cation. In the evaluation, a different set of electrodes 
combination was tested and the results showed a high 
degree of repeatability over the time interval. In Ma et al. 
[18], the EEG data were adopted from a public data set. 
A total of 10 subjects were enrolled and they were asked 
to perform 55  s of EC and EO tasks, respectively, using 
a device with 64 electrodes. The recorded EEG signals 
were segmented into 55 trials separately with a 1-s frame 
length. 50 trials were used for training and the rest were 
used for testing purposes. Convolutional neural networks 
(CNN) was applied for feature extraction and classifica-
tion. The findings showed that the suggested approach 
yielded a high degree of accuracy with accuracy of 88% 
for a 10-class classification. Besides, an inter-personal 
difference can be discovered using a very low-frequency 
band of 0 to 2 Hz.

The second EEG acquisition protocol is based on the 
stimulus of an external event on the subjects. After stim-
ulation, the electrical response of the subjects is recorded 
through the nervous system. A typically employed stim-
ulation protocol in EEG-based biometric is the Event-
Related Potential (ERP). It is a time-locked deflection 
on the ongoing brain activity after being exposed to an 
external event. The event can be sensory, visual or audio 
stimuli [1]. In Palaniappan and Ravi [19], the study was 
conducted to assess the feasibility of ERP using visual 
stimuli. 20 subjects participated in the study. Their sig-
nals were obtained from 61 electrodes placed on the scalp 
when they looked at typical black images with white lines 
of drawn objects such as an aeroplane, a banana, a ball, 
etc. The recorded signals with an eye blink artifact with 
magnitude above 100  µV were removed. Besides, those 
signals were also de-noised through Principal Compo-
nent Analysis (PCA). The spectra features consisting of 
power in the gamma band (30 to 50 Hz) were extracted 
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and classified through a Simplified Fuzzy ARTMAP 
(SFA) neural network (NN). The results showed an aver-
age classification of 94.18%, which proved the proposed 
method’s potential in recognizing individuals.

The stability of the EEG signals was evaluated in [14] 
using visual stimulation protocol to record raw EEG sig-
nals from 45 subjects. Those subjects were presented 
with several acronyms (example: DVD, TV and TN) 
which were intermixed with other lexical types. The 
experiments consisted of three different sessions, which 
were carried out in 6 months. For the third session, only 
nine subjects returned for data acquisition. A hardware 
filter was applied to reduce the influence of DC shifts and 
bootstrapping was used to generate extra features. Dif-
ferent classifiers such as cross-correlation, support vec-
tor machine (SVM) and divergent autoencoder (DIVA) 
were adopted. The findings verified the permanence of 
the EEG characteristics and it was found that the brain 
signals of the subjects could remain stable over a rela-
tively long period of time. Besides, Ruiz-Blondet et  al. 
[20] had suggested that using ERP may provide more 
accurate results in EEG-based biometric as its elicitation 
process allows for some control over the user’s cognitive 
state during EEG data recording sessions. The EEG data 
from 50 subjects were acquired using 30 sensors. The 
cognitive Event-Related Potential Biometric Recognition 
(CEREBRE) protocol was designed to obtain the unique 
response of the subjects from the brain systems. This 
protocol includes different categories of stimuli such as 
sine gratings, low-frequency words, food images, words, 
celebrities and oddballs. Besides, subjects were also asked 
to remain in resting state and undergo pass-thought ses-
sions. The duration of the entire experiment was roughly 
one and a half hours. The study did not apply any artifact 
rejection or feature extraction method, where only simple 
cross-correlation was used for classification. The results 
showed that all stimulus types achieved greater accuracy. 
In a recent study, the authors in Sabeti et al. [21] investi-
gated the subjects’ features using resting (EO) and ERP 
acquisition protocol. Each subject was required to per-
form a task in EO state for 2 min, where no stimulus was 
imposed for the first task. However, for the second task, 
audio stimuli were randomly applied and the subjects 
were requested to discriminate the different pitch lev-
els. The EEG recording for the second task took around 
20 min. The EEG signals were filtered using a bandpass 
filter ranged from 0.5 to 45 Hz. Several features such as 
spectral coherence, wavelet coefficients and correlation 
were extracted and evaluated using SVM, K-Nearest 
Neighbors (KNN) and Random Forest classifiers. Results 
showed that correlation was the most discriminative fea-
ture among other methods in user authentication.

The implementation of the resting protocol from previ-
ous studies has shown that the procedure is convenient, 
but an individual’s mental state is uncontrollable when 
EEG data are acquired in different sessions. Thus, visual 
stimulation is proposed to provide more reliable biom-
etric authentication as this approach allows the experi-
menter to control the individual’s cognitive state during 
the time of acquisition. However, due to the small size 
of an ERP, a large number of trials is needed to gain the 
desired accuracy performance of the authentication, 
which leads to the users undergoing a lengthy EEG acqui-
sition period [20].

EEG-based systems are still far from being commer-
cialized as they still face several challenges [5]. Usability 
is one of the challenges which should gain more attention 
as it is an important principle to determine the success 
of the system. Users tend to use the system if it is con-
venient and easy to use. However, most of the current 
data acquisition process requires a lengthy time to set 
up, especially for a wired EEG recording device. Besides 
that, the user has to place a large number of electrodes 
on their scalp using conductive gel to reduce skin imped-
ance. As an alternative, [7] suggested replacing the cum-
bersome wired devices with consumer-grade wireless 
EEG devices which could be more practicable in real life. 
However, these devices possess a limitation that needs to 
be considered, where the signal quality could be relatively 
inferior compared to the research-grade type of devices. 
Moreover, the lengthy acquisition period is another line 
of research that needs to be addressed as the participants 
could lose patience during the acquisition process, which 
leads to the distortion of the signal or reluctance to take 
part in the data enrolment process. Therefore, acquisition 
protocols that utilize a consumer-grade device to acquire 
EEG signals within a reasonably short period of time are 
proposed in this work.

3 � Methods
The performance of an EEG-based biometric depends on 
a proper design of the acquisition protocol. The portabil-
ity of the EEG device and acquisition period will be con-
sidered to improve the usability and practicability of the 
system. The proposed system comprises 5 components: 
data acquisition, preprocessing, signal segmentation, 

EEG data 

acquisition

Signal pre-

processing
Segmentation

Feature ExtractionClassificationResult

Fig. 1  Overflow of proposed method
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feature extraction, and classification. Figure  1 illustrates 
the flowchart of the proposed method.

3.1 � Acquisition protocol
Conventionally, EEG signals are recorded using clini-
cal-grade EEG equipment. This device is expensive and 
inconvenient as the setting up could take a tremendous 
among of time. Hence, in this work, a consumer-grade 
type of EEG device is used as an alternative to improve 
user experience. The EEG signals are collected from 8 
healthy volunteers (2 female, 6 male, all ages from 18 to 
33) using Emotiv EPOC+ wireless headset, as illustrated 
in Fig. 2. It comprises 14 integrated electrodes with two 
reference sensors where each sensor is located at the 
standard positions of the International 10–20 systems as 
shown in Fig. 3.

Before the acquisition process, a brief introduction 
about the purpose of the study was given to the sub-
ject. In addition, the subject was also allowed to see the 
changes in their EEG signal when they blinked their eyes 
or moved their bodies. The purpose of this demonstra-
tion is to tell the subject that any eye movements and 
muscle tension can impact their brain waves. Thus, they 
were requested to avoid big movements and remain as 
still as possible. The entire data acquisition process was 
conducted in a standard enclosed room. The recording 
process was divided into morning and afternoon sessions 
to assess the stability of the consumer-grade EEG equip-
ment when recording EEG signals over different sessions. 
In each session, the subject was required to perform two 

different tasks (eyes-closed and visual stimulation), while 
data were recorded at a 256 Hz sampling rate.

•	 Task 1: Eyes-closed (EC)—subject was seated on a 
chair with both arms resting. Before the enrollment, 
the subject was instructed to keep the mind as calm 
as possible and remain in a resting state with eyes 
closed. The recording started 10  s after the subject 
closed the eyes and remained resting. EEG signals 
were recorded for 30  s continuously and then the 
recording process was stopped.

•	 Task 2: Visual stimulation—the subject was 
requested to be seated on the same chair without any 
major movements after completing Task 1. A LED 
screen of size 17″ was placed in front of the subject. 
The subject was guided to sit comfortably at a certain 
distance from the screen. During the recording pro-
cess, a series of stimuli with 120 single words were 
displayed to the subject. The subject was requested 
to focus and interpret each stimulus silently at all 
times, where no big body movements were allowed. 
However, they were allowed to blink their eyes to 
reduce the tiredness during the enrolment process. 
The stimulation design was mainly focused on word-
ing presentation as the subject’s semantic memory 
might provide distinctive biometric properties. Each 
stimulus was a wording that consisted of four to 
seven letters that the subject could easily understand. 
A stimulus was displayed on the computer screen 
for 1  s followed by a 1-s black screen, as illustrated 
in Fig. 4. It took approximately 4 min to show all the 
120 wordings to the user (including the black screen), 
then the recording process was stopped. Along the 
process, an Inter-Stimulus Interval (ISI) could be seg-
mented into parts (coined as a trial in this work) that 
consisted of 0.5 s of black screen, followed by 1 s of 
stimulus displayed and another 0.5 s of black screen, 
as illustrated in Fig. 4.

Fig. 2  EEG Emotiv EPOC+ wireless headset

Fig. 3  Framework of brainwave user recognition

HTTP honey

1s 1s

……Next trial

1s

Blank Screen Stimulus Blank Screen

1 trial

Fig. 4  Visual stimulation with using wording presentation
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A total of eight subjects contributed to the EEG data 
acquisition process and a total of four well-collected data 
sets were obtained from the two sessions as follows:

•	 Session 1: Eyes-closed data set, S1ec
•	 Session 1: Visual stimulation data set, S1s
•	 Session 2: Eyes-closed data set, S2ec
•	 Session 2: Visual stimulation data set, S2s

3.2 � Preprocessing and segmentation
EEGLAB is an interactive MATLAB toolbox and was 
implemented in this study for preprocessing and seg-
mentation purposes. Before performing feature extrac-
tion, unwanted artifacts and unnecessary information 
will be removed from the collected EEG signals, there-
fore improving the signal-to-noise ratio. Filtering is a 
process to filter continuous EEG data before epoching or 
artifact removal. Finite Impulse Response (FIR), a linear 
filter, was adopted to remove the direct current shifts of 
the recorded EEG signals where the range was set from 
1 to 55  Hz. An Automatic Artifact Removal (AAR) was 
then applied to data set S1s and S2s to remove the ocular 
artifacts in the recorded EEG signals. The AAR is one of 
the toolboxes available in the EEGLAB plug-in [22] and is 
used to correct the ocular effects within EEG signals. No 
artifact rejection was applied to S1ec and S2ec data sets 
as the EEG signals collected for these data sets were for 
resting state without eyes and muscle movements.

After the removal of the artifacts, the EEG signals were 
segmented into small parts, which were named trials. For 
eye-closed data sets (S1ec and S2ec), the first 5  s of the 
signal, which contained inconsistency, were discarded. 
The remaining EEG signals were then segmented into 
25 trials, with each trial containing a 1-s frame length 
(256 sample points). The frame length had been experi-
mentally selected based on the existing study [10]. On 
the other hand, for visual stimulation data sets (S1s and 
S2s), the signals were epoched and ERPs were formed for 
each stimulus starting from − 1000 ms to stimulus onset 
and lasting for 1000 ms after probe onset (refer to Fig. 4), 
resulting in 512 sample points for each trial. In other 
words, each trial contained a 1-s stimulus and it was 
embedded with 0.5  s of black screen at both the begin-
ning and the end of the trial. After this, epoch rejection 
was applied to remove some trials that appeared to con-
tain significant artifacts, resulting in a range of 100–120 
trials for each subject after the segmentation process.

3.3 � Feature extraction
Cross-correlation was considered to process the EEG 
signals. Cross-correlation is a measure of the degree to 
which two series are correlated. It measures how closely 
two different observables are related to each other at 
the same or different times by considering time lag [23]. 
If x[N ] and y[N ] are two discrete signals where N is the 
length of the signal, then the correlation of x[n] with 
respect to y[n] is given as:

where l is the lag or delay which indicates the time-shift 
and t indicates the period of the signal. If both signals are 
discrete functions of period N, then the − ∞ to ∞ can be 
replaced by an internal of length N from t0 = 0 to t0 + N. 
The correlation values between the 14 channels of each 
trial were computed in a pairwise manner. The maximum 
of the cross-correlation over all trials for each pair was 
extracted from the correlation values, which was denoted 
as max .

The variation of the range value corresponding to the 
features can deteriorate the performance of the overall 
system. Thus, all features were normalized to the range 
between 0 and 1, so that each feature contributed pro-
portionately to the final distance. Assuming that a feature 
is denoted as x , the equation for the normalization can be 
defined as:

where xnorm is the normalized features. Therefore, a fea-
ture vector v is constructed by concatenating all normal-
ized features as:

3.4 � SVM classification
A good classification method is essential to accept or 
reject a claimed person from accessing the system based 
on an input. An efficient and effective model is necessary 
for predicting the classes from the data. In general, the 
learning process is done using the training data chosen 
from the sample data and their class label. Researchers 
have widely used SVM to classify EEG signals. SVM is a 
classification method that involves separating test data 

(1)rxy[l] =

∞
∑

t=−∞

x[t]y[t − l],

(2)xnorm =
x − xmin

xmax − xmin
,

(3)v =

(

max (xnorm),µ(xnorm), σ
2(xnorm)

)

.
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with different class labels by learning the structure from 
the training data and constructing the hyperplanes in a 
multidimensional space based on that data [24]. SVM 
adopts a set of mathematical functions that are known 
as kernels. The function of a kernel is to receive the data 
as an input and transform it into the desired form. Poly-
nomial SVM is one of the common kernels used in the 
data classification of non-linear models among the avail-
able SVM kernels. It has a good generalization ability and 
a low learning capacity when the data are non-linearly 
separated. Since EEG signals are non-stationary and 
Polynomial SVM had shown a good classification perfor-
mance in previous EEG studies [25, 26], Polynomial SVM 
was used in this study as the classifier for classifying EEG 
patterns.

While this work aims to recognize an individual using 
EEG signals, it leads to a multi-class SVM prediction. 
Multiple class prediction is more complex than binary 
prediction, because the classification algorithm has to 
consider more separation boundaries or relations [27]. 
The present study considered two decomposition strate-
gies: (OVO) one-vs-one and (OVA) one-vs-all. OVO is a 
pairwise classification that maps all data sets that belong 
to a certain class. It splits a multi-class classification data 
set into binary classification problems. The number of 
generated models depends on the number of classes. 
Consider the formula n/(n − 1)/2, where n is the number 
of classes. If n is equivalent to 5, the total of the generated 
models is 10. While OVA is also a paired binary class, it 
splits a multi-class classification data set into one binary 
classification problem per class. OVA produces the same 
amount of learned models as the number of classes. If the 
number of classes is 5, the number of generated models 
will also be the same [28].

4 � Experiment results
In the experiment analysis, the k-fold cross-validation 
technique was adopted to generate fair and averaged 
performance results, where the k was set to 5 in this 
study. Therefore, in this cross-validation, the data were 
divided into 5 distinct subsets and repeated for 5 itera-
tions. In each iteration, a subset was selected for testing, 
while the rest of the subsets (k − 1) were used for train-
ing. It is noted that the distribution of trials for the subset 
was randomized and the selection of each subset in each 
iteration for training and testing purposes was mutually 
exclusive. The average accuracy was determined for each 
fold. The average accuracy and its standard deviation, 
which describes the amount of variability or dispersion 
around the average, are reported in this section.
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The experiments were conducted on both morning and 
afternoon sessions’ data sets. In addition, to assess the 
stability of the signals across the different sessions, the 
trials from both sessions were also merged to produce 
another data set, which was named as the combined ses-
sions, during the evaluation process. The performance 
metrics including accuracy, precision, sensitivity, speci-
ficity and F1-score are reported. These metrics were 
computed based on four parameters: true positive (TP), 
false positive (FP), true negative (TN) and false negative 
(FN), where they are derived as follows:

The averaged classification results of 4 data sets 
with different sessions are summarized in Tables  1, 
2 and 3. As observed from Tables 1, 2 and 3, the visual 
stimulation task outperformed the EC task in three 
experiments, including the morning, afternoon and 
combined sessions. It achieved a very promising accu-
racy performance especially for morning and after-
noon sessions (S1S,OVO = 96.91%, S1S,OVA = 99.06%, 
S2S,OVO = 97.71%, S2S,OVA = 99.05%) as compared to 
the EC task (S1EC,OVO = 83.70%, S1EC,OVA = 82.73%, 
S2EC,OVO = 86.69%, S2EC,OVA = 96.42%). The accuracy 
performances of visual stimulation for the combined ses-
sions also outperformed the EC task with accuracies of 
87.64% (S1 + S2S, OVO) and 96.56% (S1 + S2S, OVA) while 
the EC task had accuracies of 86.61% (S1 + S2EC, OVO) 
and 96.41% (S1 + S2EC, OVA) for both OVO and OVA, 
respectively.

Based on the comparison, it is noticed that the visual 
stimulation task performed better than the EC task. Some 
statistical tests were carried out in this study to measure 
the significant difference between each task. First, the 
Shapiro–Wilk Test was used to evaluate the acquisition 

(4)Accuracy =
TP+ TN

TP+ TN+ FP+ FN
,

(5)Precision =
TP

TP+ FP
,

(6)Sensitivity =
TP

TP+ FN
,

(7)Specificity =
TN

TN+ FP
,

(8)F1 score =
precision ∗ sensitivity

precision+ sensitivity
.

methods’ results and examine if they obeyed normal dis-
tribution. If the data is normally distributed, the paired 
t test is applied to assess the consistency of classifica-
tion performance; otherwise, the Wilcoxon Rank Sum 
test is considered. These calculations were performed 
using the SPSS software. The Shapiro–Wilk test showed 
that the average classification accuracy for OVO–SVM 
only obeyed the normal distribution in the morning, 
afternoon and combined sessions. The probabilities are 
summarized in Table 4. As the data were a normal distri-
bution, a paired t test was conducted to compare the dif-
ferences of OVO classification measurement between the 
EC task and the visual stimulation task. The paired t test 
showed that visual stimulation performed better than EC 
in the morning and afternoon sessions, where both clas-
sification measurements (p < 0.05) were significant.

On the other hand, based on Table 4, the distribution 
for OVA classification accuracy did not resemble a nor-
mal distribution. Thus, the Wilcoxon Rank Sum test, 
the non-parametric alternative to the paired t test, was 
applied. The Wilcoxon Rank Sum test results indicate 
that the visual stimulation’s performances were better 
than EC in both morning and afternoon sessions. There 
was a significant difference at the level of 0.05. Mean-
while, visual stimulation also outperformed EC when 
the morning session was combined with the afternoon 
session; however, the difference was not significant. The 
results are reported in Table 5.

The results in Table 5 show the range of p values from 
0.000 to 0.017 in the morning and afternoon sessions. 
Therefore, there is sufficient evidence to conclude that 
the classification accuracy can achieve better perfor-
mance on average if the EEG data are acquired through 
visual stimulation task in separate time sessions. The 
visual stimulation task appears to be effective in terms of 
better capabilities in recognizing the claimed users. How-
ever, it was also observed that the combined sessions did 
not inherit similar characteristics to both previous ses-
sions where the p values were not significant (p > 0.05). 
These results imply that the intra-class data variability 
does not significantly impact the signal’s stability, thus 
leading to similar results between visual stimulation and 
EC.

On the other hand, it was also observed that OVA out-
performed OVO in most performance metrics for both 
EC and visual stimulation tasks in all experiments. The 
finest accuracy for OVA considering both visual stimula-
tion task and EC task was 99.06%. It had a higher average 
accuracy of 12.5% (EC) and 4.59% (visual stimulation), 
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respectively, compared to OVO. The comparison results 
between both decomposition strategies in SVM are 
reported in Table 6. However, it is noticed that there was 
degradation in terms of specificity performance in OVA 
for all experiment tasks. It may be due to the OVA strat-
egy which involves duplication of a single binary classi-
fication per class, where the samples from a particular 
class are assigned as positive while samples from the rest 
of the classes are assigned as negatives for each iteration. 

Table 4  Normal distribution results

Task Normal distribution probabilities using Shapiro–Wilk test

OVO OVA

Morning Afternoon Combined sessions Morning Afternoon Combined 
sessions

Eye-closed 0.871 0.146 0.271 0.001 0.000 0.007

Visual stimulation 0.536 0.297 0.961 0.000 0.001 0.007

Table 5  Paired t test and Wilcoxon sRank Sum test for classification measurements (p values)

Sessions Paired t test (OVO) Wilcoxon Rank Sum test (OVA)

Acc. Pre. Sens. Spec. F1 Acc. Pre. Sens. Spec. F1

Morning 0.005 0.006 0.005 0.015 0.007 0.000 0.014 0.000 0.000 0.000

Afternoon 0.005 0.016 0.017 0.015 0.017 0.000 0.000 0.000 0.000 0.000

Combined sessions 0.012 0.357 0.361 0.443 0.360 0.201 0.864 0.279 0.230 0.310

Table 6  Classification accuracy of OVO and OVA

Task OVO OVA OVA > OVO (%)

Morning Afternoon Combined 
sessions

Morning Afternoon Combined 
sessions

Morning Afternoon Combined 
sessions

Eye-closed 83.7 86.69 86.61 96.23 96.42 96.41 14.97 11.22 11.31

Visual stimulation 96.91 97.71 87.64 99.06 99.05 96.56 2.22 1.37 10.78
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Fig. 5  Comparison results of EEG acquisition protocols for the 
morning session, S1
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Fig. 6  Comparison results of EEG acquisition protocols for the 
afternoon session, S2
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Fig. 7  Comparison of EEG acquisition protocols for the morning and 
afternoon sessions, S1 + S2
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Assuming n is the number of classes, the OVA repeats for 
n times, and for each time, a class is defined as a positive 
class while the rest of the classes (n − 1) are denoted as 
negatives. In this way, there is classifier imbalance as the 
number of negative samples is significantly larger than 
positive samples. It increases the chance for the system to 
rule out the negative samples mistakenly, thus decreasing 
the true-negative result.

5 � Discussion
The overall results obtained in this study reveals that 
EEG signals are an effective biometric identifier in user 
authentication. As shown in Figs.  5, 6 and 7, the visual 
stimulation task had better accuracy performance than 
the EC task. In addition, the results for the EC task had 
a higher standard deviation than the visual stimulation 
task. It is believed that the subjects’ minds in EC proto-
col are uncontrollable without the existence of stimulus, 
therefore leading to the instability of the signal produced. 
The findings also reveal that the visual stimulation with 
ERP protocol is better than EC protocol as ERP allows 
the experimenter to tightly control the user’s cognitive 
state. Although performance degradation was observed 
when combining both morning and afternoon sessions, 
the specificity was still sustained within 81.68–98.23% 
and 80.53–98.08% for visual stimulation and EC tasks, 
respectively. These results indicate that the proposed sys-
tem is able to identify the ratio of true negatives to total 
negatives in the data set. A comparison of the proposed 
method with existing works is listed in Table 7.

As seen from the table above, the proposed method 
had obtained better results than most existing works. 
Although the accuracy reported in [20] was perfectly 
accurate, it is the least practical as the acquisition process 
took one and a half hours to retrieve EEG responses from 
individuals based on six types of stimulus. In terms of 
EEG recording devices, most reported studies preferred 
using research-grade devices due to their reliability. The 

proposed method uses a consumer-grade device, which 
is proven to have the capability to recognize the individu-
als even in separate sessions. In addition, it is cost-effec-
tive in terms of practical applications. Furthermore, the 
acquisition duration is one of the key reasons that makes 
the proposed protocol more applicable in a real-world 
environment. In past works, they took a minimum of 
55 s for the EO or EC task, and 20 min for the ERP task. 
The proposed study reduced the duration to 30 s for the 
EC task and 4 min for the ERP task, which implies that 
both cases can achieve very promising results. Moreover, 
tests for different sessions were conducted to assess the 
stability of the EEG signals and the results demonstrate 
the suitability of the proposed acquisition protocol in the 
authentication field.

6 � Conclusion
This paper discussed an EEG-based recognition sys-
tem’s acquisition protocols and performance compari-
son between the EC and visual stimulation protocols. We 
proposed using a consumer-grade EEG device for indi-
vidual authentication in our study. A reasonable acquisi-
tion period was proposed to ensure the feasibility of the 
EEG-based biometric in the future. In this study, cross-
correlation was determined to measure the correlation 
between two different EEG channel signals. We obtained 
good results when the classification was carried out 
using cross-correlation together with SVM. The results 
show that using visual stimulation protocol achieved 
better performance in terms of classification and con-
sistency than using the EC protocol. However, there is a 
potential to apply incremental learning to model intra-
class variability over time. Besides, OVA performed bet-
ter than OVO. It can be noted that the distribution for 
OVA’s classification accuracy did not resemble a normal 
distribution due to the small size of the samples. There-
fore, a non-parametric test was needed to compare the 
differences of the classification measurement between 

Table 7  Performance comparison of the existing works

Authors Acquisition protocol Type of EEG devices Wired or wireless Session Duration Performance measure

Ma et al. [18] Resting-state (EO and EC) Research/clinical Wired 1 55 s for each task Accuracy: 64–88%

Armstrong et al. [14] ERP (word items) Research/clinical Wired 3 Not mentioned Accuracy: 82–97%

Maria et al. [20] ERP (images) Research/clinical Wired 1 1 and half hour Accuracy: 100%

Sabeti et al. [21] − Resting-state with EO
− ERP (audio)

Research/clinical Wired 1 − 2 min
− 20 min

Accuracy:
EC: 38.20–77.53%
ERP: 23.76–99.06%

Proposed method − Resting-state with EC
− ERP (word items)

Consumer Wireless 2 − 30 s
− 4 min

Accuracy:
EC: 83.7–96.42%
ERP: 87.64–99.06%
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the proposed methods. The results indicate that visual 
stimulation performed better than EC in both morning 
and afternoon sessions with a significant difference at 
the level of 0.05. Larger sample classes are recommended 
for further comparison between OVO and OVA. Future 
works that can be carried out include investigating the 
extraction and selection of more reliable features from 
EEG signals with a larger sample size and applying other 
classification methods to improve the intra- and inter-
individual EEG stability.
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