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1. Introduction
Several compartmental models have been designed in epidemiology to simplify the

mathematical modeling of infectious diseases, so as to describe their spreading in a

population of individuals. Among them, we will make use here of the SEIAR [1e3] that

expands the basic SIR model [4] and the SEIR one [5].

The choice of SEIAR model is due to the fact that we wish to estimate here the

spreading of the coronavirus COVID-19 in Italy. In fact, several papers, as, e.g., Ref. [6],

have stressed the issue that for this pandemic, the number of asymptomatic infectious

subjects is very high. Given that asymptomatic subjects are obviously not contained in

official figures, their presence causes a much wider and longer spread of this disease,

with more infectious people. Moreover, an important remark on the use of the SEIAR

model [6] is that the basic reproduction number R0 it computes is much higher than that

provided by the use of SIR and SEIR models. In many cases, this allows better explaining

the fast increases experienced in COVID-19 outbreaks in many countries worldwide. For

example, in the Diamond Princesss cruise ship outbreak, R0 has been recently estimated

as 14.8 [7], which is much higher than the value proposed by the World Health

Organization for COVID-19. In that paper, the use of R0 values typically acknowledged

for COVID-19 as 3.7 does now allow obtaining a good modeling of what happened

aboard that ship.
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As a consequence, unlike most papers dealing with COVID-19, we feel that a model as

SEIR, which does not take these asymptomatic subjects into account, cannot suitably

model COVID-19. SEIAR, instead, explicitly deals with asymptomatic infectious subjects.

In these days, an extension to SEIR has been proposed by Hubbs that is called SEIR

with social distancing (SEIR-SD) [8]. As the name suggests, this latter model also accounts

for issues related to keeping individuals as distanced as possible one from another.

In this chapter, we introduce a new model by further extending SEIAR through the

utilization of a user-defineddynamic social distancing (DSD) bymeans of the definition of a

time-dependent social distancing function. As a result, we obtain the SEIAReDSDmodel.

To properly describe a real-world situation, the exact values of the model parameters

that control the rate of spread from different compartments must be found. In fact, even

slight differences in these values could lead to completely different spread of the diverse

disease phases described by the model equations. Finding this set of values is a far-from-

easy task, as a huge number of possible such combinations exists. Technically speaking,

this is an NP ehard problem. This is the main reason for the practical limitation on the

use of the above-described models. Nevertheless, considered the advances of the

research, this task can be suitably tackled through the use of heuristic optimization

techniques. From among the many available such techniques, we have decided to

investigate the differential evolution (DE). Its description is beyond the scope of this

chapter, and the interested reader can find more detailed information in Ref. [9]. Suffice

it to say here that DE is a heuristic population-based optimization technique, within the

machine learning technology, widely used in artificial intelligence. The scientific liter-

ature has proved that DE is extremely able in finding optimal or sub-optimal solutions to

multidimensional real-valued problems, even multiobjective and constrained, taken

from many different fields.

By exploiting the ability of this evolutionary technique in finding the most suitable set

of parameters of the SEIAReDSD model, we aim at applying it to Italy and to some of its

most important regions, and at approximately evaluating for each of these test cases the

daily number of infectious individuals, the day(s) in which this number will reach its

highest peak, the corresponding value of the peak, and the future evolution of the spread.

This study could serve as a useful guideline to Italian Government as well to the

Government of any other State in which COVID-19 spreading is occurring.

Section 2 describes the state of the art and helps in understanding the novelty of our

approach. Section 3 presents the SEIAR model and introduces our SEIARe DSD

approach. Section 4 contains our simulations, and provides details on the methods, the

experimental results, and a discussion. Our conclusions are given in Section 5.

2. Related works
As a consequence of the emerging in Wuhan, China, in December 2019 of a novel

coronavirus (SARS.Cov-2), several studies relying on predictive mathematical models

[5,10,11] have been employed to estimate the progression of the COVID-19 pandemic
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with the goal to provide some insights to plan effective control strategies able to limit the

worldwide infection. A short summary of these works is reported in the following.

Li et al. [12] exploit statistical methods on the novel case of COVID-19 by collecting

demographic information, exposure history, and the progress of laboratory-confirmed

cases in Wuhan to determine the spread of the disease.

Batista [13] tries to estimate the final size of the pandemic for the whole World using

the logistic grow model [14e16] and the SIR model [17]. The model parameters are

estimated exploiting the time series of available data and minimizing the difference

between the actual and predicted number of total number of cases (susceptible and

infected), and the Shanks transformation to evaluate the series limit for the prediction of

the final number of recovered persons.

Chen et al. [18] propose the employment of a time-dependent SIR model, where both

the parameters, i.e., the transmission rate and the recovering rate, are functions of time.

They use machine learning methods to estimate the parameters and then exploit such

parameters to predict the number of the infected persons and the recovered persons at a

certain time in the future. The time-dependent SIR model is able to dynamically adjust

its parameters.

Li et al. [19] develop a mathematical model to simulate the spatio-temporal spread

of infections among 375 Chinese cities. Spatial spread of SARS-CoV2 is acquired by

considering the daily number of people traveling between the different cities and a

multiplicative factor. Four model state variables, namely the susceptible, exposed,

documented infected, and undocumented infected (SEII) sub-populations in a specific

city are estimated. The model parameters are inferred by using an iterated filter-

ensemble adjustment Kalman filter [20,21]. Framework Prem et al. [22] examine how

unprecedented measures taken in Wuhan in response to the adopted restrictions,

including the closures of school and workplaces, have affected the virus progression.

The authors use an age-structured SEIR model under different scenarios of restrictions

of social contacts. To simulate the pandemic, they exploit parameter values taken

from literature.

López and Rodó [23], by following the approach of Peng et al. [24], apply a modified

SEIR compartmental model accounting for the spread of infection for different levels of

population isolation from undiagnosed individuals to estimate the effects of the

reduction in personal contacts in the pandemic evolving. Public data are used to esti-

mate the designed model parameters. Specifically, an optimization algorithm capable of

evaluating the normalized least-squares error of the model approximation and the

infected reported cases is considered.

Lin et al. [25] adopt a SEIR model to estimate the progression of COVID-19 spread in

Wuhan after the control measures taken by the Chinese government including setting up

special hospitals, travel restrictions, quarantine of patients to mitigate the spread. The

model parameters are considered either constants or stepwise functions based on

assumptions or on precedent pandemic studies.
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Yang et al. [26] exploit a modified SEIR epidemiological model that considers the

domestic migration data before and after a starting date together with recent COVID-19

epidemiological data to predict the outbreak progression. The model prediction is

corroborated by using a machine-learning artificial intelligence approach trained on the

data related to 2003 SARS coronavirus epidemic. The parameters are derived by per-

forming multiple fitting on the available data related to the province of Hubei.

Hubbs [8] introduces the concept of social distancing in the SEIR model. The aim is to

incorporate in such a model the ensemble of strategies devised to reduce person-to-

person contact, as, for example, city lock down, school and universities closures, smart

working and quarantine of people, with the aim to slow the disease spreading.

Mwalili et al. [27] apply the epidemiological SEIR model for the evaluation of

COVID-19 pandemic dynamics by incorporating pathogen in the environment and

intervention of social distancing. The next generation matrix approach is employed to

find the basic reproduction factor R0.

Lyra et al. [28] develop a modified SEIR model incorporating the concept of social

distancing which includes movement restrictions, asymptomatic transmission, quar-

antine, and hospitalization. The rate of transmission is dynamic and deduced from the

observed delayed fatality rate, while the parameters of the epidemic are evaluated by a

Markov chain Monte Carlo algorithm.

Giordano et al. [29] propose an extension of the classical SIR model, named

SIDARTHE, for the COVID-19 pandemic in Italy. In such a model, the total population is

subdivided into eight interacting stages of disease. The official data of Civil Protection

and Ministry of Health are exploited to infer the model parameters. These parameters

are updated over time to take into account the adoption of progressive restriction

measures. A best-fit approach is used to find the parameters by reiterating a local

minimization of the sum of the error squares.

Summarizing, in these days, wide use is being made in the scientific literature of the

SEIR model. As we have seen, this model seems not perfectly suited to study this

COVID-19 pandemic because several studies have found that a high number of

asymptomatic infectious subjects exist, who cannot be modeled by SEIR.

Hence, differently from all the papers above, we consider a SEIAReDSD framework,

which can explicitly account for asymptomatic infectious subjects, and we exploit an

evolutionary algorithm to optimize the model parameters.

As far as we know, the only paper making use of SEIAR model to deal with COVID-19

is that by Pribylova and Hajnova [6]. They introduce and derive the basic reproduction

number as the weighted arithmetic mean of the basic reproduction numbers of the

symptomatic and asymptomatic cohorts. They show that European pandemic outbreaks

in various European countries correspond to the simulations with commonly used

parameters based on clinical characteristics of the disease COVID-19, but R0 is around

three times bigger if the asymptomatic cohort is taken into account, with values up to

around nine. They investigate on the introduction of quarantine and social measures

and on their effects by setting variations in the b parameter on given days.
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Yet, in their model, there is no explicit introduction of a continuous time-varying

social distancing function, nor do they find the values of the model parameters

through an optimization phase based on machine learning algorithms, so our

SEIAReDSD model seems to be original with respect to the existing literature.

3. The SEIAR model
SEIAR model [1e3] represents an extension to both the SIR [4] and the SEIR [5] models.

In fact, SIR model is composed by three compartments, and accounts at any given

time t for the number of Susceptible (S), Infectious (I), and Recovered (R) subjects.

Hence it is based on three time functions S(t), I(t), and R(t). These functions are

normalized so that at any given time t the following holds: SðtÞ þ IðtÞ þ RðtÞ ¼ 1.

With respect to it, both SEIR and SEIAR take into account the fact that there exists an

incubation period in which an individual has been infected but is yet infectious. This is

represented by a further compartment containing such exposed (E) individuals, and by

the time function E(t).

Moreover, with respect to SEIR, in SEIAR also asymptomatic infectious (A) subjects

are explicitly considered, leading to an explicit further compartment for them, and to the

time function A(t).

As its predecessors, also SEIAR model accounts for vital dynamics in terms of birth

rate and death rate, so that the population size can vary. Actually, given the short lifetime

considered here, we are not interested in this feature, so that S þ E þ I þ Aþ R ¼ N and

the equations of this model reduce to:

dS

dt
¼ � b $

SðtÞ $ ½IðtÞ þ q $AðtÞ�
N

(5.1)

dE

dt
¼ b $

SðtÞ $ ½IðtÞ þ q $AðtÞ�
N

� a $EðtÞ (5.2)

dI

dt
¼p $a $EðtÞ � g $ IðtÞ (5.3)

dA

dt
¼ð1�pÞ $a $EðtÞ � g $AðtÞ (5.4)

dR

dt
¼g $ ½IðtÞþAðtÞ� (5.5)

where:

e N is the sum of S, E, I, A, and R;

e a represents the inverse of the incubation period (1/tincubation);

e b represents the average contact rate in the population;

e g represents the inverse of the mean infectious period (1/tinfectious);

Chapter 5 � Differential evolution to estimate the parameters of a SEIAR model 79



e q represents the probability that an asymptomatic individual transmits the disease.

It is a fraction of the probability that an infectious individual transmits the disease;

e p represents the fraction of the exposed individuals who become infectious.

If we impose that the sum of the five equations above must be equal to 0, we obtain

that the population size N remains constant. Hence, the dynamics of this model is

completely determined by setting the values for the parameters discussed above. All of

them may take on nonnegative real values.

It should be remarked that in this model, as well as in SIR and SEIR, R represents the

sum of both the individuals who actually return healthy after being infected and of those

who die due to the epidemic.

A very important parameter in SIR model and in its derivations is the ratio, R0 ¼ b

g

called basic reproduction ratio. It represents the expected number of currently sus-

ceptible individuals that will be infected by an infectious one, so it accounts for the

degree of infectiousness of the specific epidemic being examined. In SEIAR model, it is

more precisely computed as:

R0 ¼ b $

�
p $

1

g
þð1�pÞ $ q

g

�
(5.6)

3.1 The SEIAR model with social distancing

With the aim at reducing the spreading of COVID-19, as in many other countries in

which COVID-19 virus is present, also in Italy the Government has decided to enforce

social distancing. Basically, many shops considered unnecessary have been closed, and

so have been schools and universities. Travel restrictions have been established, smart

working has been allowed wherever possible, and quarantine of persons has been

imposed. Furthermore, in all public spaces left open to people, as food shops and su-

permarkets and pharmacies, and in the streets as well, a distance of at least 1 m should

be kept between people.

The way this influences the spreading of the virus has been modeled in several ways.

We will make reference here to the approach recently proposed by Hubbs [8] for SEIR,

and will translate it to the needs of the SEIAR model. We will shortly refer to it as SEIAR

with Social Distancing (SEIAReSD). This is based on the introduction of a new real-

valued parameter r, ranging within 0.0 and 1.0. The value 0.0 represents the ideal case

in which everyone is locked down in quarantine, whereas the value 1.0 reduces this

model to the SEIAR model in which no social distancing is considered. The introduction

of r implies the modification in the SEIAR model of the equations related to S and E, so

that the SEIAReSD model is the following:

dS

dt
¼ � r $ b $

SðtÞ $ ½IðtÞ þ q $AðtÞ�
N

(5.7)

dE

dt
¼ r $ b $

SðtÞ $ ½IðtÞ þ q $AðtÞ�
N

� a $EðtÞ (5.8)
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dI

dt
¼p $a $EðtÞ � g $ IðtÞ (5.9)

dA

dt
¼ð1�pÞ $a $EðtÞ � g $AðtÞ (5.10)

dR

dt
¼g $ ½IðtÞþAðtÞ� (5.11)

Strictly speaking, r is another parameter of the model, so that this depends on six

parameters, i.e., a, b, g, p, q, and r. Their values should be suitably found, so that the

model can closely represent the situation being studied.

3.2 The SEIAReSD model with dynamic social distancing

We have noticed that keeping a value of r constant during the whole evolution of the

pandemic over time is unrealistic. Rather, what happened in the Italian case is that in the

first days, in which we are aware of just few cases, no social distancing was enforced.

Then, after a few days, some general rules of thumb were suggested, as avoiding

unnecessary travels and exits from homes and, in such cases, keeping at a distance of at

least 1 m from other people. As the situation started to get worse, some parts of Italy

were isolated, and later on movements within Italy were more and more limited. With

time, more and more activities and shops were closed by Government. Finally, even

going out from home was very strictly limited by law. Of course, this cannot be repre-

sented by a single value of r kept constant over time.

Hence, we have designed a time-varying (or dynamic) social distancing function by

considering the different decrees issued on different dated by Italian First Minister,

which have led over time to lower and lower freedom of movement for Italian citizens.

We represent it as r(t) by using the logistic function:

rðtÞ¼ ri � rf

1� ekðt�t0Þ þ rf (5.12)

where ri and rf are the values of r on the first and the last day, t0 is the time of the

inflection point, i.e., the date of the steepest decline in r (the main lockdown date), and k

lets us vary how quickly r declines. To choose the values for ri, rf, t0, and k, so that

Eq. (5.12) can describe at its best the situation in Italy, we have downloaded the mobility

data for Italy. This latter is publicly available thanks to mobility trends reports which are

published daily and reflect requests for directions in Apple Maps (https://www.apple.

com/covid19/mobility). These data take into account both driving, walking, and pub-

lic transportation mobility, so we feel it can well represent what has happened in Italy.

Based on such data, we have set ri ¼ 1, rf ¼ 0.05, t0 ¼ 10 and k ¼ 0.1.

As a consequence of the above, in Eqs. (5.7) and (5.8), we use r(t) rather than r, and

we name such model as SEIAReDSD.

In the following of our simulations, we will always make use of this time varying

function.
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4. Simulations
4.1 Methods

The simulations are carried out by using the SEIAReDSDmodel on the data set reporting

the numbers of infectious cases taking place in each of these days in Italy and in each of

its regions, as they can be downloaded from the Ref. [30] free repository, thanks to Italian

Ministry for Health.

Our goal is to be able to evaluate the approximate daily numbers of infectious

individuals until the end of virus spreading, the approximate day(s) in which this

number will be at its highest peak, and the approximate day in which the infected cases

will become very close to zero. We will make reference both to Italy as a whole, and to

some of its most important regions starting from February 24th, 2020. This study could

serve as a useful guideline to Italian Government as well as to the Government of any

other State in which COVID-19 spreading is occurring.

From an optimization point of view, we have to find the best possible set of values for

the SEIAReDSD model parameters that allows us to follow as closely as possible the

series of the real infection cases taking place in Italy in these days. As already said above,

we make use here of DE.

Given a real-valued optimization problem with size L, differential evolution is an

optimization method that starts by randomly creating an initial set of possible solu-

tions to the problem, each represented as a vector of L real-valued numbers. The

cardinality of the population is termed population size (Ps) and is kept constant during

the evolution. Each time a solution is created, its quality at solving the problem is

evaluated by means of a suitable fitness function F that must be optimized. Then

starting from the current population, a new one is created for the next generation

thanks to the use of a suitable mutation mechanism. Many different mechanisms exist,

basically each of them starts from the generic ieth individual, receives in input a set of

other randomly-chosen current individuals (two, three, or four) and, based on the

values of two parameters, named mutation factor (F) and crossover ratio (Cr), mixes

their features to those of the ieth individual so as to obtain a new trial individual. This

latter is compared to the current ieth one, and the better enters the new population

under construction. This mechanism is repeated for Ps times at each generation, so that

at the end we will obtain the new Psesized new population for next generation. This is

repeated for a number of generations represented by G. The individual with the best

fitness value in the final population is the solution found by the algorithm.

For the problem at hand, differential evolution should find the most suitable values

for the parameters of the SEIAReDSD model. We find these values by taking as the goal

of the optimization process the minimization of the root mean square error (RMSE)

between the number of infectious cases estimated by the SEIAReDSD model Ie and the

actual number of infectious cases in Italy Ia, where this RMSE is computed over the
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number of days Nd starting from the official onset of COVID-19 in Italy and the last day

for which we have actual data available. In formulas:

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nd

$
XNd

i¼1

ðIa � IeÞ2
vuut (5.13)

Actually, to avoid overfitting, we do not provide all the available data series to the

SEIAReDSD model. Rather, we divide the series into two sections: we perform training

onto the first, and test the model onto the second. During the evolution of the DE run, we

only consider the RMSE over the train set. At the end of the run, we consider the solution

with the lowest such RMSE, and we take into account its RMSE value over the test set.

Given the length of the data series, we use the first 62 data for train and the last three

for test. Only for Campania region, we use 59 data for train and 3 for test. This is because

the related data series is shorter by three data than those for Italy and the other regions,

as COVID-19 in Campania appeared on February 27, 3 days later than in the rest of Italy

(February 24).

Once obtained in this way, the set of parameter values minimizing the RMSE, by

running the SEIAReDSD with those values we will attain the evolution of Covid-19 in

Italy. Consequently, we will be able to approximately estimate the daily number of

infectious cases. Interestingly, we will be able to approximately estimate the day(s) in

which this number will be at its highest peak, and the future evolution of the spread.

Based on our experience in the use of differential evolution, and after a short pre-

liminary phase of parameter tuning, we have decided to use the JADE [31] version that is

able to auto-adapt the F and Cr parameters, and to make use of the following values for

the remaining parameters: population size 40, number of generations 500, rand/1/bin as

the mutation mechanism.

4.2 Simulation results

We have taken into account a set of test cases, namely Italy as a whole, and then some of

its most important regions, i.e., Lombardy, Veneto, EmiliaeRomagna, and Campania.

We will report on each of these cases in next subsections.

4.2.1 Modeling Italy
Italy was probably the first country in Europe to suffer from a strong onset of COVID-19,

and it precedes in time countries as Germany, France, Spain, United Kingdom, and USA

as well, by 1 week or two. Hence, studying the evolution over time of this pandemic in

Italy is of high interest to all European countries, both to understand diffusion mecha-

nisms and to foresee the future evolution. Italian population as of end 2019 is equal to

60,359,546 people. The execution of DE has allowed us to determine for Italy the most

suitable values for the SEIAReDSD model as follows: a ¼ 0.08, b ¼ 1.91, and g ¼ 0.13.

These values correspond to a value of the RMSE equal to 2.49$10�5.
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As it can be seen in Fig. 5.1A, the data provided by the model are in excellent

accordance with the real-world data.

The use of the above parameter values leads to model the diffusion of coronavirus

COVID-19 in whole Italy as it is shown in Fig. 5.1B.

From the figure, we can appreciate that the peak of the infection is expected to take

place around April 23, with a number of infectious subjects equal to about 107,596.

4.2.2 Modeling Lombardy
We have run the same experiments by taking into account Lombardy region. This is

important because it is the most populated Italian region with about 10 million

inhabitants (10,060,574 is the official data for 2019). Moreover, Lombardy registered the

onset in Italy, has currently the highest number of infected subjects, and registers the

highest number of deaths due to this pandemic. After the first infection area (Lodi

province), other highly populated areas of this region experienced COVID-19 (Bergamo,

Brescia, and Milan provinces).

Following the general procedure shown above, we have run the DE algorithm to find

the best parameter values for the SEIAReDSD model. For region Lombardy, the set of

parameters has resulted to be: a ¼ 0.08, b ¼ 2.34 and g ¼ 0.08, q ¼ 0.41, p ¼ 0.19, with an

RMSE value equal to 1.2$10�4.

As it can be seen in Fig. 5.2A, the accordance of the estimated data and the actual

ones is worse than that for the Italy case. In our opinion, this is probably due to some

anomalies in the collected data, as it is evident in the slope of the actual curve.

The use of the above parameter values leads to model the diffusion of coronavirus

COVID-19 in Lombardy as it is shown in Fig. 5.2B.

From the figure, we can appreciate that the peak of the infection is expected to take

place in Lombardy around April 19, with a number of infectious subjects equal to about

33,493.

(A) (B)

FIGURE 5.1 Daily infectious cases: the data computed by our approach and the data for Italy (A). The evolution
over time of COVID-19 pandemic in Italy based on the parameter values found for the SEIAReDSD model by dif-
ferential evolution (B).
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4.2.3 Modeling Veneto
We have also considered Veneto region. This is important because it is the other region

in Italy in which COVID-19 virus started spreading. Veneto had about 4906 million

inhabitants in 2019. Yet, the spread evolution has been different, with better results in

terms of protection of its inhabitants. This has been due to the immediate enforcement

of a restricted area where the onset was found (Vò town and surroundings), and to an

immediate and high number of tests being performed.

Following the general procedure shown above, we have run the Differential Evolution

algorithm to find the best parameter values for the SEIAReDSD model. For region

Veneto, the set of parameters has resulted to be: a ¼ 0.09, b ¼ 3.16, and g ¼ 0.21,

q ¼ 0.14, p ¼ 0.96, with an RMSE value equal to 3.5$10�5.

Fig. 5.3A shows that the data estimated by the model closely fit the real-world data.

(A) (B)

FIGURE 5.2 Daily infectious cases: the data computed by our approach and the data for Lombardy (A). The
evolution over time of COVID-19 pandemic in Lombardy based on the parameter values found for the SEIAReDSD
model by differential evolution (B).

(A) (B)

FIGURE 5.3 Daily infectious cases: the data computed by our approach and the data for Veneto (A). The evolution
over time of COVID-19 pandemic in Veneto based on the parameter values found for the SEIAReDSD model by
differential evolution (B).
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The use of the above parameter values leads to model the diffusion of coronavirus

COVID-19 in Veneto as it is shown in Fig. 5.3B.

From the figure, we can appreciate that the peak of the infection is expected to take

place in Veneto around April 14, with a number of infectious subjects equal to about

10,621.

4.2.4 Modeling EmiliaeRomagna
We have also examined EmiliaeRomagna region. This is an important region in North

Italy, with about 4.459 million inhabitants (10,060,574 is the official data for 2019).

Moreover, EmiliaeRomagna was the third region in Italy to experience COVID-19 onset,

probably due to people living there and traveling to the neighboring Lombardy.

Measures taken in this region are somehow intermediate between those of Lombardy

and Veneto, so that, although experiencing COVID-19 later than Veneto, with time the

figures for this region have become higher than those of Veneto.

Following the general procedure shown above, we have run the Differential Evolution

algorithm to find the best parameter values for the SEIAReDSD model. For region

EmiliaeRomagna, the set of parameters has resulted to be: a ¼ 0.07, b ¼ 6.52, and

g ¼ 0.30, q ¼ 0.44, p ¼ 0.39, with an RMSE value equal to 3.5$10�5.

In Fig. 5.4A, it can be observed that the estimated data are in excellent agreement with

the real-world ones.

The use of the above parameter values leads to model the diffusion of coronavirus

COVID-19 in EmiliaeRomagna as it is shown in Fig. 5.2B.

From the figure, we can appreciate that the peak of the infection is expected to take

place in EmiliaeRomagna around April 13, with a number of infectious subjects equal to

about 13,709.

(A) (B)

FIGURE 5.4 Daily infectious cases: the data computed by our approach and the data for EmiliaeRomagna (A). The
evolution over time of COVID-19 pandemic in EmiliaeRomagna based on the parameter values found for the
SEIAReDSD model by differential evolution (B).
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4.2.5 Modeling Campania
The investigation of Campania is important because Campania is the third most

populated region in Italy, with almost six million inhabitants (5,861,529 is the official

data for 2019). Moreover, the interest lies in the fact that Campania has been infected

much later than Lombardy, Veneto, and EmiliaeRomagna, is distant from these latter,

and, as of today, shows a much lower number of both infectious cases and deaths.

Therefore, we wonder whether the evolution over time of this pandemic in Campania

can be different from that in the other three regions.

Also in this case we have run the DE algorithm to find the best parameter values for

the SEIAReDSD model by using the data for the infectious subjects in Campania. By

running our experiments on the data for Campania region, instead, the set of parameters

has resulted to be: a ¼ 0.14, b ¼ 5.19, and g ¼ 0.21, with an RMSE value equal to

9.07$10�6.

Also for the Campania case, the data provided for the infectious individuals are in

excellent accordance with the real-world data as shown in Fig. 5.5A.

The use of the above parameter values leads to model the diffusion of coronavirus

COVID-19 in Campania as it is shown in Fig. 5.5B.

From the figure, we can appreciate that the peak of the infection in Campania is

expected to take place around April 13, with a number of infectious subjects equal to

about 3088.

4.3 Discussion

A first important issue that should be underlined is that in all of the examined test cases

the curve of the asymptomatic infectious subjects is always higher than that of the

infectious ones. This means that, at least in Italy, asymptomatic subjects are a numer-

ically very important vehicle of transmission for COVID-19. This issue is very evident

(A) (B)

FIGURE 5.5 Daily infectious cases: the data computed by our approach and the data for Campania (A). The
evolution over time of COVID-19 pandemic in Campania based on the parameter values found for the SEIAReDSD
model by Differential evolution (B).
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especially when we look at the curves for Italy, Veneto, and Campania, whereas this can

be appreciated at a smaller extent for Lombardy and EmiliaeRomagna. This seems to

reflect the different containment policies decided by the different regions: where drastic

policies have been chosen and high numbers of tests have been immediately made, the

numbers of Asymptomatic subjects are lower both in absolute terms and with respect to

Infectious.

A second issue to be discussed is related to the values for the parameters that have

been obtained by differential evolution for the different test cases.

Table 5.1 summarizes for each of the test cases the obtained values, as well as the

approximate date of the peak, the approximate height of the peak, and the RMSE

obtained in the run.

Values for a and g are not too different from a test case to another. This is to be

expected, as they are respectively related to incubation period and mean infectious

period, which are both features specific to this virus itself.

It is worth paying attention to the different values for q and p obtained in the different

test cases. For example, the value of q for Veneto, 0.14, is much lower than that for

Lombardy, 0.41. At a first sight, this difference may appear odd, especially if we consider

that COVID-19 outbreak in Italy started in these two regions, so the starting situation was

about the same for them. Actually, this difference is due to the different policies decided

by the local governments of these two regions. In fact, on the one hand, Veneto

immediately started a wide campaign of tests through swabs that as of today (April 30),

consists of a total of 337,656 subjects being tested, corresponding to 6.88% of the pop-

ulation. Lombardy, on the other hand, was less responsive in this, in the first days tested

less people, and as of today has tested 365,895 subjects, corresponding to 3.64%, so

about half the percentage of Veneto. Because of this, on the one hand, in Veneto many

subjects that would have been asymptomatic have been correctly recognized as infec-

tious, hence its lower value for q and, consequently, its very high value for p: summa-

rizing, few asymptomatic, many Infectious. For Lombardy, instead, the opposite is true:

initially a lower number of tests was performed, so many asymptomatic subjects

remained undiscovered, and their contribution to the spread of the virus in that region is

noticeably higher than in Veneto, which results in q ¼ 0.41, and, conversely, the

Table 5.1 The parameter values and other information for the different test cases
investigated.

Case a b g Q p Peak date Peak value RMSE

Italy 0.08 1.91 0.13 0.33 0.97 April 23 107,596 2.4$10�5

1.2$10�4

3.5$10�5

3.5$10�5

9.7$10�6

Lombardy 0.08 2.34 0.08 0.41 0.19 April 19 33,493
Veneto 0.09 3.16 0.21 0.14 0.96 April 14 10,621
Emilia Romagna 0.07 6.52 0.30 0.44 0.39 April 13 13,709
Campania 0.14 5.19 0.21 0.20 0.43 April 13 3088
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infectious contributed percentually less to COVID-19, as shown by p ¼ 0.19. As regards

both q and p parameters, Emiliae Romagna test case resembles more Lombardy than

Veneto, which should be expected due to the local policy adopted. Finally, Campania,

although only relatively hit by the spread, has a value for q similar to Veneto, whereas its

value for p is more similar to those of Lombardy and EmiliaeRomagna.

5. Conclusions
This chapter has introduced a variant of the SEIAR model for epidemics added with DSD

in which the social distancing value is represented as a function varying over time.

Moreover, it has described how this model can be coupled with DE for the individuation

of its most suitable parameter values. The resulting mechanism has been applied to

model the spreading of the coronavirus COVID19 in Italy and in some of its most

important regions.

Consequently, for these scenarios, we have been able to approximately evaluate the

evolution over time of the daily number of infectious cases. This has allowed us to

approximately estimate the day(s) in which this number will be at its acme, the corre-

sponding value of the peak, and the future evolution of the spread.

We hope this study can serve as a useful guideline to Italian Government as well to

the Government of any other State in which COVID-19 spreading is occurring.

References
[1] G. Chowell, C.E. Ammon, N.W. Hengartner, J.M. Hyman, Estimating the re- production number

from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland, Math. Biosci. Eng.
4 (3) (2007) 457.

[2] G. Chowell, H. Nishiura, L.M. Bettencourt, Comparative estimation of the repro- duction number
for pandemic influenza from daily case notification data, J. R. Soc. Interface 4 (12) (2007) 155e166.

[3] K. Sohn, B.L. Boulier, Estimating parameters of the 1918-19 influenza epidemic on US military
bases, J. Appl. Bus. Econ. 13 (4) (2012) 30e42.

[4] W.O. Kermack, A.G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R.
Soc. Lond. 115 (772) (1927) 700e721. Series A, containing papers of a mathematical and physical
characterontaining papers of a mathematical and physical character.

[5] O. Diekmann, H. Heesterbeek, T. Britton, Mathematical Tools for Understanding Infectious Disease
Dynamics, vol. 7, Princeton University Press, 2012.

[6] L. Pribylova, V. Hajnova, SEIAR Model with Asymptomatic Cohort and Con- Sequences to Efficiency
of Quarantine Government Measures in Covid-19 Epidemic, 2020 arXiv preprint arXiv:2004.02601.

[7] J. Rocklov, H. Sjodin, A. Wilder-Smith, COVID-19 outbreak on the Diamond Princess cruise ship:
estimating the epidemic potential and effectiveness of public health countermeasures, J. Trav. Med.
27 (3, taaa030) (February 2020) 1e7.

[8] C. Hubbs, Social Distancing to Slow the Coronavirus. https://towardsdatascience.com/social-
distancing-to-slow-the-coronavirus- 768292f04296. (Accessed: 29 March 2020).

[9] K. Price, R.M. Storn, J.A. Lampinen, Differential Evolution: A Practical Approach to Global
Optimization, Springer Science & Business Media, 2006.

Chapter 5 � Differential evolution to estimate the parameters of a SEIAR model 89

https://towardsdatascience.com/social-distancing-to-slow-the-coronavirus-%20768292f04296
https://towardsdatascience.com/social-distancing-to-slow-the-coronavirus-%20768292f04296


[10] R.M. Anderson, R.M. May, Infectious Diseases of Humans, Oxford Univ. Press, 1991.

[11] F. Brauer, Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, second
ed., Springer, 2012.

[12] Q. Li, X. Guan, P. Wu, et al., Early transmission dynamics in Wuhan, China, of novel
coronaviruseinfected pneumonia, N. Engl. J. Med. 382 (2020) 1199e1207.

[13] M. Batista, Estimation of the Final Size of the Covid-19 Epidemic, 2020. https://doi.org/10.1101/
2020.02.16.20023606 medRxiv.

[14] X.S. Wang, J.H. Wu, Y. Yang, Richards model revisited: validation by and application to infection
dynamics, J. Theor. Biol. 313 (2012) 12e19.

[15] F. Brauer, Mathematical epidemiology: past, present, and future, Infect. Dis. Modell. 2 (2) (2017)
113e127.

[16] B. Pell, Y. Kuang, C. Viboud, G. Chowell, Using phenomenological models for forecasting the 2015
ebola challenge, Epidemics 22 (2018) 62e70.

[17] H. Hethcote, The mathematics of infectious diseases, SIAM Rev. 42 (4) (2000) 599e653.

[18] Y.C. Chen, P.E. Lu, C.S. Chang, T.H. Liu, A Time-dependent SIR Model for Covid-19 with
Undetectable Infected Persons, 2020 arXiv:2003.00122.

[19] R. Li, S. Pei, B. Chen, et al., Substantial undocumented infection facilitates the rapid dissemination
of novel coronavirus (SARS-CoV2), Science (2020). https://doi.org/10.1126/sci-ence.abb3221.

[20] E.L. Ionides, C. Breto, A.A. King, Inference for nonlinear dynamical systems, Proc. Natl. Acad. Sci. U.
S.A. 103 (49) (2006) 18438e18443. https://doi.org/10.1073/pnas.0603181103.

[21] A.A. King, E.L. Ionides, M. Pascal, M.J. Bouma, Inapparent infections and cholera dynamics, Nature
454 (2008) 877e880.

[22] K. Prem, T.W. Russell, A.J. Kucharski, R.M. Eggo, N. Davies, M. Jit, P. Klepac, The effect of control
strategies to reduce social mixing on outcomes of the covid-19 epidemic in Wuhan, China: a
modelling study, Lancet (2020). https://doi.org/10.1016/S2468-2667(20)30073-6.
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