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Glutamine is the most abundant amino acid in blood and tissues, and the most

important nutrient except for glucose in cancer cells. Over the past years, most

studies have focused on the role of Gln metabolism in supporting energy

metabolism rather than maintaining oxidative homeostasis. In fact, Gln is an

important factor in maintaining oxidative homeostasis of cancer cells,

especially in “Glutamine addicted” cancer cells. Here, this paper will review

the recent scientific literature about the link between Gln metabolism and

oxidative homeostasis, with an emphasis on the potential role of Gln

metabolism in different cancers. Given that oxidative homeostasis is of

critical importance in cancer, understanding the impacts of a Gln metabolism

on oxidative homeostasis, gaining great insights into underlying molecular

mechanisms, and developing effective therapeutic strategies are of

great importance.
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Introduction

The reactive oxygen species (ROS), which mainly comes from the mitochondrial

membrane as a byproduct of OXPHOS and nicotinamide adenine dinucleotide oxidases

(NOXs), cannot avoid being produced in cellular metabolism (1–4). Cancer cells usually

show higher levels of ROS, which acts as a signaling molecule in cancer, contributing to

their growth and metastasis (5–8). Notably, when the levels of ROS in cancer cells are in

excess, it will destroy oxidative homeostasis, subsequently damaging effects on

macromolecules such as enzyme inactivation, DNA and protein damage (Figure 1) (9,

10). Thus, maintaining oxidative homeostasis in cancer cells is of great importance and

loss of balance has profound pathophysiology consequences (11).
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Glutamine (Gln), a non-essential aminoacid, is essential for the

survival of most cancer cells. The “Glutamine addiction” is a good

description of the importance of Gln in cancer cells. When Gln is

deprived of themedium,most cancer cells will be in a stagnant state

or even die (12, 13). Gln metabolism, which could promote the

biosynthesis of Glutathione (GSH) and nicotinamide adenine

dinucleotide phosphate (NADPH), is involved in the

maintenance of oxidative homeostasis in cancer cells (14). In

light of the importance of Gln metabolism in oxidative

homeostasis, a comprehensive understanding of the mechanics is

vital for developing of tumor therapies. This review will elaborate

on the functions of Gln and its products in the oxidative

homeostasis of cancer cells, including roles in the biosynthesis of

GSH andNADPH, and will explore the roles of Glnmetabolism in

different cancers via regulating oxidative homeostasis.
Gln metabolism in oxidative
homeostasis

The Gln metabolism could maintain oxidative homeostasis

through many pathways. One of the most important pathways is

through promoting the biosynthesis of GSH. Glutamate (Glu),

cysteine, and glycine are required amino acids for de novo

biosynthesis of GSH (15–17). Notably, the conversion of Gln to

Glu is required tomaintain the large intracellular pools of Glu (13).

Typically, Gln is first taken in by cancer cells through the

transporters (such as ASCT2, ATB0,+, System L, System A), and

then converted to Glu (18–20). The Gln-converted Glu
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subsequently generates GSH in two ways (Figure 2). On the one

hand, Glu can be polymerized with cysteine in an ATP-dependent

manner to form g-glutamylcysteine, and further condense with

glycine to produce GSH (21–24). On the other hand, Glu is

transported via cystine/glutamate antiporter xCT (also

commonly known as SLC7A11) to the extracellular for

exchanging cystine and a subsequent conversion of cystine to

cysteine through a NADPH-consuming reduction reaction. The

generated cysteine is subsequently used to formGSH (25, 26). GSH

is a powerful reducing agent that acts as a free radical scavenger.

Maintaining high levels of GSH in cancer cells can eliminate

excessive ROS and detoxify xenobiotics to avoid oxidative damage.

Besides the role in the de novo biosynthesis of GSH, Gln also

contributes to NADPH production. First, Gln enters the TCA

cycle, and directly generates malate, or indirectly forms malate

from the conversion of Asp via the Asp transporter

mitochondrial uncoupling protein 2 (UCP2) and the enzymes

aspartate transaminase (GOT1) and malate dehydrogenase 1

(MDH1). Then, malate crosses the mitochondrial membrane to

the cytoplasm and is further catalyzed to pyruvate via the malic

enzyme 1 (ME1), accompanied by reducing NADP to NADPH

(27–29). Importantly, NADPH can reduce glutathione disulfide

(GSSG) to GSH, an essential cofactor maintaining the reduced

form of GSH (30, 31). On the other hand, NADPH can reduce

cystine to cysteine for de novo biosynthesis of GSH (32, 33).

Therefore, NADPH plays a role in the production of GSH, thus

contributing to the maintenance of redox balance.

Overall, the Gln metabolism in this review refers to the

metabolic pathway of the formation of GSH and NADPH from
FIGURE 1

The primary generation mechanisms of intracellular ROS. SOD, Superoxide dismutase.
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Gln, which could help maintain oxidative homeostasis of cancer

cells and hence promote their progression.
The potential role of Gln
metabolism in different cancers

Gln metabolism has different potential roles in different

cancer cells by maintaining oxidative homeostasis and is

crucial for cancer development. In the following sections, we
Frontiers in Oncology 03
describe in detail the role of Gln metabolism in different cancer

cells (Figure 3).
Pancreatic ductal adenocarcinoma

Pancreatic ductal adenocarcinoma (PADC) is common

malignant and poor prognosis tumors with a 5-year survival

rate of approximately 10% in the USA (34–36). Multiple pieces

of evidence have demonstrated that Gln metabolism implicates

the progression of PADC induced by internal or external factors.
FIGURE 3

Different potential roles of Gln metabolism in different cancer cells.
FIGURE 2

The key role of glutamine in GSH and NADPH biosynthesis. MDH1, malate dehydrogenase 1; SLC1A5, the solute carrier family 1, member 5.
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For instance, Gln-metabolism is required for the hypoxia-

inducible factor-2a-promoted PDAC progression (37).

Moreover, the oncogenic KRAS-triggered PDAC growth is

accompanied by the metabolic rewiring of Gln metabolism,

which fulfills the NADPH need and balances cellular oxidative

homeostasis (29). Similar increased production of Gln-derived

NADPH is observed upon oxidative stress, accompanied by the

survival and growth of PADC (38). These findings present us

with intriguing evidence that the Gln-derived NADPH may

positively associate with the poor prognosis of PDAC (39, 40).

In addition, it has been demonstrated that PADC development-

required NADPH strongly relies on Gln metabolism rather than

on the pentose phosphate (PP) pathway. Evidence to support

this hypothesis is that the Gln-derived NADPH markedly

decreased after the knockdown of GOT1 or ME1 in PADC

cells, which caused a significant increase in the ratio of GSSG/

GSH, whereas glucose deprivation or knockdown of the limiting

enzyme G6PD in the PP pathway had only a modest impact on

NADPH (29, 41). Further evidence comes from the finding that

the knockdown of UCP2 (the Asp transporter) decreased Gln-

derived NADPH levels and increased ROS levels in PDAC cells,

thus suppressing PDAC cell growth (42). Taken together, Gln-

derived NADPH is required for the progression of PADC, and

targeting this distinct pathway represents a novel prognostic

biomarker and therapeutic target for patients with PDAC.
Acute myeloid leukemia

Several recent studies have demonstrated that Gln

metabolism is implicated in the progression of acute myeloid

leukemia (AML), as evidenced by exerting antileukemic effects

(43–47). However, most of these studies focus on the role of Gln

in supporting energy metabolism rather than maintaining

oxidative homeostasis. Therefore, to better understand the role

and regulatory mechanism of Gln metabolism in oxidative

homeostasis of AML, one study using a FLT3-mutated AML

cell model found that impaired Gln metabolism by FLT3

inhibitors could lead to depletion of GSH and accumulation of

mitochondrial reactive oxygen species (mitoROS), subsequently

leading to apoptosis of AML cell (48). A similar reduction of

GSH levels and elevation of mitoROS and apoptosis were

observed when AML cell lines were treated with the

glutaminase inhibitor CB-839 for 24 h, which led to an

inhibition of Gln metabolism (49).. These findings suggest that

depletion of GSH is a universal consequence of inhibition of Gln

metabolism in AML. In addition, inhibition of Gln metabolism

makes AML cells susceptible to adjunctive drugs that further

impair oxidative homeostasis. For example, combination of

arsenic trioxide (ATO) and homoharringtonine (HHT) (the

potent inducers of mitoROS) with CB-839 the exacerbates

accumulation of mitoROS and apoptosis, which leads to

complete cell death in AML cell lines, primary AML patient
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samples and in vivo mouse models of AML (49). Overall, Gln

metabolism is implicated in promoting the development of

AML, and the use of a Gln metabolism inhibitor in

combination with drugs that further induces mitoROS and

apoptosis may represent an effective and widely applicable

therapeutic strategy for treating multiple types of AML.
Non-small cell lung cancer

In general, radiotherapy alone or in combination with

chemotherapy and adjuvant durvalumab are mainly

therapeutic methods for patients with locally advanced non-

small cell lung cancer (NSCLC) (50, 51). However, after

radiotherapy, the patient is prone to loco-regional recurrence,

which remains a major clinical challenge for the cure for NSCLC

(52–55). Existing evidences has linked Gln metabolism to the

radio-resistance in NSCLC. For instance, a recently published

article showed that the liver kinase B1-deficient NSCLC cells

strongly depend on Gln-derived GSH to reduce ionizing

radiation-derived ROS generation and to alleviate radiation-

derived cytotoxic effects under radiotherapy. On the contrary,

inhibition of Gln metabolism using knockdown of GLS could

impair oxidative homeostasis, resulting in radio-sensitization of

NSCLC (56). Another study also showed that the knockdown of

GLS could increase response to radiotherapy of NSCLC by 30%

in vitro and in vivo (57). Consistently, other studies also show

that inhibition of Gln metabolism could suppress the GSH levels

and enhanced radiosensitivity of NSCLC (58–60). These results

indicate that NSCLC relies on Gln-derived GSH to maintain

oxidative homeostasis to resist radiotherapy. All in all, inhibition

of Glu metabolism may serve as a potential therapeutic strategy

to cure this highly refractory subgroup of NSCLC patients.
Hepatocellular carcinoma

Liver cancer stem cells (CSCs), a subset of liver cells with

stem cell features, are considered to be responsible for

hepatocellular carcinoma (HCC) recurrence, metastasis, and

chemoresistance (61, 62). These cells are heavily implicated in

the Wnt/b-catenin pathway which is identified as one of the

most frequent events occurring in CSCs (63, 64). It has been

recognized that Gln metabolism is strongly correlated with Wnt/

b-catenin pathway activation, contributing to liver

carcinogenesis, hampering patient prognosis, and treatment

stratification (65–67). Up to further investigations, the

researchers found that the stemness properties in HCC were

regulated by Gln metabolism through a ROS/Wnt/b-catenin
signaling positive-feedback loop. More specifically, Gln

metabolism could maintain low amounts of ROS and Wnt/b-
catenin activation, which causes accumulation of b-catenin in

the cytoplasm and then promotes the translocation of b-catenin
frontiersin.org

https://doi.org/10.3389/fonc.2022.994672
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gong et al. 10.3389/fonc.2022.994672
to the nucleus. b-catenin in the nucleus activates the expression

of CSC markers, such as NANOG, OCT4, KLF4, SOX2, and c-

MYC and other Wnt target genes in HCC cell lines, thus

promoting the progression of HCC (68). Interestingly, this

study has also shown that the activated Wnt/b-catenin
pathway via its agonist SKL2001 could upregulate the mRNA

and protein levels of GLS1, and then promote Gln metabolism,

which means that activated Wnt/b-catenin pathway could

promote GLS expression with positive feedback (68). A similar

study has shown that the high expression of GLS1 in HCC had a

markedly shorter overall survival time than its low expression

(69). Taken together, Gln metabolism can increase the stemness

properties in HCC through activating ROS/Wnt/b-catenin
pathway, and targeting Gln metabolism, especially GLS1, may

be a therapeutic target for the elimination of CSCs.
Prostate cancer

Prostate cancer (Pca) treatments, such as radiation,

chemotherapy, and hormone therapy, can induce autophagy

that improves therapeutic resistance (70–72). Existing evidence

has linked the Gln metabolism to autophagy through oxidative

homeostasis in Pca. For instance, a recently published article

showed that the radio-resistant Pca cells strongly rely on Gln

metabolism tomaintain oxidative homeostasis. However, Pca cells

could trigger autophagy upon Gln withdrawal and do not exhibit

significant radio-sensitization (73). Upon further investigations,

the researchers found that the ionizing radiation-derived ROS can

induce autophagy as a stress response of Pca cells, but it is

neutralized by GSH and NADPH produced by Gln metabolism.

When blocking Gln metabolism, Pca cells could activate the ATG

-mediated autophagy as a survival strategy to withstand radiation-

induced damage due to GSH depletion and ROS accumulation

(73, 74). Consistently, other studies also confirmed that autophagy

inhibition increases ROS production in Pca cells (75–77). Overall,

Gln metabolism affects the autophagy of Pca cells by affecting the

level of ROS.
Kidney cancer

Kidney cancer, the ideal model of metabolic reprogramming

among all cancers, has been duly named as a “Metabolic

Disease” (78–81). There is growing evidence that clear cell

renal cell carcinoma cells (ccRCCs) are Gln-addicted that is

reprogrammed to feed an intrinsic antioxidant system (82–84).

For instance, combined proteomics and metabolomics studies

have shown that the ccRCC largely uses Gln to feed the GSH/

GSSG antioxidant system to attenuate oxidative stress, rather

than to generate energy and cellular components through the

TCA cycle (85). To further confirm the role of Gln as a source for

the GSH pathway, absolute quantitative GSH and GSSG levels in
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cells grown with and without Gln were compared. The result

showed that GSH and GSSG levels were markedly reduced in the

Gln-depleted group, which confirms the necessity of Gln for

maintaining oxidative homeostasis of ccRCCs (85). Similar

findings were obtained in another study, showing that

inhibition of Gln metabolism via CB-839 led to decreased

GSH/GSSG ratio, and furtherly increased oxidative stress and

ccRCCs apoptosis (86). In addition, an interesting study shows

that the suppression of fatty acid metabolism by inhibition of b-
oxidation lead to the RCC cells dependent on the Gln-GSH

pathway to prevent lipid peroxidation and ferroptosis (87).

Notably, high GSH levels have proven to be a key feature of

high-grade, high-stage and metastatic ccRCCs (81, 88). All in all,

these data suggest that Gln-dependent antioxidant effects may

provide ccRCCs with a critical mechanism for their survival.
Oligodendroglioma

In general, Gln is an antioxidant defense only in Gln addicted

cancers, but not in all cases. Oligodendroglioma cells lack Gln

synthetase (a marker of Gln-addicted cancers), but are

independent of extracellular Gln (thus are not Gln addicted) (89,

90). However, a previous study showed that small amounts of

extracellular Gln are sufficient for oligodendroglioma cells growth.

Gln starvation does not significantly affect the cell content of

anaplerotic substrates, but causes a significant decrease in the

intracellular content of GSH in oligodendroglioma cells (91).

This result means that Gln addiction and Gln roles as

antioxidants are not correlated. In addition, Gln starvation

causes hindrance of the Wnt/b-catenin pathway and protein

synthesis attenuation in oligodendroglioma cells, which means

that Gln may stimulate Wnt/beta-catenin pathways by ROS levels

to affect the activity of cells, as in HCC (68, 91).
ROS production and ferroptosis

In light of the findings mentioned above, it would seem

reasonable to expect that Gln metabolism plays an important

role in maintaining ROS levels in cancer cells. However, we

noted that most of the above-mentioned studies have mainly

focused on the effects of Gln metabolism on maintaining

oxidative homeostasis of cancer cells, whereas these effects

were not suitable for every situation. Some studies have shown

that the anaplerotic role of Gln metabolism in replenishing the

TCA cycle intermediates could enhance ROS production under

the blocking of GSH synthesis (92–94). For instance, a recently

published article showed that Gln metabolism was crucial to

maintaining cystine starvation-induced mitochondrial

membrane potential (MMP) hyperpolarization, accompanied

by an increase in electron transfer chain (ETC) activity and

lipid ROS generation to promote ferroptosis (95). In support of
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this notion, data from various studies showed that inhibiting the

glutaminolysis can suppress TCA cycle and MMP

hyperpolarization, and reduce lipid ROS production, thus

enhancing ferroptosis resistance (95–98). Similarly, various

studies showed that inhibiting xCT activities could suppress

Gln-derived Glu export and enhance Glu to replenish the TCA

cycle intermediates (99–101). Therefore, it has been theorized

that inhibition of xCT activities could promote Glu to replenish

the TCA cycle intermediates, which could promote ROS

production (102) (Figure 4). All in all, increasing ROS levels

by Gln metabolism under blocking of GSH synthesis promoted

ferroptosis, which may provide a novel treatment guideline for

ferroptosis-based tumor therapy.
Therapeutic strategies targeting Gln
metabolism in cancer

The demonstration of the link between Gln metabolism and

oxidative homeostasis of cancer has prompted research into

strategies to target Gln metabolism to damage oxidative

homeostasis of cancer. In this regard, GLS inhibitors aimed at

decreasing Gln metabolism and impairing oxidative homeostasis

are attracting increasing clinical interest. Many small molecules

have been assayed to block GLS isoenzymes after the first attempt

and failure to use 6-diazo-5-oxo-L-norleucine (DON) as an anti-

cancer drug (103, 104). The bis-2-(5-phenylacetamido-1,2,4-

thiadiazol-2-yl) ethyl sulfide (BPTES) and CB-839 are the

specific inhibitors most frequently (86). Notably, CB-839 is
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currently being administered to humans in phase 1 clinical trials

for some types of cancers (49, 103–106).

However, because of the plasticity of adaptive metabolic

reprogramming in cancer cells, successful single treatments

against cancers are scarce (4, 107–109). Therefore, some

specific inhibitor of Gln metabolism has reached better results

in sensitizing cancer cells to other treatments (110). Targeting

Gln metabolism combined with drugs that are strong inducers of

mitochondrial ROS, is widely used for treating multiple cancers

(Table 1). For instance, dihydroartemisinin cooperatively

induces excessive intracellular ROS resulting in profound

apoptosis when combined with CB-839 in HCC (111). In a

similar study, Gregory et al. demonstrated that a combination of

GLS inhibition with ATO or HHT showed great activity against

AML (49). Preclinical studies have also reported a benefit when

combined with Gln metabolism inhibitors and radiotherapy. For

example, the inhibitor CB-839 increased GSH depletion, and

enhanced the radiation sensitivity of lung tumor cells xenografts

in mice (57). Interestingly, one recent study showed that the

combination of Gln metabolism inhibitors with radiotherapy

could activate the ATG5-mediated autophagy of Prostate cancer,

and proposes a strategy that a combination with autophagy

inhibition and the blockade of Gln metabolism makes Pca radio-

sensitization (73, 74, 122). Notably, the chemotherapy and/or

radiation can also cause cellular damage in normal organs and

tissues by generating free radicals (123). Antioxidants such as

vitamins, minerals, and polyphenols can quench ROS activity

alleviate the adverse effects of chemotherapy and/or

radiotherapy (124, 125). Combining inhibition of Gln

metabolism with antioxidant supplementation may enhance
FIGURE 4

Gln metabolism promotes ROS production through the TCA cycle. PUFA-PLs, Polyunsaturated fatty acid chain(s).
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the chemotherapy and/or radiation sensitivity while preventing

cellular damage of normal organs and tissues, which may be an

effective strategy for the treatment of cancer. However, it

remains controversial whether antioxidants affect treatment

outcomes or whether antioxidants ameliorate adverse effects

induced by chemotherapy and radiotherapy, which needs

further investigations in the future (126). In conclusion,

combination therapy, including inhibitors of Gln metabolism,

may be a promising strategy for cancer cells.
Conclusion

The antioxidant capacity of tumor cells is required for

rapidly proliferating and aggressive cancer cells to adapt to

hypoxia and excessive ROS levels. The literature reviewed here

suggests that Gln has been established as an important factor in

maintaining the oxidative homeostasis of cancer cells. Targeting

Gln metabolism impaired oxidative homeostasis of cancer cells

and may provide effective approaches for therapies against

cancer. In addition, more research is urgently needed to

implement multiple synergistic targeting (including Gln

metabolism inhibitors) to block tumor proliferation and

increase cancer cells’ sensitivity of cancer cells to other

therapies. Future studies on Gln metabolism in maintaining

oxidative homeostasis may provide novel and effective

therapeutic strategies to treat a subset of cancer patients.
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TABLE 1 Combined treatments: targeting glutaminolysis in combination with drugs that unbalance mitochondrial redox state.

Type of cancer Target Gln metabolism Combined treatment Drug mechanism References

Site Type of
inhibition

AML GLS CB-839 ATO; HHT Inducing excessive ROS (49)

HCC Dihydroartemisinin Inducing excessive ROS (111)

NSCLC Radiotherapy Radiosensitization (56)

Pca GLS siRNA silencing ATG5 siRNA silencing; Radiotherapy Inhibition of autophagy; Radiosensitization (74)

PDAC ß-lapachone Inducing excessive ROS (112)

GBM ATO, H2O2 Inducing excessive ROS (113)

TNBC Compound 968 CQ Inhibition of autophagy; inducing excessive
ROS

(114)

NSCLC (115)

LCLC Apigenin Inducing excessive ROS (116)

GBM GLS2 GLS2 overexpression ATO; H2O2 Inducing excessive ROS (113)

BC SLC1A5 V9302 anti-PD-1 monoclonal antibody
(mAb)

Enhancing antitumor immunity (117)

HNSCC Cetuximab Dichloroacetate Inducing excessive ROS (118, 119)

CC SLC1A5/
GDH1

CB-839/R162 CAI Inducing excessive ROS (120)

BC / Glutamine deprivation Vorinostat Inducing excessive ROS (121)

CC
fr
BC, Breast cancer; CAI, Carboxyamidotriazole; CQ, chloroquine; CC, Colon cancer; GBM, glioblastoma; GDH1, glutamate dehydrogenase 1; HNSCC, head and neck squamous cell
carcinoma; LCLC, large cell lung carcinoma; TNBC, triple-negative breast cancer; V9302, glutamine metabolism inhibitor.
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113. Martıń-Rufián M, Nascimento-Gomes R, Higuero A, Crisma AR, Campos-
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