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Abstract

Background: Hemiballism/hemichorea commonly occurs as a result of a lesion in the subthalamic region.

Case Report: A 38-year-old male with Parkinson’s disease developed intractable hemiballism in his left extremities due to a small lesion that was located adjacent

to the right deep brain stimulation (DBS) lead, 10 months after bilateral subthalamic nucleus (STN)-DBS placement. He underwent a right globus pallidus internus

(GPi)-DBS lead implantation. GPi-DBS satisfactorily addressed his hemiballism.

Discussion: This case offered a unique look at basal ganglia physiology in human hemiballism. GPi-DBS is a reasonable therapeutic option for the treatment of

medication refractory hemiballism in the setting of Parkinson’s disease.
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Introduction

Hemiballism is an involuntary hyperkinetic movement disorder

characterized by unilateral, violent, and flinging movements of the

limbs1 and can result from a lesion in the contralateral or ipsilateral

subthalamic nucleus (STN), the subthalamic region, the thalamus, and

also several other brain regions.2–4 Hemiballism is more severe when

resulting from an STN lesion than when caused by involvement of

other brain regions. In medically refractory cases, surgical interven-

tions such as thalamotomy5,6 and pallidotomy7,8 have been applied

sparingly, since it is generally believed that the hyperkinetic move-

ments will lessen over time even without intervention.4,9 We report a

unique case where deep brain stimulation (DBS) of the globus pallidus

internus (GPi-DBS) was utilized to suppress hemiballism resulting from

a subthalamic stroke. This patient had bilateral STN-DBS performed

in the remote past for Parkinson’s disease (PD), and a new stroke was

discovered to be adjacent to one of the previously implanted

stimulators. We present the details of the case and also the

physiological recordings from the DBS surgery.

Case report

A 38-year-old male with young-onset PD was initially referred to

the University of Florida Center for Movement Disorders and

Neurorestoration for evaluation. He had initially developed left-sided

bradykinesia, rigidity, and tremor, and was treated with carbidopa/

levodopa 25/100, one tablet, five times daily, which resulted in

excellent benefit to his PD symptoms. Over the years he developed

intolerable wearing off, and severe peak-dose dyskinesia that could not

be improved by altering the dose (carbidopa/levodopa 25/100, two

tablets, five times daily) and combinations of medications, including

rasagiline l mg and entacapone 200 mg five times daily. His Unified

Parkinson’s Disease Rating Scale (UPDRS) motor score was 11 (on

medication) and 25 (off medication).

He underwent a simultaneous, bilateral, STN-DBS implantation at

the age of 44 years. Microelectrode recording (three passes on each

hemisphere) was performed without anesthesia and was followed by

macro-test stimulation. He reported excellent immediate implantation

effects, with complete tremor suppression in both hands. One month
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following his lead implantation, subclavicular generators (Soletra,

Medtronic, Minneapolis, MN) were implanted and connected to the

DBS leads under general anesthesia. The placement of the leads was

confirmed postoperatively by a computed tomography (CT) scan fused

to preoperative magnetic resonance imaging (MRI) (ventral lead tips:

right 6.1 mm posterior, 10.6 mm lateral, 7 mm inferior; left 8.6 mm

posterior, 10.1 mm lateral, 8 mm inferior). The lead locations were

calculated as relative to the midpoint of the anterior posterior

commissure (AC–PC) line. His chronic stimulation parameters were

left STN, 2(2)C(+), 2.4 V, 90 ms, 135 Hz; right STN, 1(2)3(+), 2.0 V,

90 ms, 130 Hz. The postoperative UPDRS motor score was 33 (off

medication/off stimulation), 27 (on medication/off stimulation), 24 (off

medication/on stimulation), and 6 (on medication/on stimulation). At

that time he reduced the dose of entacapone to 200 mg, taking only

one tablet at night. He reported no ‘‘off’’ medication time, and he had

minimal dyskinesia for the subsequent 9 months.

Approximately 10 months after DBS placement, while on vacation

with family, he developed sudden-onset, severe left arm and leg

dyskinesia. He turned off his DBS devices, and weaned off of all his PD

medications, but the movements persisted. Four weeks later, he was

admitted to the hospital for inpatient management of the ballistic

movements. To suppress this hyperkinetic movement, lorazepam,

10 mg daily in three divided doses and olanzapine 5 mg three times

daily were continued for 1 month, but these were only moderately

helpful. The addition of clozapine, also in an attempt to control the

hyperkinesia, only improved the hemiballism minimally.

After discussing the risks and benefits of potential surgery, a decision

was made to place a right GPi-DBS device. As part of the preoperative

protocol, high-resolution MRI was done and revealed a new T2 high-

and T1 low-intensity lesion within the right STN that was directly

adjacent to the right STN-DBS lead (Figure 1).

Microelectrode recording was performed without anesthesia, and

single unit and local field potential (LFP) recordings were collected

during the procedure. The recordings were split into two digitally

filtered channels. Single units were sampled at 12.2 kHz and filtered

from 500 Hz to 6 kHz. LFPs were sampled at 400.2 Hz and filtered

from 0.5 to 200 Hz. During two passes, 14 single units were recorded

from the target area, beginning at 8.3 and 9.7 mm from final depth

(final depth was defined on the computer as the ventral/bottom of the

optic track). The mean firing rate of the isolated neurons was

46.1¡29.2 Hz (n514). The mean coefficient of variance for the inter-

spike interval was 1.19¡0.28 ms. The mean burst index was

0.30¡0.3. Figure 2 illustrates a representative microrecording

(Figure 2A) and histogram of inter-spike interval (Figure 2B).

Throughout both microelectrode passes, a high-pass hardware filter

(125 Hz, 20 db/decade) was disabled to allow LFP recordings. Signal

analysis was performed using MATLAB 7.7 software (Mathworks,

Natick, MA). Total power spectrum analysis for each LFP was

accomplished utilizing short time Fourier transform with a length of

4,096, and spectrograms were computed using a 256-point Hanning

window with 50% overlap. The power spectra analysis revealed that

strong beta activity was present at the baseline. During one recording,

stimulation from the previous implant in the left STN was enabled for

30 s. This stimulation had no effect on the beta band; on the other

hand, theta band activity was increased (Figure 2C). Linear regression

analysis suggested that theta would return to baseline levels 54.5 s after

cessation of stimulation, though this was not recorded.

After microelectrode recording, macrostimulation was performed to

confirm thresholds for side effects and benefits, and a 3387 DBS lead

(Medtronic) was implanted and connected to the existing right-sided

Soletra implantable pulse generators (IPGs) (Medtronic). A left-sided

Soletra IPG was changed to a Kinetra IPG (Medtronic, Minnesota),

which was then connected to the existing bilateral STN-DBS leads.

The GPi lead was immediately activated and the stimulation settings

were adjusted at 1 month to 1(2)C(+), 3.3 V, 90 ms, 135 Hz on right

GPi, 2(2)C(+) 2.2 V, 60 ms, 135 Hz for the left STN-DBS, and

5(2)7(2) 1.5 V, 90 ms, 135 Hz for the right STN-DBS. The lead

location was confirmed by postoperative CT–MRI fusion (ventral tip:

0.4 mm posterior, 21.5 mm lateral, 7.2 mm inferior relative to the

midpoint of the AC–PC line). The hemiballistic movements abated in

the operating theater during testing and the patient noticed

improvement immediately on activation. By the end of the first

postoperative week, the hemiballistic movements had completely

resolved. He reported no dyskinesia or wearing off and was taking

carbidopa/levodopa 25/100, one tablet, three times daily.

Discussion

There were several important observations in this case. First, the

STN stroke with resulting hemiballism was located adjacent to the

previously placed DBS lead. This finding was unique, and it is

Figure 1. STN infarction adsacent to the DBS lead. Subthalamic nucleus

infarction (red arrow) is seen adjacent to the previously placed deep brain

stimulator.
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unknown whether the DBS implantation itself influenced the

occurrence of the stroke and when the stroke occurred. Second, we

were able to treat the disabling movement disorder by adding a GPi-

DBS system to the existing bilateral STN-DBS. To our knowledge,

there is no existing report of GPi-DBS as applied for hemiballism,

although thalamotomy5,6 and pallidotomy7,8 have been performed by

other groups. Recently, Allert et al.10 reported additional GPi-DBS

rescue leads successfully applied for severe choreaform dyskinesias

after a few years of STN-DBS implantation. The immediate cessation

of this patient’s movement matched the observations detailed in the

previously published case reports that have utilized other surgical

approaches. This current case offered us an opportunity to examine

the human physiology, and to compare the physiology with the

existing model of hemiballism.

The classical basal ganglia-thalamocortical motor circuit model has

been previously proposed and can be applied to ballism.11 Using the

model, in hyperkinetic movements such as ballism, lesions within the

circuitry have been postulated to reduce excitatory output from the STN

that is directed to the GPi. Overall the model predicts a repeated word

diminished basal ganglia output and enhanced thalamocortical activa-

tion.2,12,13 The lesion in this area of basal ganglia has been postulated to

produce ballistic movements. Our current DBS case offered us a unique

opportunity to record from the pallidum, and to stimulate the STN in a

patient with ballism.

In previous studies, Suarez et al.7 reported that the firing rate of GPi

in patients with hemiballism (30¡5 Hz) was lower than the observed

rate in PD (on state552¡6, off state596¡8). Similarly, Vitek et al.8

also reported the mean firing rate of GPi was lower in patients with

hemiballism (33.7¡21.2 Hz) especially when compared with dystonia

(50¡20.5 Hz). In Huntington’s disease, which is known to be

associated with chorea and in rare cases ballism, there has been a

widely reported distribution of firing rates, but without correlation to

chorea or hemiballism (29–81 Hz).14–16

In our case, it is possible that the patient initially had a typical firing

rate and pattern in his basal ganglia indicative of PD, and then later

developed a different firing pattern post stroke. Our intraoperative

microrecording revealed a slightly lower activity from GPi than is

typically observed in PD (46.1¡29.2 compared with 70–95 Hz).14,17–19

The GPi firing rate in our case was higher than in the previously

reported hemiballism cases.7,8 On the other hand, the burst index in our

case (0.30¡0.3) was lower than previously reported (1.5–2.5).20,21 The

markedly reduced burst index in our case may have been a result of

pathological disruption of inputs from the STN. It is also possible that

we observed heterogeneity from neurons recorded in the GPi, especially

given the low sample number.

Abnormal synchronization of basal ganglia activity has been

suggested to be associated with hyperkinetic movements.7 Recently it

has been shown that exaggerated beta oscillations in the 14–30 Hz

bands are prominent and have been reported in STN PD cases22–27

and also in GPi PD cases.22,24,28–30 Beta synchronization in the basal

ganglia circuitry has been shown to be suppressed by dopaminergic

medication22,24,25,29,30 and by high-frequency STN stimulation.23,31–33

The suppression of oscillatory synchronization in the pallidum has also

been correlated with levodopa-induced dyskinesia.34 Our analysis of

the LFP revealed the presence of a strong beta band that was similar to

a previous report.35 However, the beta band in our case was not

suppressed by STN stimulation, which would not be the typical finding

in PD, and we suspect the stroke altered the physiology. Additionally,

Figure 2. Intraoperative physiological recordings. The representative

microrecording in globus pallidus internus (A) and histogram of inter-spike interval

(B). (C) Spectral analysis of local field potential during stimulation. Spectrogram

showing the occurrence of the stimulation artifact (107 Hz) from the previous

ipsilateral deep brain stimulation implant in the subthalamic nucleus and

oscillatory activity in the time vicinity of the stimulation. Quantification of theta

(4–8 Hz) and beta (12–25 Hz) band oscillatory power revealed an increase in theta

band activity.
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theta band activity in GPi was induced by stimulation. In dystonia

patients, the low-frequency theta band is reported to be predominant

in GPi and STN.30,36,37 Similar to dystonia, low-frequency oscillations

in basal ganglia may play a role in hemiballism or dyskinesia, but this

hypothesis will need to be tested by a future study.

In conclusion, although only a single case, GPi-DBS was a

reasonable therapeutic option for the treatment of medication

refractory hemiballism in the setting of PD. More detailed human

physiological studies of ballism in patients with and without PD are

necessary, and may help us to better understand this entity.
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