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ABSTRACT

Recently, the ability to interact with messenger RNA
(mRNA) has been reported for a number of known
RNA-binding proteins, but surprisingly also for dif-
ferent proteins without recognizable RNA binding
domains including several transcription factors
and metabolic enzymes. Moreover, direct binding
to cognate mRNAs has been detected for multiple
proteins, thus creating a strong impetus to search
for functional significance and basic physico-
chemical principles behind such interactions. Here,
we derive interaction preferences between amino
acids and RNA bases by analyzing binding inter-
faces in the known 3D structures of protein–RNA
complexes. By applying this tool to human
proteome, we reveal statistically significant
matching between the composition of mRNA se-
quences and base-binding preferences of protein
sequences they code for. For example, purine
density profiles of mRNA sequences mirror
guanine affinity profiles of cognate protein se-
quences with quantitative accuracy (median
Pearson correlation coefficient R =�0.80 across
the entire human proteome). Notably, statistically
significant anti-matching is seen only in the case
of adenine. Our results provide strong evidence for
the stereo-chemical foundation of the genetic code
and suggest that mRNAs and cognate proteins may
in general be directly complementary to each other
and associate, especially if unstructured.

INTRODUCTION

In the 50 years since the discovery of messenger RNA
(mRNA) (1), the relationship between this key biopolymer
and proteins has been studied predominantly in the
context of transmission of genetic information and

protein synthesis. Recently, however, evidence of direct
non-covalent binding between mRNAs and a number of
functionally diverse proteins has been provided, including
surprisingly various metabolic enzymes, transcription
factors and scaffolding proteins with hitherto
uncharacterized RNA-binding domains (2–5). It has
been found that such mRNA–protein complexes fre-
quently participate in the formation of RNA droplets in
the cell (e.g. P-bodies), which display all features of a
separate cytoplasmic microphase and open up new para-
digms in cell biophysics (6–8). What is more, several
proteins have been found over the years to directly bind
their own cognate mRNAs, including among others
thymidylate synthase, dihydrofolate reductase and p53
(2,9–14), with binding sites in both translated and untrans-
lated mRNA regions. The functional significance of such
cognate interactions has been clearly ascertained in some
cases [e.g. translational feedback control (12)], but it is far
from clear how general and functionally relevant they
actually are. Kyrpides and Ouzounis hypothesized that
cognate protein–mRNA interactions may represent an
ancient mechanism for autoregulation of mRNA stability
(9,10), but structural and mechanistic aspects of their
proposal have never been explored in detail. Altogether,
the rapid growth of the number of experimentally verified
mRNA-binding proteins, both cognate and non-cognate,
has now created a strong incentive to search for the func-
tional significance of such interactions and, even more
fundamentally, the basic physico-chemical rules that
guide them.

Related to this, we have recently shown that pyrimidine
(PYR) density profiles of mRNA sequences tend to closely
mirror sequence profiles of the respective cognate proteins
capturing their amino-acid affinity for pyridines, chem-
icals closely related to PYR (15). These findings
provided strong support for the stereo-chemical hypoth-
esis concerning the origin of the genetic code, the idea that
the specific pairing between individual amino acids and
cognate codons stems from direct binding preferences of
the two for each other (16–21). However, based on our
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results, such binding complementarity may exist predom-
inantly at the level of longer polypeptide and mRNA
stretches rather than individual amino acids and codons.
Stimulated by these findings, we hypothesized that PYR-
rich regions in mRNAs and protein stretches encoded by
them may bind each other in a complementary fashion, a
feature encoded directly in the universal genetic code (15).
Although strongly suggestive, these findings remained
silent about the potentially equivalent complementarity
on the side of purines (PUR) as well as any details con-
cerning specific nitrogenous bases. In addition to confirm-
ing our previous results using a completely orthogonal
approach, the present study provides strong novel
evidence along both of these two key lines.

MATERIALS AND METHODS

Analysis of contacts between amino-acid side chains and
RNA nucleobases

All available structures of protein–RNA complexes (both
X-ray and nuclear magnetic resonance structures) were
downloaded from the Protein Data Bank (PDB) (22) in
September 2012 using the 30% protein sequence identity
and 3 Å resolution (for X-ray structures) cutoffs. The
initial set was further manually filtered to exclude
complexes containing double-stranded RNAs or mature
transfer RNAs. The structures of the complete
Saccharomyces cerevisiae (23), Escherichia coli (24) and
Thermus thermophilus (25) ribosomes with the highest
crystallographic resolution as well as the 50S subunit of
the Deinococcus radiodurans (26) and Haloarcula
marismortui ribosome were also included in the set. This
resulted in a total of 299 individual PDB structures
(Supplementary Table S1). An amino-acid residue and
an RNA base were considered to be neighbors and form
a contact if their centers of geometry were separated by
less than a given cutoff distance. All the results reported in
the main manuscript are given for the cutoff of 8 Å,
whereas for testing purposes, this cutoff was also varied
between 6 and 10 Å with a 0.25 Å step. We separately
analyzed contact statistics for residues having at least
one neighboring base (set ‘1+’ with a total of 25 820
unique contacts for 8 Å cutoff), at least two neighboring
bases (set ‘2+’ with a total of 16 331 unique contacts for
8 Å cutoff) or include only the two closest neighboring
bases (set ‘2’ with a total of unique 12 040 contacts for
8 Å cutoff).

Calculations of amino-acid interaction preferences

Amino acid/nucleobase preferences eij (with i=1, . . . ,20
for amino acids and j=1, . . . ,4 for bases) were estimated
using the following standard distance-independent contact
potential formalism with the quasi-chemical definition of
the reference state (27–31):

eij ¼ �ln
Nij

obs

Nij
exp

¼ �ln
Nij

obs

XiXjN
TOT
obs

ð1Þ

where Nij
obs is the number of observed contacts between

amino acid side chain of type i and nucleobase of type j

in experimental structures, and Nij
exp is the expected

number of such contacts. The latter is calculated as the
product of molar fractions of amino acid i and base j
among all observed contacts (Xi and Xj, respectively)

and the total number of all observed contacts NTOT
obs .

Interaction preference scales of amino acids were
obtained separately for guanine (‘G-preference’), adenine
(‘A-preference’), cytosine (‘C-preference’), uracil (‘U-pref-
erence’), PUR (both G and A, ‘PUR-preference’) and
PYR (both C and U ‘PYR-preferences’).

Proteome data

The sequences of the complete human proteome (17 083
proteins) and coding sequences of their corresponding
mRNAs were extracted from UniProtKB database
(January 2013 release), with maximal-protein-evidence-
level set at 4 (i.e. proteins annotated as ‘uncertain’ were
excluded) and with only the reviewed Swiss-Prot (32)
entries used for further analysis. The coding sequences
of their corresponding mRNAs were extracted using the
‘Cross-references’ section of each of UniProtKB entry
where out of several possible translated RNA sequences
the first one satisfying the length criterion (RNA
length=3� protein length+3) was selected and its
sequence downloaded from European Nucleotide
Archive Database (http://www.ebi.ac.uk/ena). The
protein as well as RNA sequences with only canonical
amino acids or nucleotides were chosen for analysis. The
complete set of mRNA/protein sequences used herein is
included in the Supplementary Data. The average content
of codons when it comes to individual nucleobases or
PYR or PURs for all 20 amino acids (‘codon content’
scales) was extracted from the thus-obtained cognate
mRNA and protein sequences.

Correlation calculations

Pearson correlation coefficients (R) were calculated
between nucleobase preferences and ‘codon content’
scales and between sequence profiles of nucleobase
content for mRNAs and of different amino-acid prefer-
ence scales for proteins from the complete human
proteome set. Before comparison, the profiles were
smoothed using a sliding-window averaging procedure;
the window size of 21 residues/codons was used for all
calculations.

Analysis of statistical significance

Statistical significance (P-values) of the observed correl-
ations was estimated using a randomization procedure
involving random shuffling of the interaction preference
scales. Each scale was shuffled one million times, and
Pearson correlation coefficients (R) against codon
content scales as well as for mRNA/protein profiles were
calculated for each shuffled scale. The reported P-values
correspond to the fraction of shuffled scales, which exhibit
a higher absolute R than the original (jRj> jRoriginalj) in
the case of codon content comparisons, or for which <R>
is higher in absolute value than <Roriginal> in the case of
sequence-profile comparisons.
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The typical randomized scales whose distributions of
correlation coefficients are depicted in the manuscript
were chosen to be those, whose mean and standard devi-
ation are the same as the average mean and the average
standard deviation over all 106 randomized scales in each
case.

Analysis of protein disorder and gene ontology (GO)
classification

The average disorder for each protein sequence in the
human proteome was predicted using IUpred server
(33). Fourteen subsets of proteins displaying best or
worst matching between their interaction preference
profiles and nucleobase density profiles of their cognate
mRNAs in term of Pearson R were extracted from the
human proteome (top and bottom 10% cohorts) for the
six cases of direct correspondence between nucleobase
preferences and nucleobase composition profiles (e.g.
protein G-preference versus G mRNA content, Gprotein-
GmRNA, etc.) and for the G-preference versus PUR
mRNA content one (Gprotein-PURmRNA). Each of these
subsets contains 1707 proteins, for which average
disorder values were assigned. Means and standard devi-
ations of the 14 thus-obtained distributions of average
predicted disorder were compared with those of the
entire human proteome (background). The significance
of the mean difference from the background was estimated
for each of the analyzed subsets using the Wilcoxon
signed-rank test. The gene ontology (GO) analysis was
performed for the same seven top 10% best-matching
protein subsets using DAVID functional annotation
server (34). The entire human proteome was used as back-
ground, and only the most significantly enriched func-
tional terms with a DAVID EASE score (P-values)
�10�10 were considered.

Data visualization

The 3D structures of protein–RNA and amino acid/
nucleobase complexes were visualized using PyMol
(http://www.pymol.org/) (35). Contact statistics heat-
map was produced using MATLAB (R2009a). Pearson
R distributions for mRNA/protein profiles were processed
and visualized using Grace (http://plasma-gate.weizmann.
ac.il/Grace/).

RESULTS

Derivation of amino acid/nucleobase interaction
preferences

How differentiated and context-dependent are the prefer-
ences of amino acids to interact with specific nitrogenous
bases? To address this question, we analyze contact inter-
faces of �300 high-resolution structures of different
protein–RNA complexes including five ribosomal struc-
tures (Supplementary Table S1). We use distances
between centers of geometry of amino-acid side chains
and nucleotide nitrogenous bases in combination with a
fixed cutoff to define contacting neighbors (Figure 1A). In
this way, we isolate sequence-specific protein–RNA

contacts (36–38) while ignoring non-specific interactions
defined exclusively by protein or RNA backbones. We
first present results for the distance cutoff of 8 Å following
Shakhnovich et al. who established cutoffs between 7 and
8 Å to be optimal for residue-based statistical potentials
describing protein–DNA interactions, albeit with a
slightly different definition of reference points (28).
However, all of our principal findings hold qualitatively
for cutoffs between �6 and 9 Å as discussed later in the
text. Finally, to differentiate cases in which an amino acid
interacts with a single base only from denser, potentially
more stereospecific contacts with more than one neighbor-
ing base within the cutoff, we separately merge contact
statistics over the whole set of studied structures for
amino acids having at least one neighboring base
(set ‘1+’) or at least two neighboring bases (set ‘2+’,
Figure 1A) within the cutoff.

Using standard distance-independent contact potential
formalism (27–31), we subsequently derive scales of amino
acid/nucleobase interaction preferences (Figure 1B and
Supplementary Table S2) and use them to address the
following questions: (i) how does the average composition
of mRNA codons coding for a given amino acid relate to
the preferences of this amino acid to interact with different

Figure 1. Derivation of amino acid/nucleobase interaction preference
scales from known structures of RNA/protein complexes. (A) We
define amino-acid side chains and RNA bases in a given complex to
be contacting neighbors if their centers of geometry are less than a
given cutoff radius R apart (left and middle) and merge contact statis-
tics over the entire set of studied structures (right, ‘2+’ set with applied
8 Å cutoff). (B) Interaction preference scales of amino acids (in arbi-
trary units) for binding to guanines (G), PYR and PUR obtained from
set ‘2+’ statistics using 8 Å cutoff (panel A, right). The scales are stat-
istical analogs of relative free energy of binding (see ‘Materials and
Methods’ section) with the prominently negative values corresponding
to amino acid side chains having the highest affinities for bases of a
given type and vice versa.
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nucleobases at protein/RNA interfaces and (ii) how does
sequence density of different bases in mRNA-coding se-
quences relate to sequence profiles of amino-acid inter-
action preferences for these and other bases in cognate
protein sequences?

Amino acid interaction preferences and their codon
content

We first focus on contact statistics from set ‘2+’.
Dinucleotides were found previously to exhibit potential
for specific recognition of amino acids at protein–RNA
interfaces (39) and have also been suggested as potential
catalysts for amino acid synthesis in pre-biotic environ-
ments (40). Moreover, set ‘2+’ by definition also
includes all instances where triplets of bases directly
contact a given amino acid, which may be relevant in
the context of the genetic code. Using set ‘2+’ statistics,
we observe a remarkably strong correlation between pref-
erences of amino acids to interact with guanine (G-prefer-
ence, Figure 1B) and the average PUR content of their
respective codons as derived from the complete human
proteome with Pearson correlation coefficient R of
�0.84 (Figure 2A). Negative Pearson correlation coeffi-
cients indicate matching between amino acid preferences
and codon content owing to the way preference is defined
(see ‘Materials and Methods’ section). Put differently,
amino acids, which are predominantly encoded by
PURs, display a strong tendency to co-localize with G
at protein–RNA interfaces. This is also true, albeit at a
somewhat weaker level of correlation, for matching
between PUR composition of individual codons from
the standard genetic table and the respective G-prefer-
ences if the statistics of codon usage in the human
proteome is not included (R=�0.68, Supplementary
Figure S1). The observed signal for G is statistically
highly significant as evidenced by randomization calcula-
tions (P-value< 10�6, Figure 2B). Related to this, G-pref-
erence of amino acids inversely correlates with C and U
content of their codons (Figure 2B). Somewhat less prom-
inent, but still extremely significant correlations are
observed for G- and C-preference of amino acids and
the average G- and C-content of their codons (R of
�0.47 and �0.58, respectively). On the other hand, the
interface statistics for adenine (A) and uracil (U) do not
correlate with their average usage in codons. In particular,
the A-preference of amino acids correlates inversely with
the A-content (R=0.59) or directly with the U-content of
their codons (R=�0.51), whereas the U-preference
exhibits relatively low correlations throughout
(Figure 2B). Finally, both PYR and PUR binding prefer-
ences of amino acids (Figure 1B) display significant cor-
relations with PYR and PUR fraction in their codons with
R of �0.54 and �0.53, respectively, and P-values< 10�6 in
both cases. In other words, amino acids coded for by
PYR-rich codons prefer to co-localize with PYR, and
those coded for by PUR-rich codons with PUR at
RNA–protein interfaces. Although similar in the present
case, PYR- and PUR-preference scales need not necessar-
ily be inverses of each other owing to the way preferences
are defined, and we therefore here report and discuss both.

Matching between sequence profiles of mRNAs and their
cognate proteins

How do these observations translate if one compares
complete mRNA-coding sequences with their cognate
protein sequences? Owing to codon usage bias and non-
uniform amino-acid composition of the human proteome,
these results could in principle deviate significantly from
the results obtained for individual codons and amino
acids. To address this question, we calculate a Pearson
R for every cognate mRNA/protein pair in the human
proteome capturing the correlation between each mRNA
sequence composition profile with the base-binding pref-
erence profile of its cognate protein sequence.
Remarkably, we observe an extremely high level of
matching between PUR density profiles of mRNAs and
G-preference profiles of cognate protein sequences with a
median Pearson R (Rmedian) over the entire human
proteome of �0.80 and a low P-value (<10�6) as
determined by randomization (Figure 2C). In particular,
the distribution of Pearson R values for this scale over the
human proteome is significantly left shifted and shows
only marginal overlap with the one calculated
for a typical randomized interaction preference scale
(Figure 2C). For illustration, we present sequence
profiles for proteins of most abundant length (300–400
amino acids, Supplementary Figure S2) displaying
typical (i.e. exhibiting a Pearson R equal to the population
median) or best levels of correlation (Figure 2D). As is
evident, the PUR density of mRNAs is quantitatively ex-
tremely well predicted by the G-binding preference profiles
of cognate proteins even for typical human proteins
(Rmedian=�0.80 and P< 10�6). We also observe signifi-
cant matching between C-preference profiles for protein
sequences and both C- and PYR-density profiles of their
cognate mRNAs with Rmedian of �0.55 and �0.47, re-
spectively (Figure 2E). In contrast, the A-preferences
display significant matching with PYR-density profiles
on the side of mRNA (Figure 2E; see also
Supplementary Table S2 for the full report of profile cor-
relations) with Rmedian of �0.53. Finally, strong and sig-
nificant level of matching is observed for PYR-binding
preferences of amino acids and PYR mRNA profiles as
well as PUR-binding preferences of amino acids and PUR
profiles (Rmedian of �0.58 in both cases and P-values of
8.6� 10�3 and 7.9� 10�3, respectively, Figure 3A and C).
From the exemplary typical and best profiles (Figure 3B
and D), it is clear that the PYR- and PUR-rich regions in
mRNA code for stretches of amino acids in cognate
proteins, which prefer to co-localize with PYR and PUR
bases, respectively, at protein–RNA interfaces in the
known 3D PDB structures. The typical level of similarity
between sequence profiles is actually greater than what
one might infer from Rmedian values, suggesting that
Pearson correlation coefficient might not even be the
optimal measure of deviation in this case. Importantly,
this direct physico-chemical complementarity between
mRNA and cognate protein sequences may be indicative
of pronounced potential for complex formation between
them, especially under circumstances when ‘peak’ regions
become available for such interactions. Given the fact that
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a significant matching of profiles is detected at the level of
primary sequences, we propose that the presence of ex-
tended unstructured protein and mRNA segments may
be required for such binding. This suggestion agrees well
with recent knowledge-based studies where RNA loops
and bulges were found to be more likely to interact with
amino-acid side chains in a specific manner (38,41).
How sensitive is the level of matching to the choice of

cutoff distance used to define contacting amino acids and

nucleobases in protein/RNA complexes? To address this
question, we have repeated the aforementioned analysis
for a range of different cutoff values going from 6 to
10 Å in steps of 0.25 Å (Figure 4). Overall, for set ‘2+’,
our findings are largely robust to the choice of the exact
cutoff in this range, albeit with a somewhat lower level of
significance for longer cutoffs. However, the majority of
the signal is lost if one uses the ‘1+’ set, except for
G-preference and PUR-content (Figure 5A) and

Figure 2. Relationship between nucleobase-binding preferences of amino acids and mRNA content at multiple levels. (A) Correlation between G
interaction preferences of amino acids (Figure 1B) and the average PUR content of their codons in mRNAs of the entire human proteome.
(B) Pairwise Pearson correlation coefficients (R) between base-binding preference scales of amino acids (‘scl’) and average base content of their
codons (‘cdn’). (C) Distributions of correlation coefficients (R) between window-averaged PUR-content profiles of individual mRNA coding sequences
and window-averaged G-preference sequence profiles of the respective proteins for the entire human proteome (window-size=21). The dashed curve
depicts the distribution of correlation coefficients calculated for a typical randomized G-preference scale. Inset: the distribution of the means of sequence-
profile correlation coefficients for the human proteome (<R>) calculated for 106 randomized G-preference scales. The R for the original G-preference
scale is shown with an arrow. (D) Typical (R=Rmedian) and best pairs of mRNA PUR-content (black curves) and protein G-preference profiles (red
dashed curves) for human proteins. (E) Median pairwise Pearson correlation coefficients for comparison between nucleobase content profiles of mRNAs
(subscript ‘mRNA’, x-axis) and base-preference-weighted protein sequence profiles (subscript ‘protein’, y-axis) over the entire human proteome. All
results are based on the analysis of set ‘2+’ statistics. All data reported for preference scales are obtained using an 8 Å cutoff.
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A-preference and PYR-content (Supplementary Table
S2). This observation strongly suggests that close dense
packing of nucleobases around amino acids may be
required for specificity in cognate complex formation.
Although interfaces may be dynamic and liquid-like, as
we have suggested before, they may still need to be
densely packed. Interestingly, if one reduces the 2+ set
by including only the two closest bases in contact with a
given amino acid (set ‘2’), the signal for G-preference/
PUR-content even further improves by several percentage
points (Figure 5A), and the same holds for C-preference/
C-content and A-preference/PYR-content (Supplemen-
tary Table S2).

To further study the role of protein structural disorder
in matching, we have analyzed the levels of the predicted
disorder of the top and the bottom 10% of proteins when
it comes to the degree of mRNA/protein profile matching
as captured by Pearson R coefficient (see ‘Materials and
Methods’ section). We have done this for the six cases of
direct comparison whereby the same base type is used for
both protein preference and mRNA profile density
(Gprotein-GmRNA, Aprotein-AmRNA, Cprotein-CmRNA,
Uprotein-UmRNA, PURprotein-PURmRNA and PYRprotein-
PYRmRNA) and also for the case displaying the strongest
signal in our analysis (Gprotein-PURmRNA). Importantly, in
the case of Gprotein-GmRNA, Aprotein-AmRNA and Cprotein-
CmRNA matching, we do observe a pronounced tendency

for the top and the bottom 10% cohorts to be significantly
enriched (top 10%) and depleted (bottom 10%) in dis-
ordered proteins (Supplementary Table S3), whereas in
the case of Uprotein-Uprof matching, the situation is
reversed. Interestingly, for PURprotein-PURmRNA,
PYRprotein-PYRmRNA and Gprotein-PURmRNA matching,
one observes slight disorder enrichment in both top and
bottom cohorts. The most prominent shift of the distribu-
tion of predicted average disorder toward higher disorder
as compared with background is observed for the top
10% cohort of proteins displaying strong matching
between C-preference profiles of their sequences and the
C-content of their cognate mRNAs (Cprotein-CmRNA,
Supplementary Table S3, Supplementary Figure S3).
One might argue that this effect could just be related to
compositional properties of such protein and mRNA
pairs, whereby disordered proteins are simply encoded
by C-rich sequences. However, the differences between
nucleobase compositions of mRNAs from the Cprotein-
CmRNA top 10% cohort and the complete proteome are
minor, suggesting that the underlying explanation might
be more complex (Supplementary Figure S3).
Which biological functions might be associated with a

high level of complementarity between proteins and
cognate mRNAs? To address this question, we have per-
formed GO analysis for seven different top 10% subsets of
proteins displaying strong matching with cognate mRNAs

Figure 3. PYR/PUR mRNA sequence profiles strongly match PYR/PUR-preferences of cognate protein sequences. PYR (A and B) and PUR (C
and D) amino-acid preference scales are given in Figure 1B. For details, please see the analogous captions to Figure 2C and D.
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(see ‘Materials and Methods’ section for details). In
Supplementary Table S4, we report the most significantly
enriched biological functions (using a P-value cutoff of
10�10) shared by proteins from the analyzed cohorts. In
a striking agreement with our hypothesis, in most cases,
we observe pronounced enrichment of terms related to
nucleic-acid/protein interactions, including regulation of
RNA metabolic processes, ribonucleoprotein complexes
and transcription. The latter, in particular, allows one to
speculate that protein tendencies to associate with cognate
mRNA might be used by the cells to modulate gene ex-
pression pathways. What is more, PUR or PYR density
profiles of mRNAs are identical to PUR or PYR density
profiles of coding-strand DNA sequences (with Us being
replaced by Ts). Although based on our statistical poten-
tials, we cannot say anything about T-binding preferences
of amino acids, it is possible that our results may be gen-
eralizable even to DNA-protein interactions as well as
other RNA-protein interactions. One should also
mention that depending on the particular type of
matching, other biological functions also tend to be
enriched. For instance, the Uprotein-UmRNA top 10%
subset displays significant enrichment of membrane
proteins, whereas Gprotein-PURmRNA top cohort seems to

be populated by extracellular proteins and particularly
those involved in the functioning of the innate immune
system. Altogether, our preliminary GO analysis illus-
trates significant functional differences between proteins
that strongly complement their cognate mRNAs and the
rest of the human proteome, and these findings will be
further explored in another manuscript.

DISCUSSION

High levels of matching between base-binding-preference
profiles of proteins and PYR- or PUR-density profiles of
cognate mRNA-coding sequences, defined primarily by
amino acid preferences to co-localize with G and C
bases at RNA/protein interfaces, allow one to speculate
that direct complementary binding interactions may be a
key element underlying the whole mRNA/protein rela-
tionship when it comes to both its evolutionary develop-
ment as well as present day biology (Figure 5B). This
agrees well with and significantly extends our previous
findings where we have shown that protein sequence
profiles of amino acid affinity for PYR analogs (42–44)
mirror PYR density profiles of cognate mRNA sequences

Figure 5. Physico-chemical origins of the mRNA/protein relationship.
(A) Correlation coefficients (R and <R> with standard deviations)
between PYR or PUR average codon content (‘Codon content’) and
respective mRNA profiles (‘Profiles’) calculated for G- (blue), PUR-
(red) and PYR- (green) binding preferences of amino acids, which
were obtained using different amino acid neighbor statistics (1+, 2+
or 2). (B) A model of physico-chemical complementarity between
proteins and cognate mRNAs. Preferential interactions of amino
acids with PYR or PUR define their codon content in the genetic
table and facilitate complementary interactions between PYR/PUR-
rich mRNA regions and PYR/PUR preferring regions in proteins.
The opposite behavior of adenines and guanines adds an additional
layer of complexity in the case of PURs as signified by dashed
arrows in the model. Note: polymer sizes not drawn to scale.

Figure 4. Effect of cutoff radius used to define protein–RNA contacts
on observed correlations. (A) Dependence of Pearson correlation coef-
ficients (R) between amino acid preference scales and average codon
content on the cutoff radius for the two sets of statistics studied (‘1+’,
‘2+’). The total number of unique contacts in ‘1+’ and ‘2+’ (given in
parentheses) sets obtained for each of used cutoff radii is indicated at
the top of the panel. (B) Cutoff radius dependence of median pairwise
Pearson correlation coefficients (Rmedian) for comparison between
nucleobase content profiles of mRNAs and base-preference-weighted
protein sequence profiles over the entire human proteome (color code
the same as in panel A).
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(15). It should be emphasized, however, that our present
results are based exclusively on the statistics of direct
amino acid/nucleobase contacts at RNA/protein inter-
faces. It is therefore still possible that the driving force
for interactions between mRNAs and cognate proteins is
non-specific (e.g. binding of positively charged amino acid
side chains to RNA phosphate groups), whereas comple-
mentary interactions actually confer specificity to binding.

Moreover, our results provide a clear evolutionary per-
spective concerning the physico-chemical origins of trans-
lation in line with the stereo-chemical hypothesis of the
origin of the genetic code (16–21). In particular, our
results give strong support to the possibility of direct
templating of proteins from mRNAs in the era before
the development of ribosomal decoding and code’s
fixation in that era (17,45). In this framework, ancient
amino acids associated with mRNA directly following
their intrinsic physico-chemical preferences as outlined
here. However, the fact that an analogous effect is not
seen for all bases, especially adenine and uracil, supports
the possibility that in addition to physico-chemical ration-
ales in the context of direct binding other evolutionary
forces were also responsible for shaping the genetic code
as suggested before (19). Our results are most consistent
with the possibility that the early stereo-chemical phase in
code’s development was dominated by G- and C-rich
codons, as strongest correlations are seen for precisely
these bases. If the basic structure of the early genetic
code was defined by such codons, but was later modulated
by the inclusion of A and U bases, this might explain why
G-affinity of amino acids in present-day protein sequences
closely follows PUR density profiles in cognate mRNAs.
Interestingly, Trifonov and coworkers have suggested that
the first codons were G- and C-rich on the basis of a con-
sensus analysis of 40 different criteria (46).

Importantly, it should be emphasized that the stereo-
chemical hypothesis of the code’s origin may differ from
the cognate mRNA/protein complementary interaction
hypothesis in terms of its evolutionary underpinnings.
Direct templating of proteins from mRNAs in ancient
systems (the coding aspect of the stereo-chemical hypoth-
esis) does not necessarily imply that modern proteins
directly interact with their own mRNA (complementary
interaction hypothesis). However, our findings support the
possibility that the origin of the genetic code and potential
complementarity between proteins and cognate mRNAs
might have the same physico-chemical background. It is
well possible that other independent influences have
shaped both effects, and the two hypotheses leave ample
room for such refinements. However, we would like to
stress that in our view, the two hypotheses are inter-
linked: cognate binding is on the one hand a reasonable
consequence of the stereochemical hypothesis, but on the
other hand, it also gives a potential biological rationale for
the early development of the code to begin with, such as
stabilization of RNA structures by bound polypeptides, as
has been suggested before (45).

There are a number of open challenges concerning the
aforementioned proposal. First and foremost, the struc-
tural features of mRNAs and cognate proteins impose
severe constraints on any putative complementarity

between the two. Namely, with the contour length of the
mRNA coding part being �4.5 times longer than that of a
cognate protein, it is not clear what structural arrange-
ments may be consistent with any complementary inter-
actions. We would like to suggest that structures of such
complexes may be dynamic and liquid-like with mRNA
stretches enveloping and solubilizing cognate protein
stretches (15). Second, with many mRNAs and proteins
being well-folded and compact for most of the time, it
remains to be studied when and how opportunities could
arise for the complementarity between their primary se-
quences to be of relevance. It is possible that, if at all
realistic, such complementary binding might be function-
ally important precisely in those situations where both
polymers are unstructured such as during translation,
export and degradation, as a consequence of thermal
stress or in the case of intrinsically unstructured
proteins. However, we do not exclude the possibility of
complementary interactions even in the folded state.
Finally, concerning the origin of the genetic code, it is
not clear how the final well-defined structure of the code
could have arisen based on still partially non-specific
large-scale binding interactions between mRNAs and
cognate proteins. As suggested before, it is possible that
the answer lies in a combination of different influences
(19). Future research should shed light on these and
related questions.
These challenges notwithstanding, our findings provide

strong evidence that the ability to interact with mRNA
might be a widespread phenomenon in the cell involving
not only cognate proteins but also other proteins based on
similar principles. The potential significance of such
physico-chemical complementarity between mRNAs and
proteins potentially extends to all facets of nucleic acid
and protein biology in the modern cell including transcrip-
tion/translation regulation (9,10,47,48), mRNA transport
and localization (49,50), processing and decay (51), struc-
ture of ribonucleoproteins (52) and others (2–5,53,54).
Our preliminary GO analysis has demonstrated a signifi-
cant enrichment of functions related to association with
nucleic acids for the subsets of proteins that complement
their cognate mRNAs strongly, and these findings will be
explored in more detail in future work.
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