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Abstract.—Sampling across tree space is one of the major challenges in Bayesian phylogenetic inference using Markov chain
Monte Carlo (MCMC) algorithms. Standard MCMC tree moves consider small random perturbations of the topology, and
select from candidate trees at random or based on the distance between the old and new topologies. MCMC algorithms
using such moves tend to get trapped in tree space, making them slow in finding the globally most probable trees (known
as “convergence”) and in estimating the correct proportions of the different types of them (known as “mixing”). Here, we
introduce a new class of moves, which propose trees based on their parsimony scores. The proposal distribution derived
from the parsimony scores is a quickly computable albeit rough approximation of the conditional posterior distribution over
candidate trees. We demonstrate with simulations that parsimony-guided moves correctly sample the uniform distribution
of topologies from the prior. We then evaluate their performance against standard moves using six challenging empirical
data sets, for which we were able to obtain accurate reference estimates of the posterior using long MCMC runs, a mix of
topology proposals, and Metropolis coupling. On these data sets, ranging in size from 357 to 934 taxa and from 1740 to
5681 sites, we find that single chains using parsimony-guided moves usually converge an order of magnitude faster than
chains using standard moves. They also exhibit better mixing, that is, they cover the most probable trees more quickly. Our
results show that tree moves based on quick and dirty estimates of the posterior probability can significantly outperform
standard moves. Future research will have to show to what extent the performance of such moves can be improved further
by finding better ways of approximating the posterior probability, taking the trade-off between accuracy and speed into
account. [Bayesian phylogenetic inference; MCMC; parsimony; tree proposal.]

Introduced to the field two decades ago (Rannala and
Yang, 1996; Mau and Newton, 1997; Yang and Rannala,
1997; Li et al., 2000), Bayesian estimation of phylogeny
has become widely used by evolutionary biologists (see
Huelsenbeck et al., 2001; Holder and Lewis, 2003; Yang
and Rannala, 2012; Yang, 2014; Nascimento et al., 2017, for
reviews). The Bayesian framework is attractive for many
reasons, including the simple interpretation of results,
the ability to address interesting evolutionary questions,
and the availability of efficient and easy-to-use computer
programs that implement it (Ronquist and Huelsenbeck,
2003; Drummond and Rambaut, 2007; Ronquist et al.,
2012b; Bouckaert et al., 2014; Höhna et al., 2016).

Bayesian estimation of phylogeny almost always relies
on Markov chain Monte Carlo (MCMC: Metropolis et al.,
1953; Hastings, 1970) to sample trees in proportion
to their posterior probabilities (for exceptions, see
Bouchard-Côté et al., 2012; Wang et al., 2016). The
MCMC procedure typically uses a mixture of different
proposal mechanisms (also called moves or operators)
that change one or a few of the parameters in the
model. Unfortunately, devising MCMC proposals that
sample well across the space of evolutionary trees is
quite challenging. For any reasonable number of tips,
a MCMC proposal has a huge space of tree topologies to
explore. It also needs to tackle the complex dependencies
between topology and branch lengths. Most MCMC tree
proposals studied and used in current Bayesian MCMC

phylogenetic software are stochastic versions of tree-
perturbation methods that were originally used to find
optimal parsimony or maximum likelihood trees in hill-
climbing algorithms. The basic perturbation methods
include nearest neighbor interchange (NNI), subtree
pruning and regrafting (SPR), and (for non-clock trees)
tree bisection and reconnection (TBR) (Larget and Simon,
1999; Lakner et al., 2008). Each of these mechanisms can
generate a set of candidate trees from the current one by
applying a particular type of tree modification.

In a hill-climbing algorithm, one would typically
score all candidate trees generated by one of these
mechanisms, and then choose the best one. In the MCMC
context, a new tree is instead drawn from a suitable
probability distribution over the candidate trees. The
simplest choice is a uniform distribution, and this is
still a common choice for stochastic NNI (sNNI) moves.
Uniformly random SPR and TBR proposals, however,
are inefficient because they tend to make such drastic
changes that the new tree has negligible posterior
probability and will be rejected. A better option is to
bias SPR and TBR moves toward more modest changes
as in the “extending” SPR (eSPR) and “extending”
TBR (eTBR) moves introduced in MrBayes (Huelsenbeck
and Ronquist, 2001; Ronquist and Huelsenbeck, 2003).
These proposals move the regrafting point away from
the pruning point in a stepwise fashion, applying a
constant probability in each step to decide whether the
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distance should be further extended. sNNI, eSPR, and
eTBR are among the most efficient MCMC tree moves
known for non-clock trees (Lakner et al., 2008), but given
the frequent observation of empirical tree spaces that
fail to yield to these proposals, even when Metropolis-
coupling (Geyer, 1991) is used, there is clearly room for
improvement.

One possibility would be to choose among candidate
trees according to their posterior probability. This is
known as a “Gibbs” proposal (Liu, 2004), and it will
always be accepted. The mixing rate of a Gibbs proposal
can be further improved by “Metropolizing” the move,
that is, by removing the probability of proposing
the starting state as the new state (Peskun, 1973).
Unfortunately, it is computationally costly to obtain the
posterior probability of any set of alternative trees that
is reasonably large. Therefore, Gibbs or Metropolized
Gibbs proposals are quite difficult to implement except
in some very unusual circumstances (Huelsenbeck et al.,
2008). Gibbs sampling is a special case of the Metropolis–
Hastings algorithm. In general, the proposal ratio (also
known as the “Hastings ratio”) of the Metropolis–
Hastings algorithm is used to adjust the acceptance ratio,
correcting for any asymmetry that may arise between
forward and backward proposals.

Instead of using posterior probabilities directly, we
could guide tree proposals based on an approximation
of the posterior distribution over topologies obtained in
a previous analysis (Höhna and Drummond, 2012). Such
approximations are best computed from the sampled
split (taxon bipartition) frequencies, either alone or in
combinations of two or three adjacent splits (Ronquist
et al., 2004; Höhna and Drummond, 2012; Larget, 2013).
Guiding tree proposals based on such approximations
can significantly improve their performance (Höhna
and Drummond, 2012). A potential concern with this
approach is that the efficiency of the final run could be
affected by any errors or biases in the approximation
of the posterior distribution over topologies obtained
in the preliminary run. In other words, this approach
pushes the most difficult challenge for tree proposals to
the preliminary analysis, when an approximation of tree
space is not available.

In this article, we explore another idea, namely
to guide tree proposals based on a quick and
dirty approximation of the posterior probability of
trees, computed on the fly. Specifically, we base the
approximation on the parsimony score of topologies,
inspired by the links that do exist between parsimony
scores and probability (Huelsenbeck et al., 2008). To
our knowledge, such parsimony-guided tree proposals
were first introduced in MrBayes 3.2 (Ronquist et al.,
2012b), where they were included in the default
set of tree moves based on promising preliminary
experiments. In the development of ExaBayes (Aberer
et al., 2014), parsimony-guided tree proposals modeled
after MrBayes were found to be essential for convergence
on large data sets (Aberer A., personal communication).
However, these proposals have never been described in

the literature, nor have their properties been examined
in detail.

Here, we describe a couple of variants of parsimony-
guided SPR (pSPR) and parsimony-guided TBR (pTBR)
proposals, which have been implemented in MrBayes.
We use simulations to verify the implementations, and
we use analyses of empirical data sets to show that
pSPR and pTBR moves significantly outperform eSPR
and eTBR both in terms of convergence and mixing. Tree
moves have received surprising little attention, given
their importance in Bayesian MCMC phylogenetics (for
exceptions, see Höhna et al., 2008; Lakner et al., 2008;
Höhna and Drummond, 2012; Whidden and Matsen,
2015). We hope that this article will stimulate further
work on guided MCMC proposals and other ideas for
improving MCMC exploration of tree space.

MATERIALS AND METHODS

In this section, we first describe the tree proposals
used in the article. We then show the simulations we
used to verify the implementation of the parsimony-
guided proposals. Finally, we describe the empirical tests
we used to evaluate the performance of the parsimony-
guided tree proposals against standard extending tree
proposals.

All algorithms were implemented in
MrBayes version 3.2.7, available from GitHub
(https://github.com/NBISweden/MrBayes). The
MrBayes scripts used in the analyses are available
as Supplementary Material available on Dryad at
http://dx.doi.org/10.5061/dryad.98mp657. We focus
the description here on the tree proposals; details of the
other proposals and prior settings used in the analyses
are available in the MrBayes scripts and in the manual.

Tree Proposals
We focus entirely on tree proposals for unrooted

trees. Specifically, we explore two variants each of
pSPR and pTBR, and compare their performance to
eSPR and eTBR. In the reference runs, we also use
sNNI. For a more complete description of the MCMC
context of these proposals (see Appendix); here, we focus
only on the essential details needed to describe them
unambiguously. Note that the eSPR move used here is
different from that examined in a previous study (Lakner
et al., 2008) in that the initial branch is picked from all
branches in the move, rather than only from internal
branches.

Nearest Neighbor Interchange.—First, an internal branch is
picked at random. Label the branches with subtrees that
are incident to the chosen branch A, B, C, and D, such
that the original topology is ((A,B),C,D). Without loss of
generality, assume that D stays in its original position.
Then the topology is modified by exchanging A and
C, or B and C. In the stochastic Metropolized version
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of the move, denoted sNNI here, the two alternative
topologies are chosen with equal probability. The move
leaves the topology with the same taxon bipartitions
except for the bipartition associated with the initially
chosen internal branch. This gives a natural mapping
of branches between the trees. The branch lengths of the
old tree are applied unmodified to the new tree using
this mapping. The proposal ratio is 1.0.

Subtree Pruning and Regrafting.—The SPR move first
picks a branch a (internal or external, with length va) at
random. It then randomly selects one of the two subtrees
incident to the branch; label this subtree A (Fig. 1a). If a
is a terminal branch, A will be the tip node. A branch
r in the remaining subtree, with length vr, is chosen
for regrafting of A (Fig. 1a). The move is Metropolized,
such that a topology change is guaranteed. This means
that branch b or q cannot be selected as r. The exact
mechanism for choosing r varies depending on the type
of SPR move (see below). The branch connecting a in the
moving direction (i.e., the branch closer to r, q in this case,
with length vq) is also pruned away and moved together
with A, leaving the remaining subtree BCDE (Fig. 1b).
Subtree A with branches a and q is inserted before branch
r connecting subtree E, resulting in r connecting a and q
(Fig. 1c). Note that NNI is a special case of SPR: if A is
moved one node away to C (c is chosen for regrafting)
or DE (p is chosen for regrafting), this is equivalent to a
NNI move around branch q.

The eSPR move applies an extension mechanism to
choose r: with probability 1/2, it moves the regrafting
point one branch away in either direction (i.e., into the
B or the CDE subtree). Then with probability pe (the
extension probability), the regrafting point is moved one
branch further, and with probability (1−pe) it stays at
the current location (Fig. 6 in Lakner et al., 2008). If the
branch is moved one branch further away, one of the
two possible directions is chosen with probability 1/2,
and the cycle is repeated. If the extension mechanism
encounters a tip, it stops. We refer to a proposal
that encounters a tip as a “constrained” proposal. The
proposal ratio is 1.0 if the extension mechanism is
unconstrained or constrained in both directions of the
move. If the move is constrained in just one direction,
the proposal ratio becomes 1/(2(1−pe)) (backward move
constrained) or 2(1−pe) (forward move constrained)
(Lakner et al., 2008).

The pSPR moves use a mechanism based on
parsimony scores to choose r. Let B be the set of all
branches in subtree BCDE, that is, the tree remaining
after subtree A is pruned away (Fig. 1b). The weight for
proposing branch i for regrafting of A, ωi, is given by:

ωi =�i
�Si , (1)

where � is the warp factor, �i is the base factor, and Si
is the parsimony score at branch i. For computational
convenience (see Appendix), Si at branch i is the
parsimony score of the tree after regrafting A at i,
minus the sum of the scores of the two subtrees A

and BCDE. We call the tuning parameter � the warp
factor because it determines how much the parsimony
score will influence the weight, that is, the extent to
which a uniform probability distribution over candidate
trees is modified by the parsimony score. The larger
the warp factor, the more heavily the parsimony score
will influence the probability of candidate trees being
proposed.

Assume that in the set B, the branch at the pruning
point is b and the branch at the regrafting point is r.
Then the proposal ratio of a pSPR move is

ωb∑
i∈B\rωi

/ ωr∑
j∈B\bωj

, (2)

where B\i is the set of all branches in B except i.
The weights are constructed such that candidate trees
with lower (better) parsimony scores receive higher
weights and are proposed more often. The proposal ratio
corrects for this preference: a proposed move to a more
parsimonious tree is likely to be accepted only if the
proposal bias is matched by a similar or larger increase
in likelihood. Thus, a correctly implemented parsimony-
guided proposal will not be affected by parsimony
artifacts, such as long-branch attraction (LBA).

Here, we employ two schemes for converting
parsimony scores to proposal weights. In the first
scheme, pSPR1, we simply set all �i to e−1, such that
the weight ωi =e−�1Si . In the second scheme, pSPR2,
we try to accommodate the branch length effect: the
higher the parsimony score for a branch, the longer the
branch is likely to be in a probabilistic context, and the
less its parsimony score should influence our preference
among candidate trees. To justify the correction we use,
it is helpful to consider the probability of one sequence
evolving into another over some length of time v under
the JC69 model (Jukes and Cantor, 1969). This will be
a product of two factors: the probability of the ending
state being the same as the starting state, p0, and the
probability of it being different, p1, both functions of
v. Say that we observe that S of N sites are different.
Then the overall probability will be p1(v)Sp0(v)N−S =
(p1(v)/p0(v))Sp0(v)N . Thus, the overall probability is
proportional to the ratio p1(v)/p0(v) raised to S, the
number of sites that are different. The number of sites
that are different is of course the same as the parsimony
score. If v is small, p0(v) should be sufficiently close to 1
that we can ignore it. Assuming that the JC69 model is a
reasonable approximation of more complex substitution
models, we set �i =p1(vi)= 3

4 (1−e− 4
3 vi ), where vi is the

length of branch i. As an estimate of vi, which can be
computed easily, we use v̂i =Si/N+�, where N is the
total number of sites, and � is a small positive number
(0.0001) to avoid �i =0 when Si =0. Table 1 gives some
examples of pSPR1 and pSPR2 weights for different
parsimony scores, branch lengths and choice of tuning
parameters.

For all SPR moves, branch lengths are mapped from
the old tree to the new tree as indicated by the
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a) b) c)

FIGURE 1. The basic logic of the SPR proposal mechanisms. a) First, a branch a (with length va) is picked at random from all branches in the
tree. One of the subtrees incident to a is then picked at random and pruned away; this subtree is labeled A here. b) For regrafting, a branch r is
picked in the other subtree (labeled BCDE). The branch q in the moving direction (the pendant branch) is moved together with A, and c) inserted
adjacent to r, resulting in r connecting a and q. The specific SPR variants differ in how they pick r.

TABLE 1. Examples of pSPR1 and pSPR2 weights (ωi values)
for different branch lengths and parsimony scores given the tuning
parameter values used here

pSPR1 pSPR2
�1 =0.5 �2 =0.1 �2 =0.1 �2 =0.1

Si N =2000 N =500 N =100

10 1.0 1.0 1.0 1.0
11 0.607 0.585 0.671 0.780
12 0.368 0.346 0.454 0.612
13 0.223 0.206 0.310 0.485
14 0.135 0.124 0.213 0.386
15 0.082 0.075 0.148 0.309
16 0.050 0.045 0.103 0.249

Notes: All weights are scaled to the weight for a parsimony score of 10.
Estimated branch lengths for pSPR2 are v̂i =Si/N+0.0001.

branch labeling used above (Fig. 1). Then the lengths
of the picked branch (va), the pendant branch moved
with it (vq), and the branch left behind (vb), are each
independently modified using a standard scaler move.
These branch length changes modify the proposal ratio
because the multiplier of the scaler move stretches
parameter space, as explained in detail elsewhere
(Holder et al., 2005).

Tree Bisection and Reconnection.—The TBR moves pick an
internal branch a at random, then prunes and regrafts
each end of that branch in the corresponding subtree.
The eTBR move applies the same extension mechanism
as eSPR to both ends of a, guaranteeing that at least
one randomly chosen end of the branch is moved from
its original position (Lakner et al., 2008). The pTBR
moves use the same weighting function as the pSPR
moves (Equation 1), based on the parsimony score of the
proposed new tree minus the sum of parsimony scores
of the two subtrees resulting from bisecting the original
tree at branch a. Using the same two choices for �i as in
the pSPR case above results in two pTBR variants, pTBR1
and pTBR2.

For pTBR moves, evaluating all possible reconnection
points would be computationally expensive in large
trees. Therefore, we only considered candidate

reconnection points maximally � nodes away from
a. For example, in Figure 1a, c or p is one node, and d or
r is two nodes away from a. Thus, � is an extra tuning
parameter for the pTBR moves, besides �.

For all TBR moves, branch lengths are mapped from
the old tree to the new tree as for the SPR moves, and then
the lengths of the chosen internal branch and the two
pendant branches moved with it, one on each side, are
modified using independent scaler moves in a fashion
analogous to that of the SPR moves.

Tuning Parameters
The tuning parameter values used for the tree moves

in the analyses are summarized in Table 2. Choosing
pe =0.5 means that eSPR will propose NNI changes half
the time (even more often if the extension mechanism is
constrained by tips), and more radical changes the rest
of the time. For eTBR, the same setting means that it will
propose NNI changes 1/4 of the time. Choosing �=5 for
a pTBR move generates up to approximately 2626 =212 =
4096 candidate trees when there are no tip constraints.
A pSPR move on a tree with n tips will generate up
to roughly 2n candidate trees, that is, from around 700
to around 1900 candidate trees for the empirical data
sets analyzed here. The tuning parameter of the scaler
moves used to modify branch lengths was set to 2ln1.05,
yielding proposed changes of maximally 5% up or down
in branch lengths (Larget and Simon, 1999).

Simulations
We performed simulations to verify the

implementation of the parsimony-guided tree proposals.
Importantly, we tested whether the proposal ratio was
correctly implemented so that we could retrieve the
uniform prior distribution on topologies when the
likelihood was set to be constant (zero).

The tree of five taxa used has two long branches
separated by a short one (Fig. 2a). The parsimony score
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FIGURE 2. Simulation used to study the effect of long-branch attraction on the parsimony-guided tree proposals. a) The true tree used in the
simulation, with two long branches separated by a short one. b) The tree inferred using maximum parsimony, erroneously joining long branches.

TABLE 2. Tuning parameter values used here for the tree proposals

Proposal Tuning parameters

eSPR pe =0.5
eTBR pe =0.5
pSPR1 �1 =0.5
pTBR1 �1 =0.5,�=5
pSPR2 �2 =0.1
pTBR2 �2 =0.1,�=5

Notes: In addition to the tuning parameters listed in the table, all
proposals used scaler moves with a tuning parameter of 2ln1.05 to
change selected branch lengths.

will favor the tree grouping the two long branches (C
and D, Fig. 2b) when the sequence length approaches
infinity, a phenomenon called LBA (Felsenstein, 1978).
We simulated sequences of 10,000 bp each for five taxa
under the K80 model (Kimura, 1980) with �=4 on
the true tree (Fig. 2a) using Seq-Gen 1.3.2x (Rambaut
and Grassly, 1997). We generated ten simulated data
sets, and verified that the tree inferred using maximum
parsimony by PAUP* 4 beta 10 (Swofford, 2003) displayed
LBA (Fig. 2b).

We used a uniform prior on topologies; thus, each
topology had a prior probability of 1/15≈0.06667. For
the parsimony-guided tree proposals, we used different
numbers of sites in the sequence data (the first 0, 100,
1000, or all 10,000 sites) to calculate the parsimony scores
and the proposal ratio (Equation 2). With increasing
number of sites, the parsimony weights will be more
and more misleading in general, since no sequence data
were used to compute the likelihood, but the proposal
ratio should correct this imbalance.

In the MCMC runs, the only relevant model
parameters are the topology and the branch lengths. We
chose to combine each of the studied tree proposals with
the default branch length proposal in MrBayes (a scaler
move), using a 5:1 ratio of tree proposal to branch length

proposal. For each combination, we ran a single chain
for 10 million generations, without Metropolis coupling.
The chain was sampled every 100 generations, and the
first 25% of samples were discarded as burn-in.

Empirical Data
Evaluating the performance of tree proposals

empirically is challenging. The problems need to
be difficult enough to distinguish the performance
of different topology proposals, while not being
computationally too demanding to prohibit numerous
repeated MCMC runs. Standard tree proposals under
Metropolis-coupled MCMC are quite efficient in
sampling from many small or simple tree spaces.
Therefore, an obvious choice is to run empirical
evaluations of tree proposals without Metropolis
coupling, which makes the problem harder while
bringing down the computational cost. The empirical
data sets need to be reasonably large, with moderate
to large number of taxa, as the parsimony-guided
proposals should be particularly advantageous when
sampling from large tree spaces. For this study, we
chose to run the critical tests without Metropolis
coupling but using reasonably large empirical data sets
under a more realistic evolutionary model than JC69,
namely the general time reversible model with gamma
rate variation across sites (GTR + �4; Yang, 1994). We
assumed a single partition to avoid any confounding
influence of the partitioning scheme.

For empirical data, we do not know the true posterior
distribution over trees. However, it may be possible to
generate a reference sample of the tree space, which can
be used as a reasonably accurate approximation of the
true posterior. Here, we chose to start from a number
of empirical data sets of suitable size. We then ran an
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TABLE 3. Empirical data sets used in this study

Abbreviations Taxa Sites ID References

SQ10 357 2925 — Savolainen et al. (2000)
DA10 357 4493 S11008 Davis and Anderson (2010)
LZ12 425 2468 S12425 Lu et al. (2012)
CL12 459 1740 S12998 Cardoso et al. (2012)
AZ12 545 5681 S11973 Aliscioni et al. (2012)
NP11 934 3675 S11260 Nagy et al. (2011)

Notes: The abbreviation (initial of first and last authors and publication
year), number of taxa, number of sites, TreeBase study ID, and reference
for each data set are given. SQ10 was only found in GenBank (see
Appendix of Savolainen et al., 2000).

analysis on each data set for a long time using Metropolis
coupling and a mix of tree proposals, in the hope of
obtaining a sufficiently accurate approximation of the
posterior, as indicated by the average standard deviation
of split frequencies (ASDSF) diagnostic (Lakner et al.,
2008). We then used the data sets where we were able to
obtain such accurate reference samples in studying the
convergence and mixing of different tree proposals.

Specifically, we collected 20 data sets from TreeBase
ranging from 344 to 934 taxa and from 1740 to 16,542
sites (Table 3 and Supplementary Table S1 available on
Dryad). Each data set was treated as a single partition,
and the evolutionary model was set to GTR+�4 (Yang,
1994). We used a uniform prior over tree topologies,
and the prior for branch lengths was set to gamma-
Dirichlet(1, 0.1, 1, 1) (Zhang et al., 2012). We used a flat
Dirichlet prior for the exchangeability rates, fixed the
stationary state frequencies to empirical, and used an
Exponential(1.0) prior for the shape parameter of the
discrete gamma distribution of rates across sites.

We first ran four independent runs with four
Metropolis-coupled chains each (one cold and three
heated) on each data set using the default settings of
MrBayes version 3.2.7. Specifically, we used the following
mix of tree proposals: 1 sNNI : 2 eSPR : 1 eTBR : 2
pSPR2 : 1 pTBR2. The total probability of choosing a
tree proposal from this mix was set to 46.67%, a branch
length move to 50%, and a move changing a substitution
model parameter to 3.33%. The details are available in the
MrBayes scripts provided as Supplementary Material
available on Dryad. We ran these analyses for 20 million
generations each, sampling every 1000 generations. The
first 40% of samples were discarded as burn-in. The tree
sample was considered as a good approximation of the
posterior distribution when it had an ASDSF ≤ 0.02.

For the data sets where we could obtain convergence,
we then ran 16 independent single-chain analyses
(without Metropolis coupling) for each of three different
mixes of the studied tree moves: (i) 2 eSPR : 1 eTBR; (ii)
2 pSPR1 : 1 pTBR1; and (iii) 2 pSPR2 : 1 pTBR2. In these
runs, the probability of choosing a tree proposal from
the mix was set to 36%, a branch length move to 60%,
and a move changing a substitution model parameter
to 4%. Each chain was run for 10 million generations
starting from a random tree and was sampled every
1000 generations. The details are available in the MrBayes

scripts provided as Supplementary Material available on
Dryad.

To visualize the structure of the tree spaces, we
used multidimensional scaling (MDS) based on the SPR
distance between sampled trees (Whidden and Matsen,
2015). MDS methods compute a low-dimensional space
(two-dimensional in our case) that represents a distance
matrix (the minimum SPR distances between trees in
our case) as accurately as possible. Calculating SPR
distances among all sampled trees was prohibitively time
consuming. Therefore, we randomly subsampled 4000
trees (∼10%) and calculated their pairwise SPR distances
using the rspr software (Whidden et al., 2010, 2013).
The sampled trees were then plotted in the resulting
space.

RESULTS

Simulations
When the likelihood was constant (no data), and no

sites were used to compute the parsimony guide weights,
all tree proposals tested were able to retrieve the uniform
prior distribution over topologies with good accuracy
(Fig. 3). When 100 sites (Fig. 4a) or 1000 sites (Fig. 4b) were
used to compute the parsimony weights, and likelihoods
were artificially kept constant to test the ability of
the proposal ratio to correct for the proposal bias, we
still retrieved the uniform topology. However, when all
10,000 sites were included in computing the parsimony
weights, some topologies were undersampled by the
pSPR moves because of numerical inaccuracies in
computing proposal ratios. Specifically, this affected the
trees with the worst parsimony scores (topology 14 and
15 in Fig. 4), the trees which are unlikely to be sampled at
all in a real analysis because they also have low likelihood
scores. Examining the simulated data sets revealed that
the likelihood scores of topology 14 and 15 were around
300 log units lower than the scores of the best tree when
all 10,000 sites were considered. This means that a correct
MCMC algorithm sampling from the posterior should
visit them considerably less than a googolth (10−100) as
often as the best tree. Thus, for all practical purposes, the
numerical errors affecting the sampling of these trees
can be ignored. Importantly, the numerical errors did
not cause oversampling of the LBA tree (topology 2)
in relation to the best tree (topology 1) even under this
extreme setting.

Interestingly, the pTBR moves were not affected even
when all 10,000 sites were included in computing
parsimony weights (Fig. 4c). The reason is that they
only pick interior branches, and therefore do not directly
connect the worst trees (topology 14 and 15) with the
best trees (topology 1 and 2) in a single move. This
means that the pTBR proposal ratios are less extreme,
making pTBR less sensitive to numerical errors in the
computation of those ratios. However, this difference is
of no consequence, as already the pSPR move is robust
enough to numerical errors for all practical purposes.
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FIGURE 3. Test of the ability of the tree proposals to retrieve a uniform prior over topologies without data. We used a tree with five tips and
a constant likelihood. The estimated posterior probabilities are represented as the mean (dot) and range (bar) across 10 replicate analyses. The
prior probability is 1/15≈0.06667 represented as horizontal dashed line. Topology 1 is the true tree (Fig. 2a) and topology 2 is the LBA tree (Fig.
2b).

Empirical Data
For six out of the 20 data sets, we were able to

obtain reasonably accurate estimates of the posterior
distribution in the reference runs (ASDSF ≤0.02, Table
4). Of the remaining 14 data sets, ASDSF values reached
below 0.05 for three, and another three had ASDSF
values below 0.10 (Supplementary Table S2 available on
Dryad). For the rest of the data sets, the tree samples
obtained in the four independent analyses were even
more heterogeneous at 20 million generations, and it
seemed for a few of them that the runs would have had
to be extended considerably to obtain good estimates of
the posterior distribution.

Henceforth, we will focus on the six data sets for which
we were able to generate reasonably accurate estimates
of the posterior. Table 5 summarizes some characteristics
of these data sets and the posteriors. The data sets span
over a considerable range of tree shapes and percentages
of missing data. Note that, for all six data sets, each tree
topology in the posterior is sampled only once, so that
the 95% credible sets all contain 45604 unique trees, that
is, a unique tree for each sample from the posterior. This
is because the posterior probability is spread out rather
evenly over a very large number of topologies. Thus, our
analyses only generate a limited subsample of the true
credible set, which is likely to be much larger. Despite
this shortcoming, the ASDSF diagnostic indicates that
the reference runs have converged in the sense that the
sampled trees are all representative of the true credible
set in terms of split frequencies.

We analyzed distances and computed tree spaces for
a subsample of 4000 trees from each of the posterior
samples. The minimum SPR distance among the trees
in these subsamples ranged from 20 to over 200. The
visualizations show that the tree spaces are quite
different (Fig. 5). There are distinct islands of similar
trees for data sets DA10 (two islands) and LZ12 (six
islands grouped into two larger clusters). There is also
an indication of island structure for SQ 10, while the

posterior tree spaces are more homogeneous for the
remaining three data sets (Fig. 5).

Note that these tree spaces are based on minimum SPR
distances. Trees that appear close in this space may be
more distant, or vice versa, in a space based on the actual
probability of moving between them using, say, eSPR
or pTBR. Nevertheless, the minimum SPR distances are
presumably fairly similar to the true distances of the SPR
and TBR moves considered here.

The single-chain test runs on the six data sets
revealed striking differences in the performance of
tree proposals. Analyses using parsimony-guided tree
proposals (pSPR1+pTBR1 or pSPR2+pTBR2) increased
in likelihood considerably faster than those using the
standard extending proposals (eSPR+eTBR) (Fig. 6). The
increase in likelihood was about an order of magnitude
faster (note the logarithmic scale of the x-axis). There
was no clear difference between the two variants of
parsimony-guided proposals.

Individual chains had a tendency to get stuck in
suboptimal regions of tree space for a while before
moving on toward more likely topologies, as indicated
by local plateaus in the likelihood trace plots (Fig. 6).
This phenomenon affected all tree proposals but was
somewhat more pronounced in runs using standard
moves, especially for data sets SQ10 and LZ12. For at least
two of the data sets (SQ10 and NP11), the parsimony-
guided chains reached higher likelihoods at the end of
the test runs than all or most of the standard chains. The
single exception was data set AZ12, where one of the
32 parsimony-guided chains remained stuck throughout
the run, despite the last of the 16 standard chains
reaching the final plateau in log likelihoods one fourth
into the run (Fig. 6e).

The convergence plots, which compare the topology
samples from each of the test runs to the reference
distribution using the ASDSF diagnostic, also reveal
that the parsimony-guided proposals converged to the
posterior much faster than the extending proposals,
especially early on in the runs (Fig. 7; note the log scale on
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FIGURE 4. Test of the ability of the parsimony-guided tree proposals to retrieve a uniform prior over topologies when the first 100, 1000, or
10,000 sites were used to compute the parsimony weights (see legend to Fig. 3).

TABLE 4. Results of reference runs (four runs with four Metropolis-coupled chains each) and test runs (16 single-chain runs) for each of the
six data sets

R.20M R.10M 2 eSPR : 1 eTBR 2 pSPR1 : 1 pTBR1 2 pSPR2 : 1 pTBR2

Data set ASDSF ASDSF Pacpt ASDSF Pacpt ASDSF Pacpt

SQ10 0.004 0.007 0.097 4.56%, 3.78% 0.037 8.52%, 12.1% 0.012 8.63%, 12.2%
DA10 0.003 0.006 0.019 8.24%, 5.02% 0.016 8.11%, 7.04% 0.009 8.62%, 8.02%
LZ12 0.003 0.005 0.008 54.3%, 43.5% 0.006 48.2%, 43.1% 0.005 53.1%, 48.4%
CL12 0.004 0.006 0.009 18.0%, 12.7% 0.006 18.6%, 16.9% 0.006 19.8%, 18.8%
AZ12 0.004 0.007 0.031 4.88%, 4.18% 0.009 6.60%, 8.70% 0.017 7.14%, 10.0%
NP11 0.020 0.041 0.108 58.4%, 49.5% 0.039 46.9%, 44.1% 0.038 52.3%, 49.1%

Notes: We first give the average standard deviation of split frequencies (ASDSF) for the reference runs after 20 and 10 million generations
(R.20M and R.10M, respectively). Then we give the ASDSF values and average acceptance proportion (Pacpt) for 16 test runs using three different
combinations of tree proposals. The reference tree samples after 20 million generations had ASDSF ≤ 0.02 and were considered as ground truth
in the detailed studies of the convergence and mixing behavior of tree proposals.
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TABLE 5. The percentage of missing data (including gaps), estimated gamma shape parameter (mean and 95% HPD interval), Sackin index
(Mooers and Heard, 1997) measuring the balance of the consensus tree, and estimated size of the 95% credible set, for each of the six data sets

Data set Missing Gamma shape (	) Sackin index 95% Credible set

SQ10 4.1% 0.47 (0.46, 0.49) 0.83 45604
DA10 18.0% 0.46 (0.44, 0.49) 0.90 45604
LZ12 0.05% 0.27 (0.25, 0.29) 0.78 45604
CL12 13.9% 0.96 (0.89, 1.03) 1.15 45604
AZ12 7.2% 0.41 (0.39, 0.42) 0.75 45604
NP11 83.9% 0.78 (0.71, 0.85) 0.94 45604

Notes: The Sackin index is normalized under the uniform model (Blum et al., 2006). Larger Sackin index indicates less balanced tree. The true
credible sets are likely to be much larger; the run settings constrain the estimates to a maximum value. See text for further discussion.
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FIGURE 5. Multidimensional scaling to the SPR distance matrix of 4000 randomly subsampled trees from the posterior sample for each of the
six data sets.
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FIGURE 6. Performance of three different tree proposal combinations—eSPR + eTBR (black), pSPR1 + pTBR1 (blue), and pSPR2 + pTBR2
(red)—on the six data sets (a–f) for which we had good reference samples from the posterior. We show the likelihood trace plots for 16 individual
single-chain runs for each proposal combination. Note that all axes are in log scale. The trace plots corresponding to the last 5 million generations
are shown in Supplementary Figure S1 available on Dryad.

the y-axis). A few runs got stuck in local regions of tree
space and did not cover the posterior distribution well;
these runs generally corresponded to those that did not
reach the final plateau in the likelihood trace plots (Fig.
6).

To look specifically at mixing behavior, we analyzed
the last 5 million generations (the second half) of the
runs. Note that they correspond to only the last 10%
of the x-axis in Figure 6 because of the log scale (see
also Supplementary Fig. S1 available on Dryad). All of
the chains had reached the highest likelihood plateau at
this point for LZ12 and CL12, and some extending and

most (if not all) of the parsimony-guided chains for the
remaining four data sets. We used both all chains (Fig.
8) and chains reaching the highest likelihood plateau
(Supplementary Fig. S2 available on Dryad) to display
the mixing behavior. The mixing plots show that the
parsimony-guided proposals usually covered the set
of likely trees significantly faster than the extending
proposals, even for samples drawn after the run was
assumed to have converged to the posterior. This pattern
is particularly clear for the chains that had reached
the highest likelihood plateau (Supplementary Fig. S2
available on Dryad).
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FIGURE 7. Performance of three different tree proposal combinations—eSPR + eTBR (black), pSPR1 + pTBR1 (blue), and pSPR2 + pTBR2
(red)—on the six data sets (a–f) for which we had good reference samples from the posterior. We show the topological convergence toward the
reference sample as indicated by the ASDSF diagnostic for 16 individual single-chain runs for each proposal combination. Note that all axes are
in log scale.

The mixing plots also reveal that tree spaces that
were difficult to sample from using extending proposals
(SQ10, DA10, and AZ12), causing individual chains to get
stuck for a very long time, were also difficult to sample
from using parsimony-guided proposals. In general,
however, it appeared that chains using parsimony-
guided proposals were less likely to get stuck. The
sampling difficulty is only partly correlated with the
peakiness of the tree landscape indicated by the MDS
plots (Fig. 5). Distinct islands in tree space can apparently
cause chains to get stuck (DA10) but there are also tree
spaces with distinct islands that are easy to sample from

(LZ12) and spaces without obvious island structure that
are difficult to sample from (AZ12).

DISCUSSION

Fast approximations of the posterior probability of
different trees or tree topologies have the potential of
making MCMC tree proposals “aware” of the structure
of the local tree space around the current tree, allowing
them to make smarter proposals with a higher chance of
being accepted. The faster the approximation, the larger
the region of tree space that a MCMC tree proposal could
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FIGURE 8. Mixing behavior of three different tree proposal combinations—eSPR + eTBR (black), pSPR1 + pTBR1 (blue), and pSPR2 +
pTBR2 (red)—on the six data sets (a–f) for which we had good reference samples from the posterior. We show the convergence toward the
reference sample of topologies as indicated by the ASDSF diagnostic for 16 individual single-chain runs for each proposal combination. The
plots correspond to the last 5 million generations of the runs shown in Figure 7, that is, the last 10% of the x-axis there. Thus, each run started from
a tree with high posterior probability, and the rate at which the ASDSF drops represents the speed with which the chains cover the posterior.
Note that all axes are in log scale.

“see”, and the less likely it would get stuck on a local
peak. Of course, speed typically comes at the expense
of accuracy, so there is clearly a trade-off between these
criteria when choosing an appropriate approximation
method.

Parsimony scores are interesting in this context
because they can be computed so rapidly. Evaluating
the likelihood of an alignment of c discrete characters
with s states over a tree with n tips has time
complexity roughly proportional to cns2. Evaluating
the parsimony score can be done in time proportional
to cn, which is small in comparison. The constants
involved in the time complexity equations are also
considerably smaller for parsimony implementations,
particularly with appropriate optimizations (Ronquist,
1998). Importantly, the parsimony scores of SPR and TBR

candidate trees can be obtained in time that is dependent
on only c for each candidate evaluated, once a cn order
computation of parsimony sets has been completed. The
parsimony sets need to be computed only once for the
entire tree; after that they can be updated in time only
dependent on c, under some reasonable assumptions
about tree perturbations that are likely to be accepted
in a hill-climbing or an MCMC algorithm (Ronquist,
1998). In this study, we used a naive implementation
to compute parsimony scores, without employing
any of the advanced optimizations described above.
Nevertheless, we found that the pSPR and pTBR moves
were only slightly slower than eSPR and eTBR. This
means that there is considerable room for expansion of
the region of tree space evaluated with parsimony scores
beyond what we explored in the moves presented here.
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The fact that parsimony scores may favor the wrong
tree in some cases due to LBA has been widely discussed
in the literature (Felsenstein, 1978). Therefore, one
might be concerned that parsimony-guided proposals
may introduce biases in the MCMC sample of trees.
However, our simulations show that the parsimony-
guided proposals are implemented correctly and that
the proposal ratio adequately corrects for parsimony
biases, such as the LBA effect. Even under extreme
settings, when numerical inaccuracies start affecting the
sampling of the least likely trees (the ones with the lowest
parsimony weights but also with the lowest likelihood
scores), we detect no oversampling of the LBA tree in
relation to the best tree in our simulations.

Even though posterior distributions are sampled
correctly, mismatches between the parsimony scores and
posterior probabilities are likely to reduce the acceptance
proportion and therefore the effectiveness of parsimony-
guided proposals. It is possible that some of the
variation in the success of parsimony-guided proposals
that we observed is explained by differences in the
effectiveness of the parsimony scores in approximating
posterior probabilities for different data sets. However,
such effects were not immediately apparent. One might
expect data sets with more rate heterogeneity across sites
to be more challenging than data sets with less variation
in site rates, because rate heterogeneity would increase
the mismatch between parsimony and likelihood scores.
However, data sets that were the least challenging for
parsimony-guided proposals included both the two data
sets that had the least rate heterogeneity (CL12 and
NP11) and the data set with the most pronounced rate
variation across sites (LZ12; Table 5). One might also
expect data sets with more variation in branch lengths
to be more challenging for parsimony-guided proposals.
However, there appeared to be no relation between
variation in branch lengths (Fig. 9) and the difficulty
of sampling the posterior correctly using parsimony-
guided proposals. Of course, these conclusions are only
based on six data sets, so they remain tentative at best.

In general, the tree spaces that were difficult to sample
from using extending proposals were also comparatively
more difficult to sample from using parsimony-guided
proposals. Surprisingly, the peakiness of the tree space
did not seem to be the only factor determining the
sampling difficulty, as the more difficult data sets
included both tree spaces with distinct tree islands
(DA10; Fig. 5) and more homogeneous ones (AZ12).
A potential explanation for this is that the tree space
based on minimum SPR distances is different from the
tree space based on the overall probability of moving
between trees with high posterior probability using a
particular tree proposal. It is the latter distance that
actually determines the extent to which there are local
peaks in the tree space for that proposal. Unfortunately,
there is no method that can visualize large tree spaces
based on move probabilities as far as we know. Besides,
it is also possible that the 2D projection using MDS may
hide cryptic structure in higher-dimensional tree space.

Intuitively, one would expect that parsimony-guided
proposals should be particularly helpful in the burn-
in phase of an MCMC run, when moving from a poor
starting tree to a tree with high posterior probability. It
seems less clear whether parsimony-guided proposals
would also help chains mix well over the posterior
once the best trees have been reached. Our results do
show that parsimony-guided proposals can dramatically
shorten the burn-in phase of an MCMC run, but they also
indicate that parsimony-guided proposals can improve
mixing after the chains have converged. Presumably,
the ability of the parsimony-guided proposals to see
promising peaks beyond the local region in tree
space is important enough that it compensates for the
mismatches between parsimony scores and posterior
probabilities even during the later phases of an MCMC
run. However, it should be borne in mind that the
mixing conclusions are based on only six data sets, and
the pattern was less clear for one of them (DA10), so
it is possible that parsimony-guided proposals do not
improve mixing on all data sets.

As shown in Table 4, the ASDSF was always lower
in the reference runs than in the test runs at 10
million generations, indicating that convergence and
mixing were faster when using Metropolis coupling
and combining the extending and parsimony-guided
tree proposals. A question that arose during the study
was whether this improvement in convergence was due
largely to Metropolis coupling or to the combination
of moves, To answer this question, we repeated some
of the reference runs using the same mix of tree
proposals, but without Metropolis coupling. The results
(Supplementary Table S3 available on Dryad) indicate
that the mix of proposals is responsible for a large
proportion of the improvement in convergence. This
supports the recommendation of using mixes of tree
proposals in empirical analyses, which is also suggested
by our observation that the relative performance of
different tree proposals depends strongly on the data
set analyzed. These results also show that it is more
computationally efficient to run long single runs than
it is to use Metropolis coupling for these six data sets.
This conclusion, of course, is not likely to hold for all
data sets (see Whidden and Matsen, 2015).

The fact that we used a more realistic evolutionary
model than the JC69 evolutionary model suggests that
our results should be relevant for many empirical
analyses, even though there is no guarantee that
this is the case. Topological convergence may become
either easier or harder for more realistic and complex
evolutionary models, and the relative performance of
different types of moves could change both with the
model and the data set analyzed.

Although we focused entirely on unrooted trees, our
conclusions regarding the pSPR moves should apply also
to rooted and clock-constrained trees. In fact, parsimony-
guided moves have an interesting property that could
be particularly useful when estimating divergence times
in clock trees with fossils using total-evidence dating
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FIGURE 9. Histograms of the median branch lengths in the consensus tree of the reference tree samples for each of the six data sets.

(also referred to as tip dating or integrative dating)
(Ronquist et al., 2012a). In such analyses, fossil taxa
tend to have an extremely large proportion of missing
characters because they lack sequence data and usually
have incomplete coding for morphology as well, while
extant taxa can potentially be coded for all characters.
A parsimony-guided proposal would then generate a
much more diffuse proposal distribution when moving
fossil taxa than when moving extant taxa, as would be
appropriate.

Despite a large computational budget, our
experiments were not able to distinguish clearly
between the performance of the two different pSPR
and pTBR variants. Clearly, there is a need for further
experimentation with tuning parameters of the moves
described here, and exploration of other types of
approximations of the posterior tree probabilities. We
also want to emphasize that, although our results were
consistent across all the six data sets for which we
were able to obtain reasonably accurate estimates of
the posterior, the sample size is still small and it would
be highly desirable to extend the experiments to more
data sets. In either case, other experimental approaches
than the one used here may be needed to make this
practical. Although finding such approaches could

prove challenging, our results indicate that efforts in
this direction might be rewarding.
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APPENDIX

Metropolis–Hastings Tree Proposals
All tree proposals described in the article are examples

of the Metropolis–Hastings algorithm. It generates
successive samples from the posterior distribution

http://dx.doi.org/10.5061/dryad.98mp657
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by proposing a new state in parameter space, 
′,
conditional on the current state 
, according to a proposal
distribution that we will denote q(
′ |
). The new state is
then accepted with a probability R, determined by the
equation

R=min
(

1,
f (y|
′)
f (y|
)

× f (
′)
f (
)

× q(
|
′)
q(
′ |
)

)
(A1)

where the observations (data) are denoted y. The
acceptance probability involves the product of three
factors—the likelihood ratio (f (y|
′)/f (y|
)), the prior
ratio ( f (
′)/f (
)), and the proposal ratio (q(
|
′)/q(
′ |
),
also known as the Hastings ratio).

Note that the proposal ratio is computed as the
probability of the backward move, returning to 
 from

′, divided by the probability of the forward move,
proposing 
′ when starting from 
. Assume we bias the
move so that it is more probable to propose 
′ from 

than the other way around. Then the proposal ratio for a
move from 
 to 
′ will be smaller than one, making it less
likely to accept the move. However, if the likelihood of 
′
is higher than that of 
, this preference can still pay off. A
special case occurs if the preference for 
′ over 
 is exactly
the same as the ratio of the posterior probabilities of these
states (a Gibbs proposal). Then we have the Hastings
ratio

q(
|
′)
q(
′ |
)

= f (y|
)
f (y|
′) × f (
)

f (
′) (A2)

This is the reverse of the likelihood ratio times the
prior ratio, which results in these terms canceling the
proposal ratio. Thus, the acceptance ratio becomes 1.0,
which means that the proposal is always accepted,
showing that a Gibbs proposal is a special case of the
Metropolis–Hastings algorithm.

Computing the posterior probability ratio (the
likelihood ratio times the prior ratio) for a set of
candidate states is often computationally expensive. The
goal we pursue in the current paper is to find proposals
based on approximations of the posterior probability
ratio that are easy to compute. For good approximations,
the proposal ratio should come close to canceling the
true posterior probability ratio, thereby increasing the
average acceptance probability and improving mixing.

An unrooted phylogenetic tree T can be described
as consisting of a topology � and a set of branch
lengths v. Typically, a phylogenetic model also includes
substitution model parameters �. Thus, we can write a
state in parameter space as 
= (�,v,�). All tree proposals
considered here leave � unchanged, but propose a new
topology �′ and (usually) a new set of branch lengths v′.
The acceptance ratio is then obtained as

R=min
(

1,
f (y|�′,v′,�)
f (y|�,v,�)

× f (�′,v′)
f (�,v)

× q(�,v|�′,v′)
q(�′,v′ |�,v)

)
(A3)

The computation of the likelihood ratio and the prior
ratio in this equation is well-known (e.g., see Felsenstein,
2003). Therefore, to describe a tree proposal, it is
sufficient to specify how to generate a proposed state

(�′,v′) from the current state (�,v) and how to compute
the associated proposal ratio q(�,v|�′,v′)/q(�′,v′ |�,v).

Implementation Details
For pSPR moves, calculating the proposal weight ωi

(Equation 1) involves calculating the parsimony score
Si of branch i. This score can be obtained easily by first
computing the most parsimonious states at the root node
of A (z in Fig. 1b) and at all nodes in subtree BCDE,
then computing the number of most parsimonious
changes among the three nodes incident to the potential
regrafting point (x, y, and z in Fig. 1b) using well-known
algorithms (e.g., see Felsenstein, 2003). This procedure
ensures that Si is the parsimony score of the tree after
regrafting A at i minus the sum of the parsimony
scores of the two subtrees A and BCDE. For pTBR
moves, the Si scores are computed by first obtaining the
most parsimonious states of all nodes in both subtrees,
and then obtaining the number of most parsimonious
changes among the four nodes, two in each subtree,
adjacent to the proposed reconnection point.

Computationally, we do not obtain the proposal ratio
(Equation 2) by directly calculating the ωi or their sum
because this could result in severe numerical problems.
Instead, to obtain the ratio associated with the backward
or the forward move (the numerator or denominator
in Equation 2), we first find the maximum value of
ωi (assuming that 0<�i <1) denoted as ωm =�m

�Sm . In
pSPR1 or pTBR1, since �i’s are all equal to e−1, this
is equivalent to finding the ω value for the minimal
parsimony score. This may not be the case for pSPR2 or
pTBR2, since the �i’s vary and Sm may not be the minimal
value among the Si values.

After finding ωm, we divide each ωi by ωm and convert
ωi/ωm to

elog(ωi/ωm) =e�(Si log�i−Sm log�m). (A4)

Using these transformed weights for the forward move
and backward move allows us to obtain good numerical
stability in computing the proposal ratio.

To further improve the precision of calculating the sum
for i∈B\r or j∈B\b, we adopted the Kahan summation
algorithm (Kahan, 1965). Even so, there might still
be biases because of numerical inaccuracies in adding
extremely unequal numbers. Take pSPR1 for example.
Computing the proposal ratio for this move depends
on weight terms of the form e(Sm−Si)/2 by default (�
= 0.5); see Equation A4. The maximum value of these
terms is 1.0 when Sm =Si (the most parsimonious tree)
but the value can be extremely small when Sm �Si
(e.g., e−30 when Sm =10 and Si =70), making the small
terms neglected during the summation (cf. Equation
2). This may affect moves considering both trees with
extremely high and extremely low guide weights. The
likely effect is undersampling of trees with extremely
low guide weights, and distorted balance among trees
with extremely low guide weights. In general, trees with
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extremely low guide weights also have extremely low
likelihood scores. Therefore, the effect of these numerical
errors should be negligible when analyzing empirical
data.
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