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Kidney renal clear cell carcinoma (KIRC) has a poor prognosis and a high death rate globally. Cancer prognosis is strongly linked
to immune-related genes (IRGs), according to numerous research. We utilized KIRC RNA-seq data from the TCGA database to
build a prognostic model incorporating seven immune-related (IR) lncRNAs, and we constructed the model using LASSO
regression. Additionally, we calculated a risk score for each patient using a prognostic model that divided patients into high-risk
and low-risk groups. ,e ESTIMATE and CIBERSORT methodologies were then used to analyze the differences in the tumor
microenvironment of the two groups of patients. Finally, we predicted three small molecule drugs that may have potential
therapeutic effects for high-risk patients. We combined the acute kidney injury dataset to obtain differential genes that may serve
standard biological functions with two risk groups. Our study shows that the model we constructed for IR-lncRNAs has reliable
predictive efficacy for patients with KIRC.

1. Introduction

Kidney renal clear cell carcinoma (KIRC) is a common
tumor, accounting for 70–80% of all kidney tumors [1].
Every year, around 210,000 new cases of KIRC are diagnosed
throughout the globe [2]. Despite significant progress in
recent years in understanding the mechanisms and treat-
ments of KIRC, the prognosis for KIRC patients remains
poor [3]. For instance, the 5-year overall survival (OS) rate
for stage I KIRC patients is around 80%–95%, whereas the 5-
year OS rate for stage IV KIRC patients is less than 10% [4].
As a result, new biomarkers and therapy alternatives are
urgently needed to assist doctors in identifying suitable
treatment options and medicines and more correctly pre-
dicting the prognosis of KIRC patients.

Tumor immunity has attracted scientists’ attention as a
result of advances in the research of various cancers. Im-
mune-related genes (IRGs) are thought to have a role in
tumor growth and progression [5,6]. In various cancers,
immunotherapy that targets PD-1 ligand (PD-L1)/pro-
grammed death 1 (PD-1) signalling, for example, has been
demonstrated to increase antitumor immunity [7]. Fur-
thermore, studies have shown that PD-L1 and PD-1 ex-
pressions in KIRC patients are higher and correlate with
patient prognosis and that immune checkpoint inhibitor
drugs provide better options for KIRC patients, such as
improved OS and chemotherapy tolerance [8]. Tumor mi-
croenvironment (TME) research is also becoming more
critical in the development of tumors [9]. ,e TME com-
prises extracellular matrix components, immune cells,
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stromal cells, and inflammatory mediators [10]. One of the
primary cell types in the TME, immune infiltrating cells, is
strongly associated with tumor therapeutic response [11].
Using immune-based prognostic markers in KIRC is a
promising method, according to the results of these studies
[12, 13]. Furthermore, the findings of this research might be
utilized to investigate the underlying biological processes
further and identify possible therapeutic medications that
could help KIRC patients have a better prognosis.

,rough transcription regulation, long noncoding RNAs
(lncRNAs) have been shown to have a role in the creation
and activation of a variety of immune cells, as well as tumor
metastasis [14, 15]. Immune-related lncRNAs (IR-lncRNAs)
can be used as markers to predict the prognosis of glioma
patients [16]. It has been shown that creating IR-related
models may predict the prognosis of patients with various
kinds of cancers, including lung cancer, glioblastoma, and
gastric cancer [17–19]. However, the prognostic significance
of IRGs and IR-lncRNAs for KIRC is currently being
researched. We analyzed the relevance of IRGs and IR-
lncRNAs in predicting the prognosis of KIRC patients in this
work. We used least absolute shrinkage and selection op-
erator (LASSO) regression to develop a model incorporating
seven IR-lncRNAs for predicting overall survival. Based on
the model, risk scores were produced for each patient, and
patients were split into low- and high-risk groups. ,e TME
of the samples was then examined by utilizing ESTIMATE
and CIBERSORT algorithms to calculate the quantity of
stromal and immune cells in every sample. Finally, we
identified three small-molecule medicines that might be
used to treat individuals at high risk of KIRC.We also looked
at the AKI dataset to see whether any genes had both in-
teractions with KIRC. We found that the model we con-
structed consisting of IRGs and IR-lncRNA was able to
predict the prognosis of KIRC patients.

2. Materials and Methods

2.1. Data Collection. We downloaded data from the TCGA
(,eCancer GenomeAtlas) database for 537 RNA-seq cases,
containing clinical information of the cases. We downloaded
the RNA-seq dataset containing 39 human kidney biopsy
samples (AKI group) and 9 reference nephrectomy groups
(REF) fromGEO (Gene Expression Omnibus) (GSE139061).
Clinical features of 537 samples are shown in Table 1. ,e
latter study included patients with KIRC who had complete
clinical data and RNA-seq data. ImmPort Shared Data
provided us with a total of 2483 IRGs (Table S1).

2.2. WGCNA Network Construction. To discover modular
genes associated with clinical features, we used the weighted
gene coexpression network analysis (WGCNA) approach to
construct a network [20]. ,e gene-gene association is de-
termined for each pair in the first stage using gene coex-
pression similarity. ,e adjacency matrix and topological
overlap matrix (TOM) are then constructed using “soft”
criteria through the adjacency function. Using a hierarchical
clustering of heterogeneity measure (1-TOM) method, each

“gene module” is a set of genes with a high degree of to-
pological overlap.

Pearson’s technique was used to find correlations be-
tween modules and clinical variables to find clinically rel-
evant modules. We then chose modules that had a strong
association with prognostic characteristics.

2.3. Identification of Prognosis-Related IRG and IR-lncRNAs.
All of the IRGs in the prognosis-related module were
subjected to univariate Cox regression analysis, and only
those with a P value< 0.05 were recognized as prognosis-
related. We then used Pearson correlation analysis to de-
termine the correlations between prognostic IRGs and all
lncRNAs in KIRC patients; correlations more than 0.6 were
designated as IR-lncRNAs. Finally, all IR-lncRNAs were
submitted to univariate Cox regression, and lncRNAs with
P< 0.001 were selected as prognostically relevant IR-
lncRNAs.

2.4. Establishment of Prognostic Signature. We used LASSO
Cox regression to analyze all prognosis-related IRG and IR-
lncRNAs to construct a prognostic model. ,e following
equation was used to obtain the model risk scores:

Risk score � 􏽘
n

i�1
βi∗ xi, (1)

Table 1: Clinicopathological parameters of KIRC patients in this
study.

Variables Subgroups N %

Age ≤65 352 65.55
>65 185 34.45

Gender Male 346 64.43
Female 191 35.57

Grade

G1 14 2.61
G2 230 42.83
G3 207 38.55
G4 78 14.53

Unknown 8 1.48

T classification

T1 275 51.21
T2 69 12.85
T3 182 33.89
T4 11 2.05

N classification
N0 240 44.69
N1 17 3.17

Unknown 280 52.14

M classification
M0 426 79.33
M1 79 14.71

Unknown 32 5.96

UICC stage

Stage I 269 50.09
Stage II 57 10.61
Stage III 125 23.28
Stage IV 83 15.46
Unknown 3 0.56

Survival status Alive 360 67.04
Dead 177 32.96
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where xi is the gene expression value and βi reflects the
coefficient produced from LASSO Cox regression analysis;
based on the median values of the calculated risk scores, we
divided the KIRC patients into two groups of high risk and
low risk. To validate the model, we had three cohorts, the
training set, the validation set (random 1 :1 assignment), and
the total cohort, which were analyzed using Kaplan-Meier’s
method. To validate the predictive efficacy of the model, we
used time-dependent ROC curves, combined with clinical
information for univariate and multifactorial analyses.

2.5. Immune Infiltration Analysis. To investigate the rela-
tionship between our predictive model and immune cell
infiltration, we used the CIBERSORT method [21] to cal-
culate the amount of 22 immune cells in each KIRC sample;
we also used the Wilcoxon rank-sum test to compare the
differences in immune cells between high- and low-risk
groups and then used the K-M method to look at the re-
lationship between immune cell infiltration and the OS of
KIRC patients.

2.6. PathwayEnrichmentAnalysis and Identification ofDEGs.
We used the edgeR package to analyze the differentially
expressed genes (DEGs) in the two groups.We used CMap, a
database of small molecule drugs (https://portals.
broadinstitute.org/cmap), set |log2FC|≥ 1, and finally cal-
culated an enrichment score. A positive score suggests that
the drug may raise the risk of mortality in people with KIRC.
A negative value implies that the drug may reduce the risk of
mortality in individuals with KIRC. A drug with a negative
score has the potential to be therapeutic. Using the Pub-
Chem database, we constructed two-dimensional structural
maps of the prospective small molecule medicines (https://
pubchem.ncbi.nlm.nih.gov/).

2.7. GSEA. We used gene set enrichment analysis to see
whether there was a substantial difference in gene set en-
richment between the high- and low-risk categories in the
MSigDB collection (GSEA) [22]. For each study, 1,000
permutations of gene sets were done.

2.8. Statistical Analysis. We used R software (version 3.8.0)
to perform statistical analysis. Risk scores and clinical fea-
tures were examined using the χ2 test to see whether there
was any correlation. ,e statistical significance of normally
distributed variables was compared between the two groups
using unpaired t-tests. All statistical tests were two-tailed,
and statistical significance was defined as a value of P< 0.05.

3. Results

3.1. Construction of a Coexpression Network. A total of 2483
IRGs from 539 KIRC samples were subjected to a WGCNA
study. When the threshold value is set to 4, the gene net-
work’s connections form a scale-free network distribution
(Figure 1(a)). ,en we got six coexpressed modules in
various colours (Figure 1(b)). Age, sex, grade, stage, overall

survival, and survival status were used to determine the
connection between modules and clinical features. ,e
survival status of red and grey modules was discovered to be
connected (Figure 1(c)). Consequently, the red and grey
modules were selected as potential candidates for further
investigation in the upcoming research.

3.2. IdentificationofPrognostic-Related IRGsandIR-lncRNAs.
,e follow-up survival study includes 526 samples with
complete survival data. For all IRGs in the red (n� 74) and
grey (n� 80) modules, a univariate Cox regression analysis
was conducted (Tables S2 and S3), and 63 genes with
P< 0.05 were identified as prognosis-associated IRGs
(Table S4). Subsequently, correlations ≥0.6 were obtained for
313 IR-lncRNAs with prognostic IRGs. Also, 206 IR-
lncRNAs had good predictive value with P< 0.001 in the
one-way Cox regression analysis (Table S5).

3.3. Construction of a Predictive Model. We used LASSO
regression analysis to screen for efficient prognostic-related
markers, and a prognostic model was constructed from the
training set (Figure 2). ,e most helpful predictive bio-
markers were discovered as DLGAP1-AS2, AC024060.2,
SLBP-DT, DGUOK-AS1, MYG1-AS1, AC00578.1, and
MELTF-AS1 (Table 2).

We calculated a risk score for each patient and then
divided the patients into low-risk and high-risk groups by a
median value of cut-off. ,e expression levels of biomarkers
in each group were also analyzed (Figure 3).

3.4. Correlation between Signature and Clinicopathologic
Characteristics. Age, gender, class, and N categorization did
not vary substantially between the high-risk and low-risk
groups in any of the cohorts, as shown in Table 3.,e training
group and the overall cohort, on the other hand, had sub-
stantially different stages, Tclassification, andM classification.

3.5. Prognostic Value of Signature for Assessing Overall
Survival. Patients in the high-risk group have a poorer
prognosis, as indicated in Figures 4(a)–4(c). Patients’ sur-
vival times fell as their risk score rose, as seen in
Figures 4(d)–4(f ), and more patients died in the high-risk
group. ,e Kaplan-Meier test was used to confirm the
model’s prognostic usefulness further. Univariate Cox re-
gression analysis supported the model’s prognostic useful-
ness (Figures 5(a)–5(c)). In a multivariate analysis of the
whole cohort, the risk score was an independent risk factor
for KIRC patient OS (Figures 5(d)–5(f )). ,e AUC for OS at
1, 3, and 5 years was 0.744, 0.695, and 0.759 in training
cohort; 0.651, 0.653, and 0.683 in validation cohort
(Figure 5(h)); and 0.700, 0.675, and 0.723 in the total cohort
(Figure 5(i)).

3.6.High-RiskScoresWereRelated toHigher ImmuneScores in
KIRC Patients. As seen in Figure 6(a), individuals classified
as high risk had significantly higher immunological ratings.
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Figure 1: WGCNA network construction and module identification. (a) Soft thresholds determined. (b) WGCNA module identification
and clustering dendrogram. (c) Matrix of eigengene values and clinical characteristics.
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Furthermore, patients with high immunological ratings were
linked to a worse prognosis (Figure 6(b)).

3.7.;eLandscape of Immune Infiltration inKIRC. We show
the content of 22 immune cells in each sample by bar plot, as
shown in Figure 7(a). Heat map of 22 immune cells is shown
in Figure 7(b). Furthermore, using the Wilcoxon rank-sum
test, we discovered that CD8T cells, naı̈ve B cells, follicular
helper T cells, regulatory T cells (Tregs), M2Macrophages,
and resting mast cells were substantially different between
high- and low-risk individuals (Figure 7(c)). Furthermore,
K-M analysis indicated that patients with low proportions of
resting dendritic and mast cells had a poor prognosis. Pa-
tients with a high number of follicular helper and regulatory
T cells (Tregs) had a better prognosis (Figures 7(d)–7(g)).

3.8. GSEA. We used GSEA analysis on the high- and low-
risk groups to further study the essential signalling pathways.
Our results showed that alpha linolenic acid metabolism,
arachidonic acid metabolism, homologous recombination,
glycerophospholipid metabolism, linoleic acid metabolism,
and ether lipid metabolism were enriched (Figure 8).

3.9. Screening for DEGs. We found 765 DEGs between high-
and low-risk groups, comprising 6 downregulated and 759
upregulated genes (Figure S1). Based on these DEGs, we ran
a pathway enrichment analysis. ,ey were primarily
enriched in immune-related pathways, such as T cell pro-
liferation regulation and T cell activation (Figure 9).

3.10. Potential Small Molecule Drugs. We uploaded 765
DEGs with |log2FC| ≥1 to the CMap website. Among these
highly correlated molecules, tanespimycin, ursodeoxycholic
acid, and helveticoside had the highest degree of negative
correlation with patients in the high-risk group of KIRC
(Figure 10). All of them may have a potential therapeutic
effect on KIRC patients in the high-risk group.

3.11. Crosstalk with Acute Kidney Injury. ,e incidence of
tumors has increased and so has the number of patients with
kidney injury caused by tumors. Acute kidney injury is a
common complication of the cancer itself or the treatment
process. To find the relationship between high- and low-risk
groups of KIRC patients and AKI, we downloaded
GSE139061, which contains 39 native human kidney biopsy
samples (AKI group) and 9 reference nephrectomy samples
(REF group); we found 44 shared DEGs (Figure S2). Future
studies are needed to elucidate the relationship between
KIRC and AKI.

4. Discussion

Kidney cancer has been on the rise in terms of incidence and
death in recent years, and its treatment remains a serious
issue globally, owing to its dismal prognosis [23]. As a result,
identifying patients with a bad prognosis is a critical task.
Despite the findings of various prognostic studies, TNM
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Figure 2: LASSO Cox regression identified 7 lncRNAs for model construction (a, b).

Table 2: IR-lncRNAs from the predictive model of TCGA are
associated with OS.

Gene HR 95% CI P value LASSO coef.
DLGAP1-AS2 3.749 2.860–4.912 <0.001 0.140099926
AC024060.2 2.225 1.791–2.762 <0.001 0.041871909
SLBP-DT 2.628 2.057–3.355 <0.001 0.177728419
DGUOK-AS1 3.115 2.187–4.435 <0.001 0.085301062
MYG1-AS1 2.195 1.785–2.698 <0.001 0.141712499
AC005785.1 2.821 2.127–3.740 <0.001 0.164170337
MELTF-AS1 2.273 1.899–2.719 <0.001 0.192870454
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staging remains the most accurate predictor of KIRC [24].
However, because of the variability of KIRC, clinical out-
comes among individuals with the same TNM stage may
differ dramatically [25]. As a result, finding reliable prog-
nostic biomarkers is critical for building an accurate
prognosis model. Because of the role of the immune system
in cancer growth and the existence of a unique immuno-
logical milieu in the kidney, the search for immune-related
biomarkers is essential for the prognosis of KIRC patients
and may help guide immunotherapy research.

We used IRG and IR-lncRNAs to create the first pre-
dictive model for KIRC patients in this research. We built
and validated the predictive model based on seven IR-

lncRNAs. ,e findings revealed that the predictive model
correctly categorized KIRC patients into high- and low-risk
groups, with substantial variations in OS between the risk
groups. ,is predictive model’s prognostic value was also
verified, demonstrating that the predictive model based on
IRG and IR-lncRNAs is reliable and valuable.

,ese seven IR-lncRNA indicators all showed a good
correlation with prognosis. Other biomarkers utilized in our
prognosis model have been reported by research, even
though certain IR-lncRNAs in our predictive model have not
been functionally annotated and elucidated. ,e lncRNA
DLGAP1-AS1 has been demonstrated to increase Wnt1
transcription and gastric cancer growth by interacting with
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Figure 3: Expression levels of seven biomarkers in the training group (a), validation group (b), and total cohort (c) in the high-risk and low-
risk group cohorts.
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Six3 [26]. In breast cancer, DGUOK-AS1 may operate as a
tumor promoter via modulating the miR-204-5p/IL-11 axis
[27]. By modulating MMP14 expression, the lncRNA
MELTF-AS1 may enhance osteosarcoma metastasis [28].

Immune cell infiltration of cancers has lately been as-
sociated with prognosis in many studies [29, 30]. ,e ES-
TIMATE algorithm analyzes the particular gene expression
profile of immune cells and generates an immune score to
forecast immune cell infiltration. Immune cell infiltration
correlates with patient prognosis in many tumors, according
to several prior ESTIMATE assessments [31]. We discovered
that risk scores based on predictive models were favourably

connected with immune scores in the current investigation.
Patients with high immunological ratings also had a worse
prognosis. To learn more about immune cell infiltration, we
ran another CIBERSORTstudy to look at the different kinds
of invading cells. CD8 T cells, regulatory T cells (Tregs), and
follicular helper T cells were shown to be more prevalent in
the high-risk group. Regulatory T cells (Tregs) and follicular
helper T cells have also been linked to a poor prognosis. ,e
follicular helper T cells may play a significant part in the
progression of KIRC, which should be looked into more in
the future. We found through GSEA analysis that alpha
linolenic acid and arachidonic acid that maintain cell

Table 3: Correlation between the training cohort, validation cohort, and total cohort clinical features and the risk scores of the predictive
model based on immune-related lncRNAs.

Variables
Training cohort (n� 264) Validation cohort (n� 262) Total cohort (n� 536)

High risk
(%)

Low risk
(%) χ2 P

High risk
(%)

Low risk
(%) χ2 P

High risk
(%)

Low risk
(%) χ2 P

Age

0.017 0.897 0 1 0.034 0.854≤65 86
(65.15%)

88
(66.67%)

86
(65.65%)

87
(66.41%)

172
(65.4%)

175
(66.54%)

>65 46
(34.85%)

44
(33.33%)

45
(34.35%)

44
(33.59%) 91 (34.6%) 88

(33.46%)
Gender

0 1 0 1 0 1Female 44
(33.33%)

44
(33.33%)

47
(35.88%)

48
(36.64%) 91 (34.6%) 92

(34.98%)

Male 88
(66.67%)

88
(66.67%)

84
(64.12%)

83
(63.36%)

172
(65.4%)

171
(65.02%)

Grade

0.962 0.327 1.880 0.170 3.056 0.08
G1-2 54

(40.91%)
62

(46.97%)
56

(42.75%)
67

(51.15%)
110

(41.83%)
129

(49.05%)

G3-4 78
(59.09%)

68
(51.52%)

73
(55.73%) 60 (45.8%) 151

(57.41%)
128

(48.67%)
Unknown 0 (0%) 2 (1.52%) 2 (1.53%) 4 (3.05%) 2 (0.76%) 6 (2.28%)
Stage

8.339 0.004 0.666 0.414 7.41 0.006
Stages I-II 67

(50.76%)
91

(68.94%)
76

(58.02%)
84

(64.12%)
143

(54.37%)
175

(66.54%)

Stages III-IV 65
(49.24%)

41
(31.06%)

53
(40.46%)

46
(35.11%)

118
(44.87%)

87
(33.08%)

Unknown / / 2 (1.53%) 1 (0.76%) 2 (0.76%) 1 (0.38%)
T
classification

5.196 0.023 2.450 0.117 7.918 0.005T1-2 72
(54.55%)

91
(68.94%)

80
(61.07%)
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structure and function also enhance immune functions and
regulate lipid metabolism and related gene expression
[32, 33].

Despite attempts by researchers to enhance KIRC patients’
prognosis, the prognosis of KIRCpatients has remained bad for
decades. In this investigation, three small compounds, tanes-
pimycin, ursodeoxycholic acid, and helveticoside, were dis-
covered to have potential therapeutic benefits in individuals
with KIRC. Tanespimycin is a geldanamycin derivative that has
been studied for use in the treatment of cancer, notably in
young individuals with specific forms of leukemia or solid
tumors [34, 35]. It is used to treat young kids with specific

forms of leukemia or solid tumors, particularly kidney cancers.
Helveticoside is a bioactive component of Descurainia sophia
seed extract. Several investigations have shown this chemical to
regulate genes involved in proliferation and apoptosis in cat-
erpillar lung carcinoma cells [36]. Ursodeoxycholic acid is a
secondary bile acid that is formed by intestinal bacteria and is
necessary for lipid metabolism as well as the integrity of the
intestinal barrier. Ursodeoxycholic acid has also been studied
for its impact on tumor cell migration, tumor stem cells, and
drug-induced dysbiosis [37, 38]. Ursodeoxycholic acid may
also protect against the effects of cancer-fighting
chemotherapeutics.
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Figure 5: Prognostic value of the signature. Univariate and multivariate Cox analyses of predictive model in the training (a, d), validation
(b, e), and total cohorts (c, f ). AUC for 1-, 3-, and 5-year OS prediction for the prognostic models in three cohorts (g–i).
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,is study has some limitations. First, it is based on
one public database. Second, there were no cohorts from
other databases for validation. ,erefore, a large

multicenter study is needed to confirm our findings
before our predictive model can be applied to the
clinicians.
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Figure 7: Composition of immune cells (a) and heat map (b) calculated by the CIBERSORT algorithm for each sample. (c) Differences in
immune cell content between high- and low-risk groups. (d–g) Kaplan-Meier analysis of OS between high and low levels of the four immune
cells.
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Figure 8: GSEA enrichment between the two groups.
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5. Conclusion

For the first time in KIRC patients, we identified and val-
idated a predictive model consisting of 7 IR-lncRNAs with
independent prognostic significance. In addition, our pre-
dictive model may provide a new basis for immunotherapy
and immune targets for KIRC. In addition, based on this
predictive model, we predicted three small molecule drugs
with potential therapeutic value for KIRC treatment and
identified genes that intersect with AKI.
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