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Abstract: Freezing of gait (FOG) is a debilitating motor phenomenon that is common among
individuals with advanced Parkinson’s disease. Objective and sensitive measures are needed to
better quantify FOG. The present work addresses this need by leveraging wearable devices and
machine-learning methods to develop and evaluate automated detection of FOG and quantification
of its severity. Seventy-one subjects with FOG completed a FOG-provoking test while wearing three
wearable sensors (lower back and each ankle). Subjects were videotaped before (OFF state) and after
(ON state) they took their antiparkinsonian medications. Annotations of the videos provided the
“ground-truth” for FOG detection. A leave-one-patient-out validation process with a training set
of 57 subjects resulted in 84.1% sensitivity, 83.4% specificity, and 85.0% accuracy for FOG detection.
Similar results were seen in an independent test set (data from 14 other subjects). Two derived
outcomes, percent time frozen and number of FOG episodes, were associated with self-report of FOG.
Bother derived-metrics were higher in the OFF state than in the ON state and in the most challenging
level of the FOG-provoking test, compared to the least challenging level. These results suggest that
this automated machine-learning approach can objectively assess FOG and that its outcomes are
responsive to therapeutic interventions.

Keywords: Parkinson’s disease; wearables; machine learning; freezing of gait; accelerometer; gyroscope

1. Introduction

Freezing of gait (FOG) is one of the most disabling and enigmatic phenomena that impacts people
with Parkinson’s disease (PD) [1,2]. PD subjects with FOG suffer from restrictions in the movement of
their feet, especially in stressful situations. FOG increases the risk of falling and impairs functional
independence [3]. It can lead to the total arrest of the movement of the feet (i.e., akinesia); however,
at other times, there is a kinetic manifestation in which the legs shake at a relatively high frequency,
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without the ability to move forward or complete a turn [2,4]. FOG tends to increase in frequency and
severity with prolonged disease duration and progression of the disease [4]. While dopaminergic
medications may reduce the incidence and severity of FOG, this symptom is still common in the ON
(i.e., after medication intake) state, and it often does not respond favorably to treatment [4,5].

Because of its episodic nature and heterogeneous appearance, and because FOG often changes
and may even vanish during an exam in the office or the laboratory [6,7], self-report has traditionally
been the most widely used method for evaluating FOG and its severity [6–8]. The reliability and
sensitivity to change are, however, not high for the existing self-report measures [7,9].

Another approach to assessing FOG is to use FOG-provoking tests. For example, Ziegler et al. [10]
introduced a performance-based clinical test that includes several tasks known to trigger FOG, such as
gait initiation, turning 360◦ on the spot (clockwise and counterclockwise), and passing through a
doorway. The severity of FOG is rated by an expert observer based on a scale that reflects the occurrence
of an observed FOG during predefined parts of the test. Although this scoring method helps to detect
and assess FOG severity, it is, to some degree, subjective. Scoring of the test also requires clinical
expertise, potentially limiting its widespread applicability. Furthermore, the number of episodes
and FOG duration are not evaluated, and the detection of very short FOG episodes is difficult to
quantify [11]. Tools enabling the objective assessment of FOG, the tracking of its progression, and the
evaluation of the efficacy of related interventions are needed [6,8,12].

The objective assessment of FOG, theoretically, can be achieved with wearable inertial sensors.
Inertial sensors can be placed at various body locations to obtain a complete picture of the
patient’s movement [13,14]. Analyzing FOG episodes with inertial sensors enables objective measurement
of FOG duration, its dynamics, the number of episodes, and the context in which they occurred [8,12,14,15].
This provides important additional information concerning FOG and, potentially, a better way of
quantifying this problem.

Early works characterized FOG with metrics based in the time and frequency domain,
either individually or combined, using conventional statistics [12,16–20]. More recently, several forms
of supervised learning approaches were used to automatically detect FOG. These include support
vector machines (SVM) [21–25], boosting ensembles [26,27], and trees [25,27]. Machine-learning (ML)
classifiers make it possible to combine multiple features from different axes and sensors and to provide
information in a predefined window length.

Although some FOG-detection algorithms based on ML and other techniques have already been
investigated, work to date has largely been evaluated on relatively small datasets (e.g., the number of
study participants ranged from 5 to 15 [22,23,26], less than 50 FOG episodes [26], or less than 100 min
of FOG [21]) and independent test sets have not been used [22]. This limits generalizability. Another
limitation of the extant work is that the clinometric properties of the output of the automated detection
(e.g., response to intervention and association with other tests of FOG) often have not been examined.

Applying machine learning to wearable sensor data offers the possibility of automated detection
of FOG that is not tuned to the individual and can be scored without clinical expertise. It has the
potential to augment the existing evaluation of FOG in clinics and laboratory settings, similar to the
way that the automatic sensor-based assessment of the Timed Up and Go (iTUG) has enhanced that
test’s utility [28,29].

Leveraging a relatively large, manually annotated database of FOG, the aims of the present work
were as follows: (1) to adapt an ML algorithm for the automated detection of FOG and to apply it,
for the first time, to a previously validated FOG-provoking test; (2) to assess the ability of this ML
algorithm to detect FOG episodes and to compare its detection performance to the freezing index and
a previously published algorithm; (3) to evaluate the responsiveness of derived FOG outcomes to
conditions known to affect FOG severity (i.e., how the derived outcomes change in ON versus OFF
medications and how they change in simple versus more complex levels of the FOG-provoking test);
and (4) to further explore the validity of derived FOG outcomes by evaluating their associations to
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other available methods for assessing FOG (e.g., the New FOG Questionnaire (NFOGQ) and Movement
Disorder Society - Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) part III).

2. Materials and Methods

2.1. Participants

The current work is based on a dataset that was originally collected as part of another study.
That study aimed to examine the impact of transcranial direct current brain stimulation (tDCS) on
FOG in individuals with PD (manuscript in preparation). Seventy-one PD subjects with FOG were
selected from the dataset. They were recruited from the Center for the Study of Movement, Cognition,
and Mobility (CMCM) at the Neurological Institute in Tel Aviv Sourasky Medical Center, Israel, and the
Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School,
Boston, MA. All study participants met the UK Brain Bank criteria for idiopathic PD. Additional
inclusion criteria included the following: (1) a minimum of 21 points on the Mini Mental State
Examination [30], (2) a minimum score of 6 on the NFOGQ [31], (3) age 40–95 years old, and (4) a
stable medication regimen, i.e., no change in medications for the month prior to study participation.
Exclusion criteria were as follows: (1) inability to walk independently, (2) self-report of neurological
or psychiatric disorder other than PD, (3) history of seizures or head trauma, and (4) implanted
metals in the head area. All subjects provided informed written consent, as approved by local human
studies committees.

2.2. FOG-Provoking Test and Wearable Sensors

The study participants performed a FOG-provoking test in the lab (see Figure 1 for an overview
of the test) [10]. Each patient performed the test at three levels of difficulty: (1) as a single task, (2) as
a dual-motor task, i.e., performing the trial while carrying a tray with a bottle on it, and (3) as a
motor–cognitive task. In this most-challenging level, the participants were asked to perform the trial as
described in the second level of difficulty, while also performing serial seven subtractions. The subjects
were assessed while wearing Opal inertial sensors (APDM, Inc., Portland, OR, USA) on the lower back
and at the side of each leg, above the ankle. Each sensor included a tri-axial accelerometer, gyroscope,
and magnetometer recording at 128 Hz. The signals from the lower-back sensor provide insight into
the left and right feet, as well as the trunk and upper body, and the signals from the ankle sensors
provide more detailed information regarding movement of the legs. The subjects were tested before
the administration of tDCS or sham, and again in three different visits after the administration of tDCS
or sham (for more study details see ClinicalTrials.gov protocol NCT02656316). In each visit, the test
was performed in the OFF state (at least 12 h with anti-parkinsonian medication withdrawal) and/or in
the ON state and included the three levels mentioned above.
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Figure 1. A scheme of the freezing of gait (FOG)-provoking test the participants conducted in the
lab [10]. The test was repeated three times, with three different levels of difficulty. From a seated
position, the subject walks, turns in a circle clockwise and counter clockwise, as indicated, enters a
doorway, turns, and then returns to the seated position. CW, clockwise; CCW, counterclockwise.

As a “gold standard” reference in order to be able to validate the output of the ML algorithm,
each test was videotaped and annotated offline for any FOG episodes that occurred. An in-house
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FOG tagging (annotation) program was developed for this purpose as a MATLAB GUI; it enabled
synchronization between the videos and the signals and facilitated the annotation process. Predefined
guidelines were used for manual detection of FOG [5,20,32]. Briefly, FOG was defined as an intention
to walk without movement of the feet, or as heel lifting while toes stay on the ground, or an irregular
turning rhythm while the pivot foot stays on the ground. To reduce inter-rater variability, all videos of
the same individual were annotated by the same assessor. Videos that were noted with no FOG episodes
or that were difficult to annotate due to very short episodes or akinesia, for example, were reviewed by
two additional assessors. Preprocessing of the labeled dataset included merging separately identified
FOG episodes that occurred <1 second apart, as well as assigning identified FOG episodes lasting
shorter than one second in duration to a non-FOG segment.

2.3. Machine-Learning Algorithms

An automatic FOG-detection model was created by using ML methods. A support vector machine
(SVM) with radial basis function (RBF) kernel was chosen as the classification method. This classifier
has shown good results among previous publications of FOG detection [21,22,24,25,33]. Fourteen
subjects (20%) were selected randomly as the test set, and the other 57 subjects (80%) were selected
for the training set. All the date was first filtered with a second-order Butterworth low-pass filter
with a cutoff frequency of 15 Hz, to reduce high frequency noise. The training set was divided into
three-second windows with 50% overlap for non-FOG windows and 80% overlap for FOG windows,
thus creating more FOG examples and improving the model’s performance. For classification, only a
window that contained at least 1.5 s of FOG episodes was considered as a FOG window; otherwise,
it was considered to be a non-FOG window. For testing the model, the test set was partitioned
into three-second windows with 50% overlap. The windows were overlapped to achieve maximum
information and fine-tuning of the temporal resolution.

A set of 86 features was computed for each window and from several sensors (see Table A1 in
the Appendix A). The feature set was based on previous publications [21–23] and was adapted and
modified to the current dataset (e.g., the axes and frequency bands that were used). Two features
that showed the relationship between the movements of the back to that of the legs were added.
Figure 2 demonstrates one of these features. Feature selection was performed to identify the most
discriminative features for distinguishing FOG windows from non-FOG windows. This was done
through a leave-one-patient-out method in which each of the iterations was repeated by keeping apart
the data from a single patient. This way the model was tested with data that were not included in its
training and a model with a final set of features could be obtained.
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Figure 2. The histogram of the ratio between legs gyroscope root-mean-square (RMS) to the
back-acceleration RMS in non-FOG windows (left histogram) and FOG windows (right histogram).
This ratio was used as a primary input feature to the support vector machines (SVM) model. Probability
is shown in normalized values.
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Feature selection in each leave-one-patient-out iteration was done as follows; t-tests were used
within each feature, and only the features that significantly separated between windows with and
without FOG with corrections to multiple comparisons (Bonferroni) were retained. Next, the selected
features were ranked by their relevance, using the minimum redundancy, maximum relevance
(MRMR) algorithm [34]. Finally, an iterative feature-selection process was performed in which the
misclassification error as a function of the number of the ranked features was analyzed. The feature set
that gained the minimum misclassification error was chosen.

Furthermore, the classification validation was performed with the leave-one-patient-out method.
The data from a single patient that were kept out of the training batch were tested, and each window
was compared to the reference annotations. The performance of each of the iterations in the detection
of FOG was measured by sensitivity, specificity, and accuracy in a window level. When there were
no FOG windows in the signal, sensitivity was considered to be 100%. A ROC (receiver operating
characteristic) curve was calculated for each iteration. Afterward, the means across all the iterations of
sensitivity, specificity, and accuracy, as well as the mean ROC curve, were calculated.

A final model was generated with the training set of 57 subjects and tested on the dataset of 14 other
subjects who were not included in the training set. The previously described iterative feature-selection
process was used in the final model. However, first, the features were ranked according to their
commonness in the previously described leave-one-patient-out process. Then, the final set of features
was selected according to the minimum classification error that was achieved among the training
group and was used as an input to the final classifier. Automatic FOG detection was made by using
the final model, and accuracies were achieved. Finally, each patient’s dataset was evaluated for the
number of FOG episodes and the total duration of FOG. An episode’s duration was quantified by its
ratio to the test’s duration and referred to as “percent time frozen” [12]. See Figure 3 for a flowchart of
the classification process.
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Figure 3. A flowchart of the methodology described in this paper for the detection of FOG episodes
with a machine-learning classifier. First described are the feature-selection and -validation processes in
a leave-one-patient-out method. Then, the construction and testing of the final model. SVM, support
vector machine; RBF, radial basis function.

Two other algorithms were additionally evaluated for comparison: the freezing index [16], as a
single measure, and the feature set suggested by Samà et al. [23]. The windowing process for both
was the same as for the new suggested algorithm. The freezing index, originally developed by
Moore et al. [16], is a threshold-based method to identify FOG. It is based on the idea that the power
spectrum of FOG differs from that of normal gait [35]. The freezing index was calculated for each
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window as the ratio between the integrated power spectral density in 3–8 Hz (freeze band) to that in
0.5–3 Hz (walking band). The anterior–posterior acceleration axis was used for this purpose [17], and a
threshold of 2.5 (AU) was determined for the detection of FOG. The freezing index was calculated for
each leg separately, and the maximum value between the legs was chosen. The results were examined
as described earlier with sensitivity, specificity, and accuracy per window. The second feature set that
was implemented (Samà et al. [23]) was used as an input for the SVM classifier (see Table 1 for details).
This feature set was chosen as a starting point because it showed promising results in detection with
ML methods. The feature set included cross-axis information as correlations and differences in the
mean value of the axes.

Table 1. The feature set according to Samà et al. [23]. Features were calculated from the back sensor.

Feature Axis/Frequency

Time domain

Difference of the mean AP, V-ML, AP-ML

SD AP, V, ML

Correlation V-AP, AP-ML, V-ML

Skewness AP, V, ML

Skewness of the RMS .

Frequency domain
All features were calculated for the sum of the three axes vectors

SD in different bands 0.04–0.68 Hz, 0.68–3 Hz, 3–8 Hz, 8–20 Hz, 0.1–8 Hz

Max harmonic and its frequency .

Distance between the first and second max harmonics .

Center of Mass .

Skewness in different bands 0.04–0.68 Hz, 0.68–3 Hz, 3–8 Hz,

First three components of PCA 0.04–8 Hz

AP, anterior-posterior axis; V, vertical axis; ML, medio-lateral axis; RMS, root-mean-square; SD, standard deviation;
PCA, principal component analysis.

2.4. Statistical Analysis

Statistical analyses were performed by using SPSS statistical package version 25 (SPSS Inc.,
Chicago, IL), and MATLAB, 2019 version 9.7.0 (R2019B) (Natick, MA: The MathWorks, Inc.). A 2-tailed
p-value ≤ 0.05 was considered statistically significant. Sensitivity was calculated as the sum of the true
positive (FOG) windows, as detected by the algorithm divided by the total amount of FOG windows,
according to video annotations. Specificity was calculated as the sum of the true negative (non-FOG)
windows, as detected by the algorithm divided by the total amount of non-FOG windows, according
to video annotations. Accuracy was the ratio between the sum of the true positive detections and
true negatives detections to the entire population. For the train-test process of the classifier, the entire
dataset was used. To study the responsiveness (e.g., change in the outcome measures in response to a
challenging condition) and associations of the output of the algorithm, we focused on the baseline
data (before the administration of tDCS) in order not to be influenced by the tDCS treatment on
the existence of FOG. A square-root transformation was used to achieve normal distribution for the
average of percent time frozen, the number of FOG episodes, and the clinical test score across the
three levels of the FOG-provoking test. Paired t-tests were used to investigate differences between the
OFF- and ON-medication states. Friedman’s tests were used to investigate differences between the test
levels within medication state condition, and Wilcoxon signed-rank tests were used to investigate the
post hoc analysis. Wilcoxon singed-rank tests were also used to investigate differences between the
performance of the new algorithm and two other methods. The performance of the three methods
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was measured in terms of sensitivity, specificity, and accuracy. Effect sizes for paired-sample t-tests (d)
were calculated by dividing the mean difference by the standard deviation of the difference: d = 0.2
small effect, d = 0.5 medium effect, and d = 0.8 strong effect [36]. Effect sizes for Wilcoxon signed-rank
tests (r) were calculated by dividing the test statistic by the square root of the number of observations:
r = 0.1 small effect, r = 0.3 medium effect, and r = 0.5 and higher strong effect [36]. The associations
between the algorithm-based measures and annotations-based measures, as well as other tests that
reflect FOG severity, were calculated with Spearman’s correlations.

3. Results

Table 2 summarizes the characteristics of the study participants. In general, the study participants
had relatively advanced disease and relatively high scores on the NFOGQ, consistent with the
inclusion criteria.

Table 2. Subject characteristics.

No. of subjects * (N) 71

Age (years) 69.9 ± 7.8

Gender (M:F) (57:14)

Disease duration (years) 9.2 ± 5.7

Education (%)
22% High school or equivalent

23.9% Bachelors
32% Masters or higher

New FOG Questionnaire 19.4 ± 4.3

Mini Mental Status Exam 28.0 ± 1.8

MDS-UPDRS part III (motor) OFF 43.1 ± 16.9

MDS-UPDRS part III (motor) ON 37.1 ± 14.5

TUG time OFF (s) 15.3 ± 10.2

TUG time ON (s) 13.6 ± 7.9

FOG-provoking test total score OFF 15.8 ± 7.0

FOG-provoking test total score ON 12.5 ± 6.6

Gait speed (cm/s) OFF 100.3 ± 22.8

Gait speed (cm/s) ON 104.6 ± 25.2

* Forty-four subjects were tested both in OFF and ON states. Twenty-four were tested only in the ON state, and three
only in the OFF state. MDS-UPDRS, Movement Disorder Society Unified Parkinson’s Disease Rating Scale.

3.1. Detection Performance

For the classification process, 1041 recorded signals with a total duration of 17.6 h were recorded.
Based on the video annotations, 1754 FOG episodes were identified before merging episodes that were
close to each other (<1 s), and 1487 were identified after merging. The total FOG duration across all
records was 6.75 h, with 0 to 11 episodes per test. The single-episode duration ranged from 0.18 s
before eliminating short episodes (<1 s) to a maximum of 11.46 min. The training set (57 subjects)
consisted of 12,629 windows of FOG (average of 550 windows per subject) and 20,172 non-FOG
windows (average of 340 windows per subject) based on the manual video annotations. Each signal
could have both FOG and non-FOG windows.

Following the feature-selection process, 18 features were used per training iteration on average.
The average results were 84.1 ± 22.3% sensitivity, 83.4 ± 12.2% specificity, and 85.0 ± 10.0% accuracy.
The average ROC curve across all the iterations had an AUC = 0.93 for the training set (see Figure 4a).

For the final classification model in which the dataset of 57 individuals was trained by the SVM
classifier, 14 important features were chosen (Table 3) out of a list of 86 features (Table A1 in the
Appendix A). The test set of 14 subjects showed 80.0 ± 19.2% sensitivity, 82.5 ± 11.2% specificity,
and 86.6 ± 7.8% accuracy. The AUC of the ROC curve of the test set was 0.94 (see Figure 4a). Figure 4b



Sensors 2020, 20, 4474 8 of 16

illustrates ROC curves of the test set separately for the OFF- and ON-medication states. In addition to
that, algorithm-derived percent time frozen during the test set was significantly correlated with the
annotations-derived percent time frozen (r = 0.897 p < 0.01).Sensors 2020, 20, x FOR PEER REVIEW 8 of 17 
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Table 3. A set of 14 features that were used to train the final model with the SVM classifier. These
features yielded the minimum classification loss and are rated in descending order, according to their
significance to the model.

Domain Feature Description Sensor Location Accelerometer/Gyroscope

1 Time
max(RMS (xRL,yRL,zRL),RMS (xLL,yLL,zLL))

RMS (xback,yback,zback)
Legs and back

Legs: Gyroscope, Back:
Acceleration,

(x, y, z) ∈ {V, AP, ML}

2 Frequency Freezing index ( x) Legs Acceleration, x ∈ AP0.5–3 Hz, 3–8 Hz

3 Frequency Peak frequency of x between 3–8 Hz Legs; max between
both legs Acceleration, x ∈ V3–8 Hz

4 Frequency Entropy of x between 0.5–3 Hz Back Gyroscope, x ∈ V0.5–3 Hz

5 Frequency Peak frequency of x between 0.5–3 Hz Legs; max(x RL, xLL) Gyroscope, x ∈ V0.5–3 Hz

6 Time Range(cumulative sum (x)) Back Gyroscope, x ∈ML

7 Frequency Entropy of x in specific bands 0.5–3 Hz Back Acceleration, x ∈ AP0.5–3 Hz

8 Time Range(cumulative sum (x)) Legs; min between
both legs Acceleration, x ∈ V

9 Time Mean (x) Legs; min(|xRL|,|xLL|)

max(|xRL|,|xLL|)
Gyroscope, x ∈ML

10 Frequency Skewness of x between 0.5–3 Hz Back Gyroscope, x ∈ML0.5–3 Hz

11 Time Correlations between the right and left leg Legs; corr(xRL, xLL) Gyroscope, x ∈ML

12 Time
max(RMS (xRL,yRL,zRL),RMS (xLL,yLL,zLL))

RMS (xback,yback,zback)
Legs and back Gyroscope, (x, y, z) ∈ {V, AP, ML}

13 Time Range(cumulative sum (x)) Legs; min(x RL, xLL) Gyroscope, x ∈ML

14 Time RMS(x, y, z) Legs; max(x RL, xLL) Gyroscope, (x, y, z) ∈ {V, AP, ML}

RL, right leg; LL, left leg; RMS, root-mean-square; V, vertical axis; AP, anterior-posterior axis; ML, medio-lateral axis;
corr, correlation.

Figure 5 presents the sensitivity, specificity, and accuracy of the freezing index as a single feature
and of an SVM with the feature set from Samà et al. [23], as well as the results of the proposed algorithm.
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As shown in the figure, the proposed algorithm had better accuracy, sensitivity, and specificity
compared to the two previously used algorithms.
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Figure 5. A comparison between the performance of three methods in the detection of FOG episodes
on the training set (n = 57); freezing index as a single feature, Samà et al. [23] feature set with an SVM
classifier and the proposed feature set with the same SVM classifier. The training set was chosen for
this comparison since it consists of a larger dataset. Similar results were obtained with the test set.
* p < 0.05, values are presented as median.

3.2. Responsiveness of the Assessment of FOG Based on the Outcomes of the Algorithm

The dataset (71 subjects) was evaluated by the proposed algorithm for the quantity and extent of
FOG episodes. As expected, paired t-tests showed that percent time frozen and the number of episodes
averaged across the three levels of the test were higher in the OFF state than in the ON state (n = 43
subjects, %FOG: p = 0.004, effect size = 0.5; number of episodes: p < 0.001, effect size = 0.6) (Figure 6).
Similarly, the clinical score on the FOG-provoking test increased (p = 0.002) from 4.0 ± 2.2 in the ON
state to 5.1 ± 2.3 in the OFF state, with an effect size of 0.5.Sensors 2020, 20, x FOR PEER REVIEW 10 of 17 
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Figure 6. Percent time frozen and the number of FOG episodes, as detected by the new algorithm in
the OFF–ON states. Error bars reflect ± 1 standard errors.

Furthermore, Friedman’s tests revealed significant differences in the FOG measures between the
levels of difficulty both in OFF and ON (OFF; n = 41 subjects, %FOG: p = 0.011, number of episodes:
p < 0.001. ON; n = 62 subjects, %FOG, and number of episodes: p < 0.001). Post hoc analysis of the test
levels in OFF–ON states showed that the highest percent time frozen was in the most challenging test
level (Table 4).
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Table 4. FOG outcomes determined by using the automated algorithm differ in between the easiest
and most challenging levels of the test within OFF–ON states.

No. of
Subjects Easiest Level Most Challenging

Level
Effect
Size p-Value

OFF medication 41
Percent time frozen (%) 35.7 (7.2–51.1) 36.5 (17.4–69.8) 0.4 0.017

Total time frozen (s) 15.0 (3.0–24.8) 24.0 (9.0–69.8) 0.6 <0.001
Number of FOG episodes 1.0 (1.0–3.0) 3.0 (1.5–4.0) 0.7 <0.001

ON medication 62
Percent time frozen (%) 21.0 (0–43.4) 37.8 (11.2–50.4) 0.6 <0.001

Total time frozen (s) 9.0 (0.0–20.3) 18.0 (4.5–38.1) 0.7 <0.001
Number of FOG episodes 1.0 (0.0–2.0) 2.0 (1.0–4.0) 0.7 <0.001

Values are presented as median (inter-quartile range). Since some of the subjects were not able to perform the testing
in the OFF state, the number of subjects was higher in the ON state.

3.3. Associations of Algorithm Measures of FOG with Related Measures of FOG

Correlations between the algorithm’s estimate of FOG and self-report of NFOGQ score, disease duration,
TUG time, and MDS-UPDRS part III in OFF and ON are presented in Table 5. Mild-to-moderate correlations
were observed, with some of the associations being dependent on the medication state.

Table 5. Spearman correlations of percent time frozen, as detected by the algorithm and NFOGQ score,
TUG time, and MDS-UPDRS part III score in OFF–ON medication states.

NFOGQ
Total TUG Time MDS-UPDRS

Part III
Disease

Duration

OFF medication
Percent time frozen (%) 0.489 ** 0.263 0.074 −0.253

Total time frozen (s) 0.485 ** 0.392 ** 0.116 −0.176
Number of episodes 0.391 ** 0.420 ** 0.210 0.029

ON medication
Percent time frozen (%) 0.375 ** 0.379 ** 0.496 ** −0.042

Total time frozen (s) 0.405 ** 0.471 ** 0.565 ** −0.007
Number of episodes 0.416 ** 0.583 ** 0.565 ** 0.071

Significant correlations are bolded: ** p < 0.01. TUG, Timed Up and Go; NFOGQ, New FOG Questionnaire.
MDS-UPDRS, Movement Disorders Society Unified Parkinson’s Disease Rating Scale.

4. Discussion and Conclusions

Here we describe a machine-learning method for the automatic detection of FOG episodes during
a FOG-provoking test [10] using data from three wearable sensors. The FOG-provoking test included
conditions that aimed to trigger FOG presentation, and thus it involves both walking and turning,
as well as cognitive, motor, and emotional challenges. As was recently described in Reference [9],
objective ways of evaluating FOG are needed. To the best of our knowledge, this is the first study that
aimed to automatically detect FOG episodes during a previously validated FOG-provoking test. Several
findings support the utility and validity of the present approach: (1) the relatively high sensitivity
and specificity results of the training and, maybe, more importantly, the test set; (2) correlations
between the ML-based outcomes and the manual video review of FOG; (3) the responsiveness of
derived measurements from the automated detection to anti-parkinsonian medications and the more
challenging FOG-provoking condition; and (4) the correlations between algorithm-derived measures
of FOG and the NFOGQ.

Recent studies underline the importance of using relatively large datasets for studying FOG
detection and specifically for ML approaches [6,9,13]. For example, a 2019 review screened 68 papers
that aimed to detect FOG [13], and the largest studied population was only 32 FOG-PD subjects. In the
present study, records from 71 subjects with a total of 6.75 hours of FOG episodes were included.
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This reflects a relatively large number of annotated FOG episodes with prolonged total duration,
consistent with the recent recommendations.

As suggested before [21–23], we found that patient-independent SVM classifiers can be used to
detect FOG. The statistical measures of the performance of the classifier and the high correlations
between the algorithm-derived results and the actual percent time frozen (r = 0.897, p < 0.01) indicates
the good performance of the algorithm. The AUC reinforces this conclusion, specifically the similarity
between the ROC curves of the OFF–ON medication states (Figure 4b). The minor differences between
the OFF–ON curves likely reflect false negatives, due to a decrease in the occurrence of FOG in the
ON state. Furthermore, there was some variation in the detection accuracy among the tested subjects,
as can be seen by the standard deviations of the algorithm performance matrices. This might be due to
the variations in the manifestations of FOG during the test across individuals. FOG was previously
described as a mysterious symptom that is challenging to observe, which is manifested differently
among individuals with PD, and that even changes in different situations for the patient him/herself [2].
Episode duration ranged between 1.0 to 687.6 s, and very short episodes were challenging for the
clinicians to annotate and for automatic detection. Indeed, the present analyses did not consider FOG
that was less than one-and-a-half-seconds long (due to a window length of 3 s)—a limitation. Akinesia,
impaired gait, akinetic episodes, and deceleration (preceding opening the door, for example) likely also
challenged the automated detection. Promisingly, the sensitivity and specificity of the detection of FOG
episodes among the test set were very close to the performance of the training process. This suggests
that the classifier was not over-trained or tuned to the specifics of the study participants and that it
is generalizable.

The feature-selection process reduced the feature count from the original 86 to 14 features in
total (Table 3), without compromising detection performance. This can make the classification process
more accessible for further use. It is also important to note that we introduced new features: the ratio
between the RMS from the leg sensors to the RMS from the back sensor (angular velocity from legs to
acceleration from the back and angular velocity of both) (recall Figure 2). These features were based on
the idea that, during kinetic freezing, the movement of the body forward decreases while the legs are
still moving. This notion was supported by the high rank that these features received by the MRMR
algorithm as part of the feature-selection process. It can be seen that most of the features that were
included in the final model input were calculated from the leg sensors (Table 3). This finding may be
because the manifestation of FOG decreases as the sensor moves away from the ground.

FOG duration and episode counts may have an added value in the evaluation of the FOG-provoking
test that is usually scored only by the presence of episodes in predefined tasks. As expected, since FOG
occurs more frequently in the OFF state and in more challenging tasks [2], the percent time frozen and
the number of episodes were higher in the OFF than in ON state (Figure 6), and in the most challenging
level of the test than the easiest level (Table 4). These findings support the validity of these derived
outcome measures. Interestingly, the effect sizes of the clinical score and FOG measures were similar
(recall Table 5). We can infer from this that the automated assessment performs as well as the clinical
rating. Of course, evaluating percent time frozen and the number of episodes in a FOG-provoking test
can be accomplished by manual review of video-recorded tests. However, that rating process is quite
time-consuming, requires trained personnel, and is subject to bias. The present findings indicate that
the automated process based on wearable sensors and machine learning can be used instead of the
manual review of videos.

To directly compare the results of the detection performance with the literature, we tested two
additional methods of FOG detection. Figure 5 shows that the results based on those methods were
lower than those of the new algorithm. Although the freezing index was one of the main input
features in our classifier, as a single feature, its performance was insufficient. Samà et al. [23] presented
results that are higher than those achieved by their same features with our dataset. That might be a
consequence of the location of the sensors and specific characteristics of the dataset. The FOG-provoking
test was made of short-distance trials with turns and few walking bouts, compared to the datasets
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from both studies that contained longer recordings of free walking. Difficulties in reproducing the
results of previously published methods of automatic FOG detection were already described [23,26,37].
More specifically, the importance of validation of ML methods on different cohorts was recently
highlighted [6]. Many factors may influence the ability to generalize one method to different datasets.
These include the characteristics of the participants, the placement of the sensors, the preprocessing of
the data, and the evaluation methods of the results. Caution should be used when trying to compare
and utilize the automatic FOG detection to different cohorts with different conditions. Nonetheless,
our use of a training set and a completely different test set should mitigate this issue.

Accuracy, sensitivity, and specificity above 80% in this context can be considered good. Still,
for some applications, it might be helpful to increase detection performance. This might be achieved
by adding additional sensor types (e.g., EMG [38] and ECG [39]) to help differentiate some of the more
challenging conditions (e.g., akinetic FOG vs. standing still), by focusing on the subtypes of episodes
(e.g., during a turn and start hesitation) or by applying techniques like deep learning [37]. The present
work can also be extended to develop an automated and instrumented scoring. A total score might be
based on the percent time frozen and the number of episodes, and perhaps sub-scores might relate to
the different FOG-provoking test parts, e.g., gait initiation, turns, and straight-line walking. This might
enhance monitoring and provide directions for therapy. Furthermore, it might be interesting to
combine the objective score with other sensor-derived measures (e.g., duration of subtasks), self-report
(e.g., NFOGQ score), and other FOG characteristics that are already known [40]. Reducing the number
of sensors to achieve simplicity, especially for future use for home and daily living detection, should also
be considered. Trade-offs between simplicity and ease-of-use, on the one hand, and complexity and
granularity of the tool, on the other hand, will need to be evaluated.

The present results suggest that the automated detection of FOG within a laboratory-based
FOG-provoking test can be achieved by using wearables and a machine-learning algorithm. This tool
promises to augment the assessment of this debilitating phenomenon and, hopefully, aid in the
development of improved treatments by affording objective evaluation of their impact on FOG.
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Appendix A

Table A1. The full feature set (84 features) that was used in the machine-learning training.

No. of Features Feature Description Back Sensor Leg Sensors

Time domain

6 Mean(x) Acceleration, x ∈ {V, AP}

min(|xRL|,|xLL|)

max(|xRL|,|xLL|)∣∣∣xRL − xLL
∣∣∣

Acceleration, x ∈ V
Gyroscope, x ∈ML

6 SD(x) Acceleration, x ∈ {V, AP}

max
(∣∣∣SD(xRL)

∣∣∣, ∣∣∣SD(xLL)
∣∣∣)∣∣∣xRL − xLL

∣∣∣
Acceleration, x ∈ V
Gyroscope, x ∈ML

6 Correlations(x, y) Acceleration,
(x, y) ∈ {V-ML, V-AP, AP-ML}

max(corr
(
xRL, yRL

)
, corr

(
xLL, yLL

))
Gyroscope, (x, y) ∈ {V-ML, V-AP, AP-ML }

1 Correlations between the right
and left leg . corr(xRL, xLL)

Gyroscope, x ∈ML

7 Range(cumulative sum (x)) Acceleration, x ∈ {V, AP}
Gyroscope: x ∈ML

min
(

range(cumulative sum(xRL)),
range(cumulative sum(xLL))

)
max

(
range(cumulative sum(xRL)),
range(cumulative sum(xLL))

)
Acceleration, x ∈ V
Gyroscope, x ∈ML

2 RMS (x) Acceleration, x ∈ {V, AP} .

2 RMS ( x, y, z);
total RMS across all axes

Acceleration,
(x, y, z) ∈ {V-AP-ML}

max
(
RMS

(
xRL, yRL, zRL

)
, RMS

(
xLL, yLL, zLL

))
Gyroscope, (x, y, z) ∈ {V-AP-ML}

1
max(RMS (xRL,yRL,zRL),RMS (xLL,yLL,zLL))

RMS (xback,yback,zback)
Legs: Gyroscope, (x, y, z) ∈ {V-AP-ML}

Back: Acceleration, (x, y, z) ∈ {V-AP-ML}

1
max(RMS (xRL,yRL,zRL),RMS (xLL,yLL,zLL))

RMS (xback,yback,zback)
Legs: Gyroscope, (x, y, z) ∈ {V-AP-ML}
Back: Gyroscope, (x, y, z) ∈ {V-AP-ML}

Frequency domain

16 SD(x); SD of the frequency
amplitude in specific bands

Acceleration,

x ∈
{

V0.5–3 Hz, 3–8 Hz,
AP0.5–3 Hz, 3–8 Hz

} min(SD (xRL), SD(xLL))
max(SD (xRL), SD(xLL))

Acceleration, x ∈ V0.5–3 Hz, 3–8 Hz
Gyroscope, x ∈ML0.5–3 Hz, 3–8 Hz

24
Peak amplitude of x and its

frequency across all frequencies
and in specific bands

Acceleration,

x ∈
{

Vall, 0.5–3 Hz, 3–8 Hz,
APall, 0.5–3 Hz, 3–8 Hz

} max(x RL, xLL)

Acceleration, x ∈
{

Vall, 0.5–3 Hz, 3–8 Hz,
APall, 0.5–3 Hz, 3–8 Hz

}
Gyroscope, x ∈

{
Vall, 0.5–3 Hz, 3–8 Hz,

MLall, 0.5–3 Hz, 3–8 Hz

}

3 Entropy of x in specific bands
Acceleration,

x ∈ AP0.5–3 Hz, 3–8 Hz
Gyroscope, x ∈ V0.5–3 Hz, 3–8 Hz

.

1
Freezing index (x);

integrated power spectral density in 3–8 Hz
integrated power spectral density in 0.5–3 Hz

.

Acceleration, x ∈ AP 0.5–3 Hz, 3–8 Hz

freezing index = max
(

freezing indexRL,
freezing indexLL

)
freezing index =

1 if freezing index > 2.5
0 else

1 Total power: the average power
of x

While turning: Gyroscope, x ∈ V
Otherwise: Acceleration, x ∈ AP .

5 Skewness of x in specific bands

Acceleration,

x ∈
{

V0.5–3 Hz, 3–8 Hz,
AP0.5–3 Hz, 3–8 Hz

}
Gyroscope, x ∈ML0.5–3 Hz

.

4 Kurtosis of x in specific bands
Acceleration,

x ∈
{

V0.5–3 Hz, 3–8 Hz,
AP0.5–3 Hz, 3–8 Hz

}
.

RL, right leg; LL, left leg; V, vertical axis; AP, anterior-posterior axis; ML, medio-lateral axis; SD, standard deviation;
corr, correlation; RMS, root-mean-square.
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