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Climate‑catchment‑soil control 
on hydrological droughts 
in peninsular India
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Most land surface system models and observational assessments ignore detailed soil characteristics 
while describing the drought attributes such as growth, duration, recovery, and the termination 
rate of the event. With the national-scale digital soil maps available for India, we assessed the 
climate-catchment-soil nexus using daily observed streamflow records from 98 sites in tropical 
rain-dominated catchments of peninsular India (8–25° N, 72–86° E). Results indicated that climate-
catchment-soil properties may control hydrological drought attributes to the tune of 14–70%. While 
terrain features are dominant drivers for drought growth, contributing around 50% variability, soil 
attributes contribute ~ 71.5% variability in drought duration. Finally, soil and climatic factors together 
control the resilience and termination rate. The most relevant climate characteristics are potential 
evapotranspiration, soil moisture, rainfall, and temperature; temperature and soil moisture are 
dominant controls for streamflow drought resilience. Among different soil properties, soil organic 
carbon (SOC) stock could resist drought propagation, despite low-carbon soils across the Indian 
subcontinent. The findings highlight the need for accounting feedback among climate, soil, and 
topographical properties in catchment-scale drought propagations.

Peninsular River Basins (PRB) of India (8–25° N, 72–86° E) are facing increasingly severe droughts and water 
scarcity1–3. Climate change and an ever-growing population further strain locally-available surface water4 gradu-
ally push the region towards a ‘day-zero’ situation5. Krishna and Godavari are the two major rivers in PRB and 
both are rain-fed. Failures and delays in southwest (June to September) or northeastern (October–December) 
monsoon6–8 in this region trigger below-normal streamflow and hydrological droughts9 in varying intensi-
ties. Even with decades of catchment-scale drought propagation studies2,8,11,12, it is not clear how a given river 
basin develops into a “drought-rich” or “drought-poor” region. Climate and catchment control on hydrological 
droughts are more or less known13–17; however, no studies have attempted to examine how varying soil condi-
tions influence these controls. With the availability of a national-scale digital soil map18, here we explore the 
climate-catchment-soil control on hydrological droughts and identify key drought drivers (KDD) for drought 
propagation.

The observation-based drought assessments in India either focused on standardized precipitation or evapo-
transpiration indices that compare departures of the variables from its long-term averages or assumed a simple 
linear relationship between precipitation and potential evapotranspiration, e.g., aridity index2,19–24. Based on a 
semi-distributed hydrological model, Variable Infiltration Capacity (VIC), a few studies10,11 have investigated 
the propagation of meteorological to hydrological droughts at several catchments of India, considering multi-
ple temporal scales using the standardized monthly anomalies of streamflow and precipitation-based indices. 
However, these monthly anomaly-based indices often rely on fixed percentile thresholds for defining drought 
episodes. While most decision-makers and stakeholders emphasize the use of particular discharge levels rather 
than anomalies as triggers for management actions25, places where pronounced seasonality dominates, the vari-
able thresholds capture the seasonal variations better by following the seasonal amplitude and prevents the natural 
low flow season considered under drought15,26.

At a large scale, a few studies have explored the spatiotemporal pattern of drought recovery over North 
America27,28 and across the Globe29–31. However, at a global-scale, two of the studies29,30 presents diametrically 
opposite insights regarding the timing of drought recovery in the tropics and the high latitude continents. In 
particular, Yu et al.30 reported shortest drought recovery time in the tropics and high latitudes (< 4 months), 
whereas Schwalm et al.29 reported longer than 12 months drought recovery time for these regions. A subsequent 
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study by Liu et al.31 reconciled that contradictory findings in global drought assessments are the artifacts of dif-
ferent approaches adopted in drought identification methods and recovery level definitions. Further, all three 
assessments29–31 considered a monthly temporal resolution of underlying drivers influencing drought mechanism, 
which may fail to identify small drought development phases. Typically a higher temporal resolution is required 
for predictive modelling of extreme events in both space and time, which helps in issuing timely alerts related to 
regional water scarcity32,33. Although few studies27,28,34–37 have assessed droughts using low flows and streamflow 
droughts using streamflow records of daily temporal resolution, their analyses domains are constrained to either 
mid and high latitude continents, where the nature of streamflow often follow the nival, pluvial and mixed flow 
regimes. Insights from these studies may not be generalizable for other climatic regions, especially in tropics 
where marked seasonality is apparent in streamflow records38.

Considering these research gaps, we examine the following research questions: (i) Is there any systematic 
method to understand drought development and its propagation phases for tropical pluvial river basins? (ii) Are 
there any spatial and/or temporal clustering behavior of streamflow droughts are apparent over PRB, and what 
would be the nature of drought characteristics over these identified regimes? (iii) How do climate-catchment 
and soil properties interact to control catchment-scale drought phases and its characteristics over PRB? These 
insights add value in drought preparedness and shaping policy recommendations for agricultural and industrial 
sectors39,40. We used daily observed streamflow records of past 50 years (1965–2019) from 98 stream gauges over 
PRB in a multi-stage framework37,41 (Fig. 1) to quantify the contiguity in locations and time of occurrence of 
hydrologic droughts (the space–time clustering42 or synchronicity in drought properties) and identify potential 
KDDs from a wide range of climate, soil, and terrain attributes (Fig. 1, Supplementary Fig. S1, Table S1). We 
applied a daily variable threshold approach to derive streamflow droughts by developing 366 (additional for leap 
year) flow duration curves using continuous streamflow records26 (“Methods”). While we obtain meteorological 

Figure 1.   Distribution of Stream gauges, Drought Characteristics and Conceptual Diagram Illustrating Key 
Drought Drivers (KDD) Detection. (a) Location of stream gauges within each catchment. The size of bubbles 
shows the record length, which is proportional to the sample size (in years). Histograms show the distribution 
of catchment area (in km2), and available record lengths (in years). (b) Identification of drought characteristics 
using daily variable threshold approach. The blue shaded region depicts streamflow deficit. The tsg and teg 
represent the start and end of the growth period. Likewise, tsp and tep indicate the initiation and termination of 
the drought persistence stage. tsr and ter denote the initiation and termination of the drought recovery, MDD and 
PS indicate maximum drought deficit volume during the persistence stage and peak surplus flow after drought 
termination. (c) Detection of KDD using random forest-based feature selection algorithm. The threshold 
criterion, normHits > 0.50 indicates only those features are selected that show higher ’importance’ than their 
shadow attributes (obtained by random permutation of features) for more than 50% of total iterations. The 
figures are prepared in MATLAB R2020b (academic version), MS Office Power point 2016 and then organized 
in Adobe Photoshop CS3 Desktop (http://​www.​adobe.​com) [Software].

http://www.adobe.com
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and catchment-specific geospatial attributes from the archived database43–47, the soil attributes are derived from 
a recently developed digital soil database of India18 (see Data and method section). We show the extent to 
which climate, catchment and soil attributes influences and co-vary with catchment-scale drought characteristics 
(“Methods”), such as growth, persistence (duration and frequency or number of events), recovery, and drought 
termination rate (DTR). Specifically, we investigate how soil organic carbon (SOC) influence the growth, per-
sistence, and recovery of droughts over PRB given that the Indian soils are typically low in SOC contents18,48.

Space–time synchronicity in drought responses
Previous studies10–13,29 have used gridded hydrometeorological forcing with a coarser temporal resolution to 
identify drought clusters over PRB. Here, we identify the temporal evolution of drought characteristics using 
continuous daily streamflow records, namely, drought growth, persistence, recovery and the DTR (See “Methods”; 
Fig. 1b,c). Then, we identify drought regimes by applying a clustering algorithm to 98 gauges across PRB based 
on nine catchment-scale drought attributes (see “Methods”): (i) latitude and longitude of  stream gauges; (ii) 
drought properties, i.e., mean and the maximum drought duration, and mean and the maximum drought deficit 
volume; (iii) catchment properties, such as the baseflow index (BFI; see “Methods”)49 and catchment area, and (iv) 
seasonality50 in drought termination. We show the temporal evolution of drought characteristics and identify the 
presence of “drought rich” and “drought poor” periods over the past five decades using the Hovmöller diagram 
(Fig. S2). The decadal pattern of events (during the time-window 1979–80, 1989–90, 2001–02, 2008–10) shows 
over 30% of the areas are drought-affected. Further, we identify spatial clustering of persistent droughts over 
several regions, primarily concentrated between latitudinal belts 13° and 20° N  between 2001 to 2005, includ-
ing two major historical hydrological drought events spanning the periods, 2000–2001 and 2003–2004 (ref.10). 
The droughts over India are typically associated with prolonged dry spells due to abnormally low and erratic 
monsoon rainfall that can last over a season or longer, extending over a large spatial scale7,51–53. Although based 
on instrumental all India rainfall observations from 1901 to 2010, Pai et al.54 reported over twenty drought years 
with severity varying from moderate to intense: the iconic droughts of July 2002 led to below average rainfall and 
droughts in large part of the western peninsula55. Interestingly, rainfall during the monsoon season over India 
is linked with “teleconnections” through which sea surface temperature (SST) induces large-scale atmospheric 
patterns that trigger the development of dry conditions and major monsoon failures56. Stronger El Niño droughts 
over the Indian peninsula are due to decreased east-ward moisture flux over the Arabian Sea during the warm El 
Niño episodes. In contrast, during non-ENSO (El Niño Southern Oscillation) years, the emergence of extreme 
wet/dry spells is due to anomalous moisture convergence driven by surface pressure gradients surrounding the 
peninsular region57. A co-occurring Indian Ocean Dipole (IOD) mode further modulates El Niño Southern 
Oscillation (ENSO), which influences monsoon season droughts58: while positive phase of IOD is conducive to 
wetter-than-normal conditions, a co-occurring positive (negative) IOD significantly reduces the impact of the 
El Niño (La Niña) on the Indian monsoon. While a weakening of ENSO versus summer monsoon rainfall was 
apparent since the 1970s, a restoration of this relationship since 1999/2000 is due to the inter-decadal transition 
of ENSO evolution and the SST over the tropical Atlantic59.

To explore the nature of hydrological drought responses on a regional scale, we delineate the collection of sites 
based on fuzzy c-means clustering60,61 (see “Methods” and the Supplementary Information SI 1.2). A study by 
Ahmadi et al.37 showed characterizing droughts into different stages or properties provide better understanding 
of temporal and spatial coherence of localized drought events. Further, Yaeger et al.62 showed that only account-
ing geomorphological features and drought attributes may not provide a credible estimates of the homogenous 
region. Hence, we introduce the seasonality of drought termination month, represented by the mean date of 
drought termination, to identify homogenous regions (see “Methods”). The regionalization of hydrological 
droughts based on drought properties involves the Principal Component Analysis (PCA) followed by fuzzy 
c-means clustering method63 (See SI 1.2). Based on PCA and fuzzy clustering, we identify the optimal number 
of drought regimes (i.e., represented by a cluster of sites based on drought-specific attributes) as four (Fig. 2a). 
We find that collectively the first six principal components (PCs) explain the ≈ 94% variability of the streamflow 
droughts characteristics (Fig. S3a); therefore, only the first six PCs are used for identifying drought clusters. 
The biplot of the top two PCs of the selected attributes shows (Fig. S3b) that the maximum and mean drought 
durations have notable contribution to the first PC. On the other hand, for the second PC, the seasonality of 
drought termination, showed the significant contribution. The mean deficit volume and the catchment area did 
not significantly contribute to the first two PCs. The BFI showed a negative correlation with both these PCs. 
Geospatial locations and drought durations significantly contributed to the spatial variations in clusters 1 and 4 
and the mean termination date contributed to the spatial variations in cluster 2. Finally, the BFI that inherently 
embeds the effect of geology and soil permeability is the major contributor  to variations in cluster 3.

Figure 2a shows the delineated hydrological drought regimes, a large fraction of stream gauges located across 
the central part of PRB is under regime 1 with 35% spatial extent; whereas regimes 2–4 contain 20–24% of gauges. 
Most of the clusters are disjoint with only a few minor overlaps among cluster members indicates the detected 
regimes are optimal in numbers and credible enough to show observed drought characteristics at a regional level. 
Among the obtained drought clusters, regime 1 lies in the core monsoon region; regime 2 is located across arid 
and semi-arid part of the peninsula; whereas regimes 3 and 4 are influenced by the northeast monsoon during 
October-December10. It should be noted that the areal extents of regimes 3 and 4 are close to the clusters ‘NEI’ 
and ‘SI’ in ref.10, where authors have used precipitation and model-simulated ‘Integrated Drought Index’10 at a 
monthly temporal resolution as a forcing variables for the clustering algorithm. Figure 2b–f shows the spatial 
distribution of drought characteristics during 1965–2018 time window. Most catchments located in Central 
(i.e., catchments of Godavari, and Narmada) and a few of eastern (Subarnarekha and Mahanadi) river basins 
(Fig. S1) reported a large growth period, often more than a week (Fig. 2b) with frequent drought (Fig. 2f) events. 
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The average drought duration in the catchments of Godavari and Narmada from regimes 1 and 2 ranges more 
than 50 to 100 days. In particular, the catchments in regime 1 show a large variation in DTR often exceeding 
250 mm/day (Fig. 2d) with a recovery length more than a month (Fig. 2e). The spatial distribution of seasonality 
in drought termination (Fig. S4) shows high regularity in drought termination for regimes 1 and 2 with average 
seasonality of more than 0.5. The catchments in regime 1, which includes 74% sub-basins from Narmada, and 
the Godavari in Central India and remaining from Krishna, and Mahanadi basins contains large watershed area 
and show persistently longer drought episodes with average termination period during mid-monsoon season 
during the month of September. Temporal evolution of drought characteristics during 2000–2005 time window 
for rivers in Central India (regime 1) shows (Fig. S5) the growth of droughts initiated during the month of August 
in 2000, which lasted until early 2001; subsequently, the majority of stations showed recovery in the monsoon 
season of the same year (i.e., in June 2001). During the year 2003–2005, we note the presence of multi-season 
persistent droughts, especially towards the South of 20° N, which lasted for more than a year (from March 2004 
to July 2005) in this region. The rivers in this region contains low BFI with a median value around 0.3. Further, 
this region often accompanied by strong local heating of the black soils with high PET64, which could lead to low 
baseflow yield in this region65. The low BFI, indicates rivers in this regime is associated with small catchment 
memory due to less permeable soil layers that force rainfall to flow quickly to the stream. Due to low permeability 
of soil, the region may experience more minor drought events that have short duration.

The sub-basins in Regime 2 shows relatively fewer drought events than other regions with relatively low 
average drought duration (less than 100 days; Fig. 2c) and is associated with the lowest average recovery period 
(average recovery less than a month; Fig. 2e). This regime includes 70% of sub-basins from Krishna, Tapi, and the 

Figure 2.   Identification of Drought Regimes and Illustration of Catchment-scale Drought Properties. (a) 
Regionalization of droughts based on drought characteristics using fuzzy c means clustering algorithm 
(see “Methods”); n indicates the number of sites detected within each cluster. (b–f) Spatial distributions of 
drought characteristics during 1965–2018 time window: (b) drought growth (in days) (c) duration (days) (d) 
drought termination rate or DTR (mm/day) (e) recovery period (in days) (f) drought frequency or number 
of events. The boxplots in inset show the variability in drought properties among the identified clusters. Box 
center marks (red lines) are medians; box bottom and top edges show 25th and 75th percentiles respectively, 
whereas the spread of the boxes indicates interquartile range; whiskers indicate q75 + 1.5(q75 − q25) and 
q25 − 1.5(q75 − q25), where q is the quantiles of variables. The shades of boxes in purple, red, green and yellow 
indicate streamflow drought regimes 1–4, based on selected drought attributes. The figures are prepared in 
MATLAB R2020b (academic version) and organized in MS Office Power point 2016 [Software].
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Godavari River basins (Fig. S1) with moderately large catchments areas. The most severe drought that occurred 
in Regime 2 lasted around 250 days (August 2003 to April 2004; Fig. S5). For gauges located in this regime, the 
drought terminations ranges between August and December months with median termination during post-
monsoon season in October (Fig. S4). The values of BFI tend to be the lowest for this regime as compared to 
others, with a median BFI value of 0.25 (Fig. S4). Interestingly, the rivers in this regime shows a strong season-
ality in the mean timing of drought termination with the strength of seasonality close to 0.8, indicating high 
persistence in drought termination, i.e., all streamflow droughts at a particular site occur on the same day of the 
years during the analysis time window66.

Regime 3, comprising nearly 60% of sub-basins from Cauvery and Krishna, and the rest from the southern 
peninsula region (e.g., Pampa, Periyar, Vaigai), experience the lowest number of droughts - on an average, 15–20 
events (Fig. 2f), followed by a minimum variation in the DTR of < 15 mm/day (Fig. 2d). In general, the drought 
termination pattern in regime 3 does not show any specific trend with termination period scattered throughout 
the year with a large variation in seasonality strength; however, August is detected as the median termination 
month (Fig. S4). The rivers in this regime shows the highest BFI (with BFI > 0.5). The review of the literature67,68 
shows that areas with lakes and reservoirs (e.g., Krishnaraj Sagara reservoir over Cauvery River in this region) 
have high values of BFI since outflows from surface water, such as lakes, reservoirs, and wetlands, can comprise a 
major portion of baseflow. The catchments with high BFI sustain the recharge and groundwater storage65, which 
results in large variation in drought termination months (or low seasonality in drought termination; Fig. S4).The 
analysis of 2000–05 time window for regime 3 shows (Fig. S5) the “drought-rich” periods exist after 2002, which 
persists between 2003 and 2005. By early 2003, the catchments of Cauvery and a few catchments in southern 
India (e.g., Pampa and Ponnaiyar) were also affected and remained under drought throughout the year, which 
recovered later in April–May 2004.

Finally, regime 4, comprising a majority of catchments across eastern peninsular India (87% of sub-basins 
from Mahanadi, Subarnarekha, and Brahmani and the rest from Baitarni and Godavari; Fig. S1) reported an 
average drought duration of more than two months with a large variability in drought frequency (15–30 events) 
(Fig. 2f). The average drought recovery length in this regime is relatively larger (Fig. 2e) and a large number of 
sites show a recovery period of more than 40 days. The most severe drought in regime 4 occurred in August 1979, 
which lasted until July 1980 (Fig. S2) and was considered as a severe drought in the literature69,70. The average 
drought termination period in this regime is mainly during post-monsoon period in November (Fig. S4) with 
termination months varies from October to December. The catchments in this regime showed the least regularity 
in drought termination (Fig. S4).

Overall, our analyses reveal the following: (i) majority of regimes (1, 2, and 4) show the average termination 
either in the monsoon (June–September) or post-monsoon (October-December) months, suggesting profound 
roles of southwest and northeast monsoon rainfalls in the termination of droughts. On the other hand, regime 3 
showed no specific trend in drought termination seasonality with termination periods scattered throughout the 
year. (ii) Large spatial heterogeneity in drought responses indicates drought stages differ significantly across space 
and time, which could be a consequence of several factors including topography and morphological attributes 
of catchments, soil, and climatic controls15,16,35.

Hot and cold spots of streamflow droughts
To further explain the nature of synchronicity in drought responses and identify vulnerable regions, we compare 
the maximum deficit volume and maximum duration of streamflow droughts (Fig. 3a). In addition, we present 
heat maps of drought deficit volume-recurrence interval-vs-recovery duration for different regimes (Fig. 3b). A 
large fraction of  catchments in Regime 1 is characterized by moderately severe drought with a spatial average 
value of 1.7 mm; however, they experience long and persistent drought episodes  of more than 250 days (Fig. 3a). 
The rivers in this regime show an extended drought recovery period coinciding with a short return time or recur-
rence interval (within the range of 250 days; Fig. 3b).

On the other hand, regime 2 shows droughts with relatively longer recurrence interval accompanied by more 
than a month of recovery period. Droughts in this regime have the lowest deficit volume, with an average deficit 
volume of ~ 0.74 mm (Fig. 3a,b). This could be because catchments in this region show the lowest BFI values 
than others (Fig. S4), suggesting a minimum contribution towards groundwater recharge owing to relatively 
impermeable geology16. Regime 3 shows the largest average recovery length (Fig. 2e) with considerable variability 
in deficit volume—a few outlying events even led to deficit volume of more than 200 mm (See whisker length of 
the box plot in Fig. 3a). This region also shows considerable variability in drought seasonality (Fig. S4). Interest-
ingly, more than 50% of sites show a recovery period of less than a month (shades of the pixels in Fig. 3b) with 
an average recurrence interval of 350 days (Fig. 3b), which is the largest among all regimes. A relatively small 
recovery period compounded by a large recurrence interval could be due to the largest baseflow indices of catch-
ments in this region (Fig. S4), which indicate relatively permeable geology with substantial groundwater recharge.

Finally, regime 4 shows a contrasting pattern to regime 1, where droughts with relatively less deficit volume 
(i.e., < 1 mm) are coincided with a recovery period of more than a month. Further, a rare event characterized by 
a high deficit volume of more than 10 mm and a prolonged recurrence interval of more than 100 days often wit-
nesses a low recovery period (typically less than a month; Fig. 3b, bottom right corner). A relatively long recovery 
period could be because of low baseflow indices for gauges in this region with a median value of less than 0.5 
(Fig. S4), indicating rivers in this regime show greater peak flows with short lag time and lesser base flows72,74.

Overall, our analysis shows the following: (i) catchments in central peninsular India (13–23° N and 73–84° 
E) are exposed to frequent droughts compounded by a long recovery period, making it one of the most vulner-
able regions where a chronic state may be reached when an incomplete recovery would coincide with another 
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severe drought episode leading to an adverse consequence to land-carbon sink. Interestingly, this region contains 
relatively low SOC contents, as seen in the newly developed national SOC map18.

In contrast, (ii) catchments in regime 2 are characterized by relatively less severe droughts with a larger 
recovery period despite having the lowest BFI in regime 2. We hypothesize that streamflow drought resiliency in 
regime 2 could be partially linked to the high SOC content of the soil in the Western Ghat area of the PRB18—a 
high SOC may lead to an increase in soil water storage capacity resulting in a slowdown in severe drought 
occurrences. To investigate further, we compared the regional distributions of soil organic content (SOC; in %), 
available water content (AWC; in %) and annual average rainfall (Fig. S6). We show that despite regime 2 receives 
low annual average rainfall as compared to all regions, the relatively high surface (at 30 cm depth) and sub-
surface (at 1 m depth) SOCs results in higher soil water storage potentials as manifested by the highest median 
AWC at sub-surface level among all regions. On the other hand, the low BFI at region 2 could be associated 
with climate, soil and geomorphologic properties. While soil controls the infiltration of water, the underlying 
aquifer properties control the storage and release of water to streams. Recently, Naveena et al.64 have detected 
emergence of a “hot blob” during the pre-monsoon season (end of March–May) over the south-central parts of 
the PRB, which promotes the accumulation of high temperature in this region. High clay content of black soils 
(region 2) further abets the sustenance of the “hot blob” resulting in higher frequencies of hot days, which could 
lead to low baseflow yields in this region65.

Key drought drivers (KDD’s) influencing drought vulnerability
To provide a causal attribution of drought responses, we investigate the influence of several covariates, such as 
meteorological variables, soil properties, and catchment-specific terrain attributes (Table S1), totaling 89 hydro-
meteorological and morphological features. The Shapiro–Wilk test of drought variables as well as the covariates 
reveal that 85% of variables (i.e., 79 out of 93) show a strong deviation from normality assumption at a 10% 
significance level. The skewness and kurtosis values of covariates further confirm that the covariates exhibit a 
strong asymmetry (Fig. S7). The nonparametric dependence analysis (Kendall’s τ test; Fig. S8) suggests that the 
drought growth strongly depends on (significant positive dependence) terrain features in regime 1, from which 
topographic wetness index (TWI; see “Methods”) shows the highest correlation value of Kendall’s τ  = 0.39. This 
could be because the TWI75,76, which is a function of the local slope with the upslope contributing area per con-
tour length, will be more likely in wet and relatively shallow soils with moderate slopes, where soil permeability 
increases with saturation. On the other hand, drought duration and recovery show (significant) negative depend-
ence on SOC and stock (Kendall’s τ  < − 0.21). This may be due to moderately low SOC content in this region18,48.

In regime 2, the drought growth shows positive dependence to both soil and meteorological attributes, such 
as the mean temperature of April-July (Kendall’s τ  > 0.48) followed by pH and cation exchange capacity (CEC) 
values at 0.3 and 1 m soil depths (Kendall’s τ  > 0.47), respectively, whereas a negative dependence was observed 
for SOC content and SOC stock (Kendall’s τ  < − 0.35). In contrast, the recovery stage in this region shows more 
dependence on terrain features. In regime 3, the growth shows a strong positive dependence on different soil 
moisture covariates (Fig. S8). Further, there is high variability among factors influencing drought duration 
and recovery—in general, sub-basins show a strong negative dependence on soil organic content (Kendall’s 
τ  < − 0.44). In contrast, DTR fails to show any conclusive evidence of significantly strong dependence on any of 
the covariates. Finally, in regime 4, recovery and DTR show a moderately strong dependence with meteorological 

Figure 3.   Variations in Drought Properties, the Maximum Deficit Volume , Maximum Duration, and Recovery 
Times among the Detected Clusters. (a) The boxplots showing interquartile range of selected drought attributes, 
the (maximum) duration and the deficit volume. (b) The recovery period as a function of deficit volume and 
recurrence interval (i.e., the time interval between two successive droughts but neglecting the first drought 
event) for the identified regimes. The shades of each pixel show the drought recovery period. The cells in grey 
indicates no observation. The straight lines in white perpendicular to the axes show the median deficit volume 
and the median recurrence interval for each region. The figures are prepared in MATLAB R2020b (academic 
version) and then organized in MS Office Power point 2016 [Software].
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and terrain features, which is in the order of ± 0.4 (i.e., terrain feature slope show a significant negative depend-
ence with drought recovery, Kendall’s τrecovery = − 0.4 and a significant positive correlation with DTR, Kendall’s 
τDTR = 0.38).

Our analyses reveal a large proportion of gauges in regimes 2 and 3 that show a strong dependence on 
covariates. For example, in regime 2, 51% of catchments show strong dependence with covariates during growth 
phases. Likewise, drought persistency in regime 3 is largely controlled by 65% of covariates. Further, the drought 
resilience or recovery phase in regime 3 is more strongly influenced by terrain features as reflected by the largest 
BFI values followed by meteorological attributes. On the other hand, in regime 2 recovery phase shows a strong 
positive correlation, associated with terrain features. As noted earlier, the sub-basins in regime 2 show the lowest 
BFI, indicating a minimum baseflow contribution or groundwater replenishment, which results in a relatively 
long recovery period in this region. Our results corroborate with an earlier studies73,74,77, which showed low flows 
are often controlled by the soil and geology of the catchment.

We employed a hybrid feature selection procedure consisting of filtering and wrapping through Boruta 
algorithm78 (see “Methods”) using all 89 covariates. The average sand contents at 1 m depth in the western part 
of the peninsula is relatively low as compared to the eastern and southern part of the peninsula, which influences 
the drought growth for gauges in this region (Fig. S9a), whereas a relatively high clay content in this region affects 
average drought termination rate (Fig. S9d). The SOC content and SOC stock at 1 m depth over a large por-
tion of the landmass is consistently low (Fig. S9b-c). Among three KDD categories (soil, hydro-meteorological 
and terrain), drought growth appears to be most influenced by ~ 17% (15 out of 89) attributes (see Fig. 4a), 
e.g., the cross-sectional (Kendall’s τ  = − 0.23) and longitudinal (Kendall’s τ  = 0.22) curvatures, slope (Kendall’s 
τ  = − 0.23), and terrain roughness index (Kendall’s τ  = − 0.23) in addition to sand content (Kendall’s τ  =—0.14), 
CEC (Kendall’s τ  = 0.20), and soil moisture for the months of January (Kendall’s τ  = − 0.18), April (Kendall’s 
τ  = − 0.19), and May (Kendall’s τ  = − 0.21), denoting the influence of soil moisture on drought growth in the 
transition months from winter to spring and spring to summer. Drought growth shows a strong dependence 
on hydro-meteorological factors, such as average potential evapotranspiration (PET) at the onset (Kendall’s 
τ  = 0.14 for June) and retrieval (Kendall’s τ  = 0.17 for September) months of monsoon. This could be because of 
feedback between soil moisture and surface water availability (precipitation minus evapotranspiration, P-E). In 
water-limited regions, the soil moisture is shown to modulate evapotranspiration, which positively feedbacks 
precipitation via moisture recycling79,80. The drought duration showed strong dependence on soil properties, 

Figure 4.   Potential Key Drought Drivers. The relative importance of key drought drivers is shown using box 
plots for various drought characteristics. The pie charts at the lower bottom corner show relative contribution 
of soil, terrain and meteorological variables in influencing drought stages. The x-axes show the soil-climate and 
topographical attributes; details of each of these attributes are described in Table S1. The legends applies to all 
figure panels. The figures are prepared in R-4.0.5 (64 bit) windows version and then organized in MS Office 
Power point 2016 [Software].
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primarily SOC and SOC stock and mean monthly winter (November–December) soil moisture and temperature 
regimes. However, no terrain features are found to be critical in influencing drought duration. In general, soils 
with low SOC contents and moisture deficits during post-monsoon seasons will have a longer drought duration. 
Likewise, drought recovery appears to be largely dependent on mean monthly soil moisture contents during 
February and March (Kendall’s τ  = 0.12), mean temperature of February (Kendall’s τ  = − 0.17) and January 
(Kendall’s τ  = − 0.18), SOC contents, and SOC stocks of top 1 m soil profile (Kendall’s τ  = − 0.21). This agrees 
qualitatively with findings from an earlier study81, which showed that temperature strongly influences streamflow-
based drought characteristics such as spatial extent and duration. Further, SOC controls the soil moisture levels 
and, in turn, drought development and termination stages (Fig. S9)48,82.

Interestingly, Fig. 4b confirms that the early monsoon (June-July) soil moisture conditions and winter (pri-
marily between November and December) temperature notably impact on drought duration. On the other hand, 
drought recovery heavily depends on the soil moisture regime during the spring (February–March) and the 
temperature conditions during the winter (November–January) until the end of the spring (March-end) season. 
Likewise, the DTR is typically influenced by only 12% (11 out of 89) attributes (Fig. 4d). An apparent positive 
dependence between PET (Kendall’s τ  = 0.17), clay content (Kendall’s τ  = 0.16), and CEC (Kendall’s τ  = 0.14) 
with DTR suggests the inherent ability of soils coupled with hydro-meteorological factors to accelerate or cease 
prevailing desiccation. These are further aided by terrain factors such as flow accumulation (Kendall’s τ  = 0.22) 
and relative slope (Kendall’s τ  = 0.18) in  governing the rate of drought termination. Overall, our results show 
that drought growth is largely controlled by terrain attributes ~ 50% of total covariates; drought persistency is 
mostly controlled by soil attributes accounting for more than 70% of all three covariates. Interestingly, drought 
recovery is equally controlled by hydroclimatic and soil properties with little or no role of terrain attributes, 
whereas DTR is primarily controlled by hydroclimatic (~ 51% share) and soil (~ 35% share) factors together.

Our analyses suggest the following: (i) Considering peninsular catchments as a whole, terrain features largely 
control drought growth; soil attributes contribute more than 70% in drought persistency; whereas DTR is largely 
controlled by meteorological attributes. In addition, drought resiliency is equally impacted by soil and mete-
orological attributes. (ii) Considering homogeneous drought regimes, a large proportion of  soil-meteorologi-
cal and catchment properties in regimes 2 and 3 show a strong dependence on growth (for regime 2) and persis-
tence (for regime 3) phases, respectively. Further, drought recovery in regime 3 shows a strong anticorrelation 
with soil and terrain features, whereas a strong positive dependence on meteorological attributes, primarily with 
PET. The relatively small recovery period (often less than a month) of most of the  catchments compounded by 
a large recurrence interval at regime 3 could be attributed to the largest baseflow yields of catchments, which is 
largely controlled by geology, land use, catchment and terrain characteristics16,73,74. In addition, the meteorologi-
cal factors, such as high evapotranspiration-induced moisture surplus accelerates a swift recovery. This clearly 
shows that soil, hydro-meteorological, and terrain features play distinct roles in the propagation of catchment-
scale hydrological droughts.

Discussion and conclusions
The observational evidence indicates strong support that heterogeneity in hydrological drought responses is con-
trolled by feedback between climate-catchment-and-soil attributes (Fig. 4 and Fig. S7). Previous studies15,16,83,84 
conducted on catchment-scale droughts provide important yet incomplete insights into the role of potential 
drivers in hydrological drought propagation. Based on an earlier study85 that establishes structural control on 
catchment sensitivity, our approach further expanded on geomorphological features by exploring additional 
covariates, a range of terrain, and soil characteristics influencing various drought characteristics, which have not 
been investigated so far—neither in observational assessments nor in land surface model-based simulation10,86. 
The sources of uncertainty in the analyses stem from the quality of available records. Our comparative assessment 
of the effect of large reservoirs on streamflow droughts over a few selected catchments suggests that streamflow 
drought tends to become shorter intertwined by a slight increase in drought growth and deficit volume (Fig. S10). 
Further, while reservoirs escalated the termination rate, no notable changes are apparent for drought recovery. 
The decline in drought duration and increased termination rate is statistically significant (at 5% significance 
level; with pvalues 0.015 and 0.021 for the duration and DTR, respectively); however, the increase in growth and 
deficit volume are not statistically significant, as confirmed by the Wilcoxon rank-sum test. Our findings cor-
roborate with an earlier perspective article87,  based on several notably large reservoirs across the Globe,  which 
suggests the addition of reservoirs could offset the effect of minor droughts; Still triggers increased low flows 
and severity of streamflow droughts during prolonged drought episodes due to increased reliance on reservoirs. 
However, understanding the impacts of reservoirs and their regulations on droughts requires in-depth analyses; 
for example, hedging policies88 for reservoir operations might mitigate the impact of severe water deficits by 
reserving a certain amount of water in advance for future use. Moreover, climate change may impart nonstation-
arity in low flow series, which may account for additional uncertainty in the analysis. However, we compensated 
this by considering average (or median) relationships, which is commonly applied in low flow regionalization 
studies and followed elsewhere16 as a robust measure in presence of weak nonstationarity. Further, accounting 
nonstationarity in records would require longer hydroclimatic time series, which is limited for the area being 
considered here.

Our findings have direct implications for catchment-scale drought mitigation. The identified dynamic covari-
ates, such as climate and soil moisture level, could be utilized for monitoring drought stages one to two sea-
sons in advance and to support drought warning efforts by developing a multivariate forecast model, enabling 
seasonal-to-sub-seasonal (S2S) prediction89,90. While meteorological to hydrological drought is forecasted at 
a monthly to the seasonal time scale in practice91, timely issuance of targeted drought early warning systems 
(DEWS)92 and a dynamical low flow forecast at a higher temporal resolution involving primary drought attributes, 
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such as growth, persistence and recovery pattern, could be effective in mitigating impacts. Further, for climato-
logically heterogeneous regions of India, developing an improved probabilistic S2S low flow forecast, integrating 
the static and dynamic controls could be of great interest in aiding economic resilience to droughts93.

In particular, it is anticipated that a better understanding of the physical processes of detecting drought char-
acteristics will lead to improved water resources management and aid in forecasting efforts during water stress 
episodes in the future. Unlike several studies that relied on model-simulated records for streamflow drought 
assessments94,95, our observation-based synthesis enables robust risk assessment, effective in impact, adaptation, 
and vulnerability (IAV) studies in a changing climate. Our study helps resolve the recent debates about drought 
characteristics over tropical catchments, especially the recovery phase, and highlights the importance of account-
ing for a holistic approach involving climate-catchment-and-soil feedback to understand drought propagation. 
The derived insights add value towards risk finance (crop insurance) and early-warning system development, 
useful for adaptation planning for extreme droughts. Further, we hypothesize that the multistage framework 
adopted here can be translated to other regions. Furthering this, studies may expand on how the streamflow 
drought characteristics vary spatially and temporally across different climate types across the Globe. Finally, our 
observation-based streamflow drought analyses may serve as a basis for climate change impact assessments on 
catchment-scale drought propagation, especially in tropics95–97 and to investigate links between low flows and 
modes of climate variability98.

The obtained insights from this study highlight soil management plays a crucial role in desiccation and its 
resilience. Since climate variability and change have exacerbated the concurrence of warm-and-dry conditions99, 
the persistence of carbon loss (the “legacy effect”)100 a few years after extreme and persistent droughts, may have 
long-term effects on the carbon-budget of the tropical rain-dominated ecosystem of the Indian peninsula. While 
soil carbon stocks for peninsular India are relatively low than that of the global average48, efficient soil and water 
conservation measures can improve soil carbon sequestration101,102 and enhance drought resilience, ensuring 
water-and-food security of the country82.

Methods
Hydro‑meteorological forcing data set.  We obtain the observed daily streamflow time series from 
the nationwide water resources information system (India-WRIS; https://​india​wris.​gov.​in/​wris/). The land-use 
pattern reveals an average ~ 16% (ranges from 3 to 33%) area under irrigations considering both surface and 
groundwater (e.g., tube wells and dug wells) sources103. To ensure adequate spatial coverage as well as the com-
pleteness of records, we selected the catchments based on the following criteria: (1) The stations with a minimum 
of 20 years of continuous streamflow record availability during the analysis period (1965–2019); (2) The catch-
ment area of the sub-basin to be at least 1000 km2 or more. Based on this criteria, we selected 98 stream gauges 
with catchment area range between 1200 and 307,800 km2 from 18 different river basins across PRB (Fig. 1; 
Fig. S1). Following the earlier literature104,105, we infill the missing gaps in daily streamflow  records using the 
time series interpolation technique.

To examine meteorological control on drought stages, we use the observed gridded meteorological datasets 
with a spatial resolution of 0.5° available at a monthly time scale. The meteorological variables are precipitation43, 
soil moisture (at 1.6 m depth)46, mean air temperature (at a height 2 m above surface)44, PET45 estimated using 
the Penman–Monteith method. To identify potential KDDs for catchment-scale drought propagation processes, 
we obtain catchment boundaries from the Global Streamflow Indices and Metadata (GSIM) archive47. To ensure 
data compatibility, we kept the record lengths of hydrometeorological variables same as the streamflow record 
lengths for each catchment. Further, the baseflow index for each catchment is calculated following the WMO 
manual on low-flow estimation procedure106.

Effect of possible flow regulations on streamflow droughts.  To assess the effect of flow regulations 
on regional droughts, we compare drought characteristics of catchments with medium to large-sized reservoirs 
versus catchments with natural to near- natural flow conditions (Table S2) for representative locations for the 
common period 1987–2013. Following ref.81, we quantify the effect of flow regulations on streamflow droughts 
for each pair of natural versus the regulated catchments based on relative change statistics,RL = (Cr − Cn)

/

Cn , 
where Cr and Cn represent the median drought characteristics in regulated and natural catchments, respectively.

Delineation of drought characteristics.  We identify hydrological droughts by applying a variable thresh-
old approach to the daily streamflow time series15,26,41. The advantage of using the variable threshold method of 
drought delineation over the constant threshold is two folds: (1) Ability to capture the seasonal variability that 
prevents the natural low flow season to be detected under drought (2) enables detections of various drought 
characteristics rather than instantaneous drought onset and termination points as followed in the standardized 
index-based drought detection approach (e.g., standardized indices of precipitation107 and streamflow108). For 
the threshold determination, 366 (an additional day for leap year) flow duration curves are developed using con-
tinuous time series of streamflow records. Following the literature15,16,109,110, an 20th percentile threshold (flow 
equaled or exceeded 80% of the flow record) is selected for each day of the year forming the variable threshold 
time series. Since the daily threshold time series appeared to be a jagged curve resulting in several short deficit 
periods, a centered moving average of 30 days is applied as a smoothing filter26,41. A drought episode is detected 
when the daily streamflow time series falls below the variable threshold.

After identifying drought events, next, we further categorize streamflow-based droughts into several 
characteristics36,41 (see Fig. 1b). Drought duration is the period in which streamflow is lower than the threshold 
continuously for 30 days or more (this phase is shown from tsp to tep in Fig. 1b, where ‘s’ denotes initiation, ‘e’ is 
the termination point and ‘p’ indicates persistence phase). Following Ahmadi and Moradkhani41, we select the 

https://indiawris.gov.in/wris/
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threshold time window of 30 days based on the consideration of the natural variation and long enough to filter 
out the inter-seasonal anomalies. Following the refs.36,37,41, we detect the drought growth as moving 60 days back 
from the drought termination, when the streamflow falls above the threshold for less than 15 days, i.e., the occur-
rence of short deficits interrupted by less than 15 days of above-normal streamflow (in Fig. 1b: tsg to teg, where 
‘s’ is the initiation, ‘e’ is the termination, and ‘g’ denotes the growth). We detect the recovery period as moving 
60 days forward from the end of the persistence phase, when the streamflow falls below the threshold for less 
than 15 days (in Fig. 1b: tsr to ter where ‘s’ is the initiation, ‘e’ denotes the termination and ‘r’ shows the recovery 
phase). If the streamflow time series persistently remains below the threshold for more than 15 days then we mark 
‘no recovery’ and the following episode is then considered as a part of a multi-season drought event. Finally, we 
quantify DTR as the magnitude of change in flow from the Maximum Drought Deficit volume (MDD, the day 
with the largest negative departure from normal streamflow between the time of the start of drought develop-
ment and the time of the end of drought termination in Fig. 1b—for details please see last but one paragraph in 
page 4267 in Parry et al.36) to the peak surplus flow (PS, Fig. 1b), divided by the time taken for this transition.

We determine the seasonality in drought termination using directional (or circular) statistics. The termina-
tion date is used as a directional variable50 (SI 1.1), in which the position of the mean termination date can be 
determined using angles (Eq. 1.3 in SI 1.1). Following the ref.111, we calculate the mean termination day (i.e., 
mean direction of the day of drought termination as described by the circular data) and its variance by weigh-
ing the deficit volume (see SI 1.1), ensuring the events are given importance as per the persistency of the event.

Determination of base flow and topographical wetness index.  Baseflow is the slowly varying por-
tion of streamflow, originating from groundwater storage and/or delayed sources such as channel bank storage, 
lakes, wetlands and melting snow and ice68. Baseflow is one of the important low-flow hydrological characteris-
tics in semi-arid environments, which is a function of several catchment properties, such as topographic, geo-
logic, soil, and climatic properties65,68,71. While for tropical catchments of PRB, contribution from melting snow 
and ice can be neglected, baseflow is the primary source of water for streams during the periods with little to 
no precipitations. Baseflow is influenced by sub-surface characteristics, surface elevational gradient, soil depth, 
and the permeability of geologic and geomorphic features that control deep water storage112. The BaseFlow 
Index (BFI) is the ratio of long-term mean baseflow volume (Vbase) to the total streamflow volume (Vtotal) and 
expressed through the following relation

The BFI has a strong relationship with climate and geology and it controls the catchment-scale drought 
propagation16,17,74. The value of BFI varies from near 0 to 1. A value close to 0 indicates a river has a low propor-
tion of baseflow, e.g., a river with greater peak flow and short lag time, and characterized by impermeable geology 
with little groundwater contribution. In contrast, a BFI value close to 1 has a high proportion of baseflow, e.g., 
a stable river with relatively permeable geology with substantial groundwater contribution. In periods of dry 
weather when streamflow is significantly reduced (as in PRB), rivers with high BFI values indicate groundwater 
inflow sustaining stream flows71.

We calculate the Base Flow Index (BFI) based on the method described in WMO Manual on low-flow estima-
tion and prediction106: (i) we divide the daily streamflow values (m3/s) into five days non-overlapping block and 
selected the minimum flow value, Qm from each block. (ii) Identify the turning point, Qt from the sequence of 
Qm values that satisfies the condition that if 0.9 × central value ≤ adjacent value, then central value becomes the 
turning point. (iii) Next, join the Qt values, and perform a linear interpolation between two turning points to get 
base flow for each day. (iv) Finally, we determine the BFI by dividing the amount of streamflow volume beneath 
the baseflow line to the total amount of water beneath the hydrograph. Our obtained BFI values are well within 
the range of the global map of median estimated BFI in ref.68, which shows for peninsular Indian catchments the 
BFI values vary between 0.2 and 0.75. We illustrate the computation of the BFI from daily streamflow records 
for a selected catchment, i.e., Anandapur gauged site in Baitarani River Basin, located at eastern India, for the 
period of available records, 1973–2018 (Fig. S11). While the BFI value for the whole period is 0.45, the annual 
BFI value, which is determined by summing up the base flow and total volume separately for the year 1990, shows 
a value of 0.48. Overall, a low BFI value for the Anandapur catchment suggests an impermeable catchment with 
a steep rising limb of the hydrograph characterized by a small lag time.

Topographic Wetness Index (TWI) quantify the effect of local topography on hydrological processes113 and 
was developed by Beven and Kirkby75. It is defined as, TWI = ln

(

As

/

tan β
)

 , where As denotes the specific 
catchment area (i.e., catchment area divided by the cell width in slope direction; in m2 m−1) and β indicates the 
local slope in the steepest down slope direction of the terrain (in radians)114. The TWI for this study was deter-
mined from the 90 m shuttle radar topographic mission (SRTM) digital elevation model115 using the System for 
Automated Geoscientific Analyses (SAGA v.6.3.0) software116.

Digital soil mapping (DSM).  We develop Digital soil maps primarily for nine different soil parameters, 
e.g., sand and clay contents, SOC contents, SOC stock, pH, CEC, moisture contents at field capacity and per-
manent wilting point, and available water capacity for the Indian subcontinent at six standard depths (0–5, 
5–15, 15–30, 30–60, 60–100, and 100–200 cm respectively) according to the GlobalSoilMap specifications117. 
We develop DSMs using an Indian soil legacy database that utilized archived data from various sources, such as 
the National Bureau of Soil Survey and Land Use Planning (NBSS&LUP) and other institution publications18. 
The newly developed, digital soil map follows scorpan model118, in which a soil property at an unknown loca-

(1)BFI =
Base flow volume

Total flow volume
=

Vbase

Vtotal
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tion is estimated as a function of environmental covariates. The environmental covariates used in generating 
the current maps include terrain attributes derived from the 90 m shuttle radar topographic mission (SRTM) 
digital elevation model (DEM) data115 and climate covariates, which includes mean monthly temperature and 
precipitation18.Soil parameters (Table  S1) for top 30 (weighted average of depths 0–5, 5–15, 15–30  cm) and 
100  cm (weighted average of depths 0–5, 5–15, 15–30, 30–60, 60–100  cm) soil layers are extracted over the 
selected catchments of PRB.

Linking drought stages with climate‑catchment‑soil controls.  To identify the potential KDD in 
influencing drought dynamics, first we perform a non-parametric correlation analysis. Table S1 lists all 89 covar-
iates that are chosen to identify key drought drivers (KDD). Among climatological attributes, we also consider 
several hydro-meteorological indices, especially for extremes calculated from monthly time series of precipita-
tion (Rainfall_20p), temperature (TX90p), PET (PETX_20p), and soil moisture (SMX_20p), which are widely 
used for analysing climatic extremes at the regional and global scales119,120. These extreme indices are determined 
by calculating the median of the values greater (or lower) than equal to the nth percentile (where, n = 20 for defi-
cit and 90 for surplus as adopted here) of each meteorological variable. Next, we perform dependency analysis 
between each KDD and catchment-wise median drought stages using Kendall’s τ, which is robust to the small 
number of outliers (unlike Pearson’s correlation coefficient) and discrepancies in the data121. We check the sta-
tistical significance of dependence at 10% significance level with p-value < 0.1.

Finally, to select KDD influencing the drought stages, we implement a hybrid feature selection procedure 
consisting of filtering and wrapping through Boruta algorithm78, which is built around the random forest clas-
sification algorithm. For filtering, we retain the covariates exhibiting significant (p-value < 0.1) association with 
drought stages in the Kendall’s rank correlation. Subsequently, we apply Boruta on the reduced set of significant 
variables to obtain the key drought drivers  by fixing the number of iterations as 1000 (Fig. 1c). This was achieved 
by creating ‘shadow’ attributes for each original attribute from shuffling the corresponding values of original 
covariates across stations. Finally, we perform feature selection by using the random forest classification algorithm 
and compute the importance of all attributes of this extended system with reference to maximum Z-score of 
shadow attributes (MZSA). We mark the variables significant when they have ‘importance’78 significantly higher 
than that of MZSA and discard those variables that show ‘importance’ lower than that of the MZSA.

Data availability
All the data used in this study are publicly available. The precipitation data is obtained from Global Precipitation 
Climatology Centre (https://​opend​ata.​dwd.​de/​clima​te_​envir​onment/​GPCC/​html/​fulld​ata_​v7_​doi_​downl​oad.​
html). The monthly soil moisture data is obtained from the Climate Prediction Center (CPC; https://​psl.​noaa.​
gov/​data/​gridd​ed/​data.​cpcso​il.​html). The monthly mean surface air temperature is obtained from the CPC Global 
land surface air temperature data (https://​ual.​geopl​atform.​gov/​api/​items/​ff4f9​af65d​322c2​8a421​cf569​471d2​16.​
html). The PET time series is obtained from the Climate Research Unit’s (CRU) version 4.04 database (https://​
cruda​ta.​uea.​ac.​uk/​cru/​data/​hrg/). All data are available at a 0.5° spatial resolution in a monthly time scale. The 
shapefiles for the Indian river basins are obtained from the Global Streamflow Indices and Metadata Archive 
(https://​doi.​panga​ea.​de/​10.​1594/​PANGA​EA.​887477). The digital elevation map to develop terrain features are 
derived from the 90 m SRTM DEM database (https://​cgiar​csi.​commu​nity/​data/​srtm-​90m-​digit​al-​eleva​tion-​
datab​ase-​v4-1/). The digital soil mapping for India was developed using an Indian soil legacy database that 
utilized archived data from various sources, such as the National Bureau of Soil Survey and Land Use Planning 
(NBSS&LUP; https://​www.​nbssl​up.​in/) and other institution publications18.

Code availability
The MATLAB Codes used for drought characteristics and delineation of drought regimes have been archived 
by the authors and are available on request from P.G., pganguli@agfe.iitkgp.ac.in. The source codes for Digital 
Soil Map of India codes are available from authors through personal request.
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